Review Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 1, 54 - 63, 20.03.2024
https://doi.org/10.61150/ijonfest.2024020107

Abstract

References

  • Kalhammer, F. R., & Schneider, T. R. (1976). Energy storage. Annual Review of Energy, 1(1), 311-343.
  • Goodenough, J. B. (2015). Energy storage materials: a perspective. Energy storage materials, 1, 158-161.
  • Kozak, M., & Kozak, Ş. (2012). Enerji depolama yöntemleri. Uluslararası Teknolojik Bilimler Dergisi, 4(2), 17-29.
  • Tamilselvi, S., Gunasundari, S., Karuppiah, N., Razak RK, A., Madhusudan, S., Nagarajan, V. M., ... & Afzal, A. (2021). A review on battery modelling techniques. Sustainability, 13(18), 10042.
  • EFE, Ş., & GÜNGÖR, Z. A. (2021). Geçmişten Günümüze Batarya Teknolojisi. Avrupa Bilim Ve Teknoloji Dergisi(32), 947-955. https://doi.org/10.31590/ejosat.1048673
  • Siddiqui, U. Z., & Pathrikar, A. K. (2013). The future of energy biobattery. IJRET: International Journal of Research in Engineering and Technology, 2(11), 99-111.
  • Lv, J., Xie, J., Mohamed, A. G. A., Zhang, X., Feng, Y., Jiao, L., ... & Wang, Y. (2023). Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 7(2), 91-105.
  • Senthil, R., & Yuvaraj, S. (2019). A comprehensive review on bioinspired solar photovoltaic cells. International Journal of Energy Research, 43(3), 1068-1081.
  • Hardie, D. G., Scott, J. W., Pan, D. A., & Hudson, E. R. (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS letters, 546(1), 113-120.
  • Kannan, A. M., Renugopalakrishnan, V., Filipek, S., Li, P., Audette, G. F., & Munukutla, L. (2009). Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins. Journal of nanoscience and nanotechnology, 9(3), 1665-1678.
  • Bhatnagar, D., Xu, S., Fischer, C., Arechederra, R. L., & Minteer, S. D. (2011). Mitochondrial biofuel cells: expanding fuel diversity to amino acids. Physical Chemistry Chemical Physics, 13(1), 86-92.
  • Cracknell, J. A., Vincent, K. A., & Armstrong, F. A. (2008). Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chemical reviews, 108(7), 2439-2461.
  • Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfonta, L., & Katz, E. (2012). Living battery–biofuel cells operating in vivo in clams. Energy & Environmental Science, 5(10), 8891-8895.
  • Togibasa, O., Haryati, E., Dahlan, K., Ansanay, Y., Siregar, T., & Liling, M. N. (2019, April). Characterization of bio-battery from tropical almond paste. In Journal of Physics: Conference Series (Vol. 1204, No. 1, p. 012036). IOP Publishing.
  • Khan, A. M., & Obaid, M. (2015). Comparative bioelectricity generation from waste citrus fruit using a galvanic cell, fuel cell and microbial fuel cell. Journal of Energy in Southern Africa, 26(3), 90-99.
  • Shukla, A. K., Suresh, P., Sheela, B., & Rajendran, A. J. C. S. (2004). Biological fuel cells and their applications. Current science, 87(4), 455-468.
  • Song, H. L., Zhu, Y., & Li, J. (2019). Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–A mini review. Arabian Journal of Chemistry, 12(8), 2236-2243.
  • Berber, J. (2007). Biological solar energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (1853), 1007-1023.
  • Cogdell, R. J., Gardiner, AT, Molina, P. I., & Cronin, L. (2013). The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996), 20110603.
  • Xie, Y., Khoo, KS, Chew, KW, Devadas, VV, Phang, SJ, Lim, HR, ... & Show, PL (2022). Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresource Technology, 363, 127830.
  • Fayyaz, M., Chew, K. W., Show, PL, Ling, TC, Ng, IS, & Chang, J. S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology advances, 43, 107554.
  • Falciani, G., Bergamasco, L., Bonke, S.A., Sen, I., & Chiavazzo, E. (2023). A novel concept of photosynthetic soft membranes: a numerical study. Discover Nano, 18(1), 9.
  • Rigoulet, M., Bouchez, C. L., Paumard, P., Ransac, S., Cuvellier, S., Duvezin-Caubet, S., ... & Devin, A. (2020). Cell energy metabolism: An update. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861(11), 148276.
  • Al-Khami AA, Rodriguez PC, Ochoa AC. Energy metabolic pathways control the fate and function of myeloid immune cells. J Leukoc Biol. 2017 Aug;102(2):369-380. doi: 10.1189/jlb.1VMR1216-535R. Epub 2017 May 17. PMID: 28515225; PMCID: PMC5505747.
  • Bergman, J. (1999). ATP: the perfect energy currency for the cell. Creation Research Society Quarterly, 36(1), 2-9.
  • Bonora, M., Patergnani, S., Rimessi, A. et al. ATP synthesis and storage. Purinergic Signalling8, 343–357 (2012). https://doi.org/10.1007/s11302-012-9305-8
  • Welte, M. A., & Gould, A. P. (2017). Lipid droplet functions beyond energy storage. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862(10), 1260-1272.

Biological Insights into Energy Storage Technologies

Year 2024, Volume: 2 Issue: 1, 54 - 63, 20.03.2024
https://doi.org/10.61150/ijonfest.2024020107

Abstract

In the face of increasing energy demands and environmental concerns, the search for sustainable and efficient energy storage technologies has intensified. This review presents a holistic survey of innovative solutions by examining biological approaches. The study proceeds through three thematic sections: Biological Fuel Cells and Battery Systems, Photosynthesis and Solar Energy Storage, and Energy Generation at the Cellular Level. The first section, Biological Fuel Cells and Battery Systems describes the integration of biological processes into energy storage mechanisms. The use of biological systems and their contribution to the development of environmentally friendly and high performance energy storage technologies are discussed. In the 2nd section, Photosynthesis and Solar Energy Storage are very prominent in sustainability and energy efficiency issues in terms of both energy production and energy source food production while reducing carbon dioxide with photosynthesis-based energy storage methods. Energy production at the cellular level is discussed in the last section, Adenosine triphosphate (ATP), which is necessary for the cell to perform processes such as growth, reproduction and response to environmental stimuli, is characterized as the primary fuel. ATP production is carried out by mitochondria in animal cells and chloroplast in plant cells. Energy storage at the cellular level is carried out by molecules such as glycogen and lipids in animal cells and starch in plant cells. Considering all three issues, it has been observed that biological-based energy storage methods have numerous advantages in terms of sustainability and energy efficiency. In application areas where engineering approaches are at the forefront, it is thought that it may be possible to design more sustainable and highly energy efficient energy production systems by gaining new perspectives with biology-based simulation studies.

References

  • Kalhammer, F. R., & Schneider, T. R. (1976). Energy storage. Annual Review of Energy, 1(1), 311-343.
  • Goodenough, J. B. (2015). Energy storage materials: a perspective. Energy storage materials, 1, 158-161.
  • Kozak, M., & Kozak, Ş. (2012). Enerji depolama yöntemleri. Uluslararası Teknolojik Bilimler Dergisi, 4(2), 17-29.
  • Tamilselvi, S., Gunasundari, S., Karuppiah, N., Razak RK, A., Madhusudan, S., Nagarajan, V. M., ... & Afzal, A. (2021). A review on battery modelling techniques. Sustainability, 13(18), 10042.
  • EFE, Ş., & GÜNGÖR, Z. A. (2021). Geçmişten Günümüze Batarya Teknolojisi. Avrupa Bilim Ve Teknoloji Dergisi(32), 947-955. https://doi.org/10.31590/ejosat.1048673
  • Siddiqui, U. Z., & Pathrikar, A. K. (2013). The future of energy biobattery. IJRET: International Journal of Research in Engineering and Technology, 2(11), 99-111.
  • Lv, J., Xie, J., Mohamed, A. G. A., Zhang, X., Feng, Y., Jiao, L., ... & Wang, Y. (2023). Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 7(2), 91-105.
  • Senthil, R., & Yuvaraj, S. (2019). A comprehensive review on bioinspired solar photovoltaic cells. International Journal of Energy Research, 43(3), 1068-1081.
  • Hardie, D. G., Scott, J. W., Pan, D. A., & Hudson, E. R. (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS letters, 546(1), 113-120.
  • Kannan, A. M., Renugopalakrishnan, V., Filipek, S., Li, P., Audette, G. F., & Munukutla, L. (2009). Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins. Journal of nanoscience and nanotechnology, 9(3), 1665-1678.
  • Bhatnagar, D., Xu, S., Fischer, C., Arechederra, R. L., & Minteer, S. D. (2011). Mitochondrial biofuel cells: expanding fuel diversity to amino acids. Physical Chemistry Chemical Physics, 13(1), 86-92.
  • Cracknell, J. A., Vincent, K. A., & Armstrong, F. A. (2008). Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chemical reviews, 108(7), 2439-2461.
  • Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfonta, L., & Katz, E. (2012). Living battery–biofuel cells operating in vivo in clams. Energy & Environmental Science, 5(10), 8891-8895.
  • Togibasa, O., Haryati, E., Dahlan, K., Ansanay, Y., Siregar, T., & Liling, M. N. (2019, April). Characterization of bio-battery from tropical almond paste. In Journal of Physics: Conference Series (Vol. 1204, No. 1, p. 012036). IOP Publishing.
  • Khan, A. M., & Obaid, M. (2015). Comparative bioelectricity generation from waste citrus fruit using a galvanic cell, fuel cell and microbial fuel cell. Journal of Energy in Southern Africa, 26(3), 90-99.
  • Shukla, A. K., Suresh, P., Sheela, B., & Rajendran, A. J. C. S. (2004). Biological fuel cells and their applications. Current science, 87(4), 455-468.
  • Song, H. L., Zhu, Y., & Li, J. (2019). Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–A mini review. Arabian Journal of Chemistry, 12(8), 2236-2243.
  • Berber, J. (2007). Biological solar energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (1853), 1007-1023.
  • Cogdell, R. J., Gardiner, AT, Molina, P. I., & Cronin, L. (2013). The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996), 20110603.
  • Xie, Y., Khoo, KS, Chew, KW, Devadas, VV, Phang, SJ, Lim, HR, ... & Show, PL (2022). Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresource Technology, 363, 127830.
  • Fayyaz, M., Chew, K. W., Show, PL, Ling, TC, Ng, IS, & Chang, J. S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology advances, 43, 107554.
  • Falciani, G., Bergamasco, L., Bonke, S.A., Sen, I., & Chiavazzo, E. (2023). A novel concept of photosynthetic soft membranes: a numerical study. Discover Nano, 18(1), 9.
  • Rigoulet, M., Bouchez, C. L., Paumard, P., Ransac, S., Cuvellier, S., Duvezin-Caubet, S., ... & Devin, A. (2020). Cell energy metabolism: An update. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861(11), 148276.
  • Al-Khami AA, Rodriguez PC, Ochoa AC. Energy metabolic pathways control the fate and function of myeloid immune cells. J Leukoc Biol. 2017 Aug;102(2):369-380. doi: 10.1189/jlb.1VMR1216-535R. Epub 2017 May 17. PMID: 28515225; PMCID: PMC5505747.
  • Bergman, J. (1999). ATP: the perfect energy currency for the cell. Creation Research Society Quarterly, 36(1), 2-9.
  • Bonora, M., Patergnani, S., Rimessi, A. et al. ATP synthesis and storage. Purinergic Signalling8, 343–357 (2012). https://doi.org/10.1007/s11302-012-9305-8
  • Welte, M. A., & Gould, A. P. (2017). Lipid droplet functions beyond energy storage. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862(10), 1260-1272.
There are 27 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology (Other), Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Fatma Ceren Kırmızıtaş 0000-0002-4437-9994

Burhan Baran Günder 0009-0006-7039-6532

Ali Köse 0000-0002-0426-5159

Publication Date March 20, 2024
Submission Date February 28, 2024
Acceptance Date March 11, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

IEEE F. C. Kırmızıtaş, B. B. Günder, and A. Köse, “Biological Insights into Energy Storage Technologies”, IJONFEST, vol. 2, no. 1, pp. 54–63, 2024, doi: 10.61150/ijonfest.2024020107.