Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 2, 74 - 90, 27.09.2024

Abstract

References

  • E. J. Wilkinson, “An N-way hybrid power divider,” IRE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
  • L. I. Parad and R. L. Moynihan, “Split-tee power divider.” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 91-95, Jan. 1965.
  • S. B. Cohn, “A class of broadband three-port TEM-mode hyhrjds,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 110-116, Eeb. 1968.
  • R. B. Ekinge, “A new method of synthesizing matched broad-hand TEM mode three ports,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 81-88, Jan. 1971.
  • A. M. Saleh, “Planar electrically symmetric N-way hybrid power dividers/combiners,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 555-563, June 1980.
  • D. Kother, B. Hopf, T. Sporkmann, and I. Wolff, “MMIC Wilkinson couplers for frequencies up to 110 GHz,” in IEEE MW-S Int. Microwave Symp.. Dig., pp. 663-666, 1995.
  • Y. Wu, Y. Liu, Q. Xue, S. Li, and C. Yu, “Analytical design method of multiway dual-band planar power dividers with arbitrary power division,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3832–3841, Dec. 2010.
  • Y. Wu, Y. Liu, and Q. Xue, “An analytical approach for a novel coupled line dual-band Wilkinson power divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 286–294, Feb. 2011.
  • F. Xu, G. Guo, E. Li, and J. Wu, “An ultra-broadband 3-dB power divider,” in Proc. 5th Global Symp. Millim. Waves (GSMM), May 2012, pp. 347–350.
  • X. Wang, K.-L. Wu, and W.-Y. Yin, “A compact Gysel power divider with unequal power-dividing ratio using one resistor,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1480–1486, Jul. 2014.
  • Abitrary power ratios and filtering responses using coupling structure,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 431–440, Mar. 2014.
  • L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, “A dual-frequency Wilkinson power divider,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 278–284, Jan. 2006.
  • K.-K. M. Cheng and C. Law, “A novel approach to the design and implementation of dual-band power divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 487–492, Feb. 2008.
  • M.-J. Park and B. Lee, “A dual-band Wilkinson power divider,” IEEE Microw. Wireless Compon.Lett., vol. 18, no. 2, pp. 85–87, Feb. 2008.
  • T. Yang, J.-X. Chen, and X. Y. Z. Xue, “A dual-band out-of-Phase power divider,” IEEE Microw. Wireless Compon.Lett., vol. 18, no. 3, pp. 188–190, Mar. 2008.
  • Y. Wu, Y. Liu, and X. Liu, “Dual-frequency power divider with isolation stubs,” Electron. Lett., vol. 44, no. 24, pp. 1407–1408, Nov. 2008.
  • Y. Wu, Y. Liu, Y. Zhang, J. Gao, and H. Zhou, “A dual band unequal Wilkinson power divider without reactive components,” IEEE Trans.
  • Y.Wu,Y. Liu, and S. Li, “An unequal dual-frequency Wilkinson power divider with optional isolation structure,” Progr. Electromagn. Res., vol. 91, pp. 393–411, 2009.
  • Xiaochuan Shen ; Yongle Wu ; Siyue Zhou ; Yuanan Liu,” A Novel Coupled-Line Tunable Wilkinson Power Divider With Perfect Port Match and Isolation in Wide Frequency Tuning Range,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume: 6, Issue: 6, June 2016.
  • Xiao-Lan Zhao; Li Gao, ; Xiu Yin Zhang ; Jin-Xu Xu,” Novel Filtering Power Divider With Wide Stopband Using Discriminating Coupling” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 26, NO. 8, AUGUST 2016.
  • Eslamloo, Masoud Khoubroo, and Pejman Mohammadi. "Compact size, equal-length and unequal-width substrate integrated waveguide phase shifter." 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, 2016.
  • Sagiroglu. S.: Guney, K.: Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave and Optical Technology LetI. 14(1997). 89-93.
  • Sagiroglu. S.; Guney. K.; Erler, M.: Resonant frequency calculation for circular microstrip antennas using artificial neural networks. mt. J. of RF and Microwave Computer-Aided Engineering 8 (1998), 270-277.
  • Guney. K.; Sagiroglu. S.; Erler. M.: Design of rectangular microstrip antennas with the use of artificial neural networks, Neural Network World 4 (2002). 361-370.
  • Guney, K.; Sagiroglu, S.; Erler. M.: Generalized neural method to determine resonant frequencies of various microstrip antennas. mt. J. 01 RE and Microwave Computer-Aided Engineering 12 (2002). 131139.
  • Yildiz, C.; Gultekin. S. S.; Guney. K.; Sagiroglu, S.: Neural models für the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides hacked with a conductor. AEU-lnternational J. of Electronics and Communications 56(2002), 396-406.
  • Guney. K.: Sarikaya, N.: Artificial neural networks for calculating the input resistance of circular microstrip antennas, Microwave and Optical Technology Lett, 37(2003), 107-111.
  • Gultekin. S. S.; Guney. K.: Sagiroglu. S.: Neural networks for the calculation of bandwidth of rectangular n microstrip antennas. Applied computational Electromagnetics Society (ACES) Journal 18 (2003). 46-56.
  • Guney, K.: Sarikaya, N.: Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns. Electrical Engineering 86(2004). 157-163.
  • Karaboga, D.: Guney, K,: Sagiroglu. S.; Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. lEE Proc. Mierow. Antennas Propagat. 146 (1999), 155-159.
  • Sagiroglu, S.: Guney, K.; Erler, M.: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered pcrceptrons. Tnt. J. of RF and Microwave Compulter -Aided Engineering 9(1999), 277-286.
  • Guney, K.; Erler, M,; Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas, Electromagnetics 20(2000), 387-400.
  • Guney. K.: Sagiroglu, S.: Erler. M.: Comparison of neural networks lhr resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J. of Electromagnetic Waves and Applications 15 (2001), 1121—1145.
  • K. Guney and N. Sarikaya, ‘‘Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates’’, J. Electr. Wav. Appl., 18, pp. 23–39, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Adaptive neuro-fuzzy inference system for computing the resonant frequency of circular microstrip antennas’’, Appl. Comput. Electr. Soc. J., 19, pp. 188–197, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Computation of resonant frequency for equilateral triangular microstrip antennas using adaptive neuro-fuzzy inference system’’, Int. J. RF and Micr. Comput.-Aid. Engin., 14, pp. 134–143, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Input resistance calculation for circular microstrip antennas using adaptive neuro-fuzzy inference system’’, Int. J. Infr. Millim. Wav., 25, pp. 703–716, 2004 .
  • K. Guney and N. Sarikaya, “Adaptive neuro-fuzzy inference system for computing the resonant frequency of electrically thin and thick rectangular microstrip antennas’, International Journal of Electronics, Vol:94, Issue: 9.
  • J.S.R. Jang, ‘‘Anfis: Adaptive-network-based fuzzy inference system’’, IEEE Trans. Syst., Man, Cyber., 23, pp. 665–685, 1993.
  • M. EROL KESKIN , DILEK TAYLAN & ÖZLEM TERZI (2006) Adaptive neuralbased fuzzy inference system (ANFIS) approach for modelling hydrological time series, Hydrological Sciences Journal, 51:4, 588-598, DOI:10.1623/hysj.51.4.588.

Resonant frequency, phase and power estimation in a broadband substrate integrated waveguide two- channel T- type power divider using adaptive network-based fuzzy inference system

Year 2024, Volume: 2 Issue: 2, 74 - 90, 27.09.2024

Abstract

A novel substrate integrated waveguide (SIW), power divider is proposed. It consists of two channels made by SIW with the same length and width. The bandwidth of 5GHz to 14 GHz is studied here. The propagation constant of the output signals can be adjusted by only four vias in the middle of the output arms. Hence, the position of four metalized inductive vias used here are chosen as a variable ranging from 0 mm to 1 mm and they are shifted in four different positions: up, down, right and left sides. Our studies reveal that moving the vias up and down has no effects on the resonant frequency and other related parameters. However, the values of output powers and phases are changed as the vias are shifted to the right or left sides. Conventionally, artificial neural networks are tested out to obtain resonant frequency, output powers and output phases. But surprisingly, they lead to a promising result. Finally, adaptive network-based fuzzy inference system (ANFIS) is applied in three different steps to obtain resonant frequency, output powers and output phases. As can be seen, ANFIS can determine S parameters as output signals with a high accuracy when the resonant frequency and phases of output ports are given and the average error of less than 10% can be achieved. Nevertheless, estimation of output phases or resonant frequency result in less satisfactory results.

References

  • E. J. Wilkinson, “An N-way hybrid power divider,” IRE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
  • L. I. Parad and R. L. Moynihan, “Split-tee power divider.” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 91-95, Jan. 1965.
  • S. B. Cohn, “A class of broadband three-port TEM-mode hyhrjds,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 110-116, Eeb. 1968.
  • R. B. Ekinge, “A new method of synthesizing matched broad-hand TEM mode three ports,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 81-88, Jan. 1971.
  • A. M. Saleh, “Planar electrically symmetric N-way hybrid power dividers/combiners,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 555-563, June 1980.
  • D. Kother, B. Hopf, T. Sporkmann, and I. Wolff, “MMIC Wilkinson couplers for frequencies up to 110 GHz,” in IEEE MW-S Int. Microwave Symp.. Dig., pp. 663-666, 1995.
  • Y. Wu, Y. Liu, Q. Xue, S. Li, and C. Yu, “Analytical design method of multiway dual-band planar power dividers with arbitrary power division,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3832–3841, Dec. 2010.
  • Y. Wu, Y. Liu, and Q. Xue, “An analytical approach for a novel coupled line dual-band Wilkinson power divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 286–294, Feb. 2011.
  • F. Xu, G. Guo, E. Li, and J. Wu, “An ultra-broadband 3-dB power divider,” in Proc. 5th Global Symp. Millim. Waves (GSMM), May 2012, pp. 347–350.
  • X. Wang, K.-L. Wu, and W.-Y. Yin, “A compact Gysel power divider with unequal power-dividing ratio using one resistor,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1480–1486, Jul. 2014.
  • Abitrary power ratios and filtering responses using coupling structure,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 431–440, Mar. 2014.
  • L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, “A dual-frequency Wilkinson power divider,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 278–284, Jan. 2006.
  • K.-K. M. Cheng and C. Law, “A novel approach to the design and implementation of dual-band power divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 487–492, Feb. 2008.
  • M.-J. Park and B. Lee, “A dual-band Wilkinson power divider,” IEEE Microw. Wireless Compon.Lett., vol. 18, no. 2, pp. 85–87, Feb. 2008.
  • T. Yang, J.-X. Chen, and X. Y. Z. Xue, “A dual-band out-of-Phase power divider,” IEEE Microw. Wireless Compon.Lett., vol. 18, no. 3, pp. 188–190, Mar. 2008.
  • Y. Wu, Y. Liu, and X. Liu, “Dual-frequency power divider with isolation stubs,” Electron. Lett., vol. 44, no. 24, pp. 1407–1408, Nov. 2008.
  • Y. Wu, Y. Liu, Y. Zhang, J. Gao, and H. Zhou, “A dual band unequal Wilkinson power divider without reactive components,” IEEE Trans.
  • Y.Wu,Y. Liu, and S. Li, “An unequal dual-frequency Wilkinson power divider with optional isolation structure,” Progr. Electromagn. Res., vol. 91, pp. 393–411, 2009.
  • Xiaochuan Shen ; Yongle Wu ; Siyue Zhou ; Yuanan Liu,” A Novel Coupled-Line Tunable Wilkinson Power Divider With Perfect Port Match and Isolation in Wide Frequency Tuning Range,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume: 6, Issue: 6, June 2016.
  • Xiao-Lan Zhao; Li Gao, ; Xiu Yin Zhang ; Jin-Xu Xu,” Novel Filtering Power Divider With Wide Stopband Using Discriminating Coupling” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 26, NO. 8, AUGUST 2016.
  • Eslamloo, Masoud Khoubroo, and Pejman Mohammadi. "Compact size, equal-length and unequal-width substrate integrated waveguide phase shifter." 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, 2016.
  • Sagiroglu. S.: Guney, K.: Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave and Optical Technology LetI. 14(1997). 89-93.
  • Sagiroglu. S.; Guney. K.; Erler, M.: Resonant frequency calculation for circular microstrip antennas using artificial neural networks. mt. J. of RF and Microwave Computer-Aided Engineering 8 (1998), 270-277.
  • Guney. K.; Sagiroglu. S.; Erler. M.: Design of rectangular microstrip antennas with the use of artificial neural networks, Neural Network World 4 (2002). 361-370.
  • Guney, K.; Sagiroglu, S.; Erler. M.: Generalized neural method to determine resonant frequencies of various microstrip antennas. mt. J. 01 RE and Microwave Computer-Aided Engineering 12 (2002). 131139.
  • Yildiz, C.; Gultekin. S. S.; Guney. K.; Sagiroglu, S.: Neural models für the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides hacked with a conductor. AEU-lnternational J. of Electronics and Communications 56(2002), 396-406.
  • Guney. K.: Sarikaya, N.: Artificial neural networks for calculating the input resistance of circular microstrip antennas, Microwave and Optical Technology Lett, 37(2003), 107-111.
  • Gultekin. S. S.; Guney. K.: Sagiroglu. S.: Neural networks for the calculation of bandwidth of rectangular n microstrip antennas. Applied computational Electromagnetics Society (ACES) Journal 18 (2003). 46-56.
  • Guney, K.: Sarikaya, N.: Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns. Electrical Engineering 86(2004). 157-163.
  • Karaboga, D.: Guney, K,: Sagiroglu. S.; Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. lEE Proc. Mierow. Antennas Propagat. 146 (1999), 155-159.
  • Sagiroglu, S.: Guney, K.; Erler, M.: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered pcrceptrons. Tnt. J. of RF and Microwave Compulter -Aided Engineering 9(1999), 277-286.
  • Guney, K.; Erler, M,; Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas, Electromagnetics 20(2000), 387-400.
  • Guney. K.: Sagiroglu, S.: Erler. M.: Comparison of neural networks lhr resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J. of Electromagnetic Waves and Applications 15 (2001), 1121—1145.
  • K. Guney and N. Sarikaya, ‘‘Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates’’, J. Electr. Wav. Appl., 18, pp. 23–39, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Adaptive neuro-fuzzy inference system for computing the resonant frequency of circular microstrip antennas’’, Appl. Comput. Electr. Soc. J., 19, pp. 188–197, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Computation of resonant frequency for equilateral triangular microstrip antennas using adaptive neuro-fuzzy inference system’’, Int. J. RF and Micr. Comput.-Aid. Engin., 14, pp. 134–143, 2004 .
  • K. Guney and N. Sarikaya, ‘‘Input resistance calculation for circular microstrip antennas using adaptive neuro-fuzzy inference system’’, Int. J. Infr. Millim. Wav., 25, pp. 703–716, 2004 .
  • K. Guney and N. Sarikaya, “Adaptive neuro-fuzzy inference system for computing the resonant frequency of electrically thin and thick rectangular microstrip antennas’, International Journal of Electronics, Vol:94, Issue: 9.
  • J.S.R. Jang, ‘‘Anfis: Adaptive-network-based fuzzy inference system’’, IEEE Trans. Syst., Man, Cyber., 23, pp. 665–685, 1993.
  • M. EROL KESKIN , DILEK TAYLAN & ÖZLEM TERZI (2006) Adaptive neuralbased fuzzy inference system (ANFIS) approach for modelling hydrological time series, Hydrological Sciences Journal, 51:4, 588-598, DOI:10.1623/hysj.51.4.588.
There are 40 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Vala Tashvıgh 0009-0001-6811-2696

Mesut Kartal

Mahmood Abbasi Layegh

Aran Abbasi Layegh

Publication Date September 27, 2024
Submission Date March 4, 2024
Acceptance Date April 17, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

IEEE V. Tashvıgh, M. Kartal, M. Abbasi Layegh, and A. Abbasi Layegh, “Resonant frequency, phase and power estimation in a broadband substrate integrated waveguide two- channel T- type power divider using adaptive network-based fuzzy inference system”, IJONFEST, vol. 2, no. 2, pp. 74–90, 2024.