Conference Paper
BibTex RIS Cite

Design and analysis of composite hydraulic cylinders developed for aerospace applications

Year 2025, Volume: 3 Issue: 1, 25 - 31, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030103

Abstract

Nowadays, aviation and space applications are technologies that are becoming increasingly important. It is essential that these technologies are highly energy efficient and can be applied effectively. The central systems of an aircraft can be listed as navigation and communication, power control systems, flight control systems, and collision avoidance systems. Hydraulic energy is required for the flight control systems, one of the central systems of the aircraft. In an aircraft, hydraulic systems can generally be used in flight control (such as ailerons, horizontal elevators, high-lift gear), landing gear (such as brakes, steering, and landing gear bending), door and stair systems (such as cabin and cargo doors, ramps), and main power (such as propeller brakes, reverse engine operation). Cylinders (actuators), the final element of power transmission in hydraulic systems, are among the most important movement elements. Hydraulic cylinders are elements that convert hydraulic energy into mechanical energy linearly. Hydraulic cylinders are usually made of steel, aluminum alloy, or titanium alloys in aviation. Hydraulic cylinders are heavy due to the high working pressure conditions they provide. This makes it challenging to use in aircraft. A heavy cylinder can also limit the desired mobility in the system to be limited, causing excessive fuel consumption, shortening the aircraft's mission time, and reducing the range. For these reasons, it has been observed that there is a tendency towards composite materials in aviation and space applications. This study evaluates that a hydraulic cylinder is optimized with appropriate calculations and design and made of composite material and titanium alloy. The strength values of the cylinder formed with carbon fiber wrapped on the titanium alloy cylinder tube at two different angles were compared with the finite element method. Two different windings were made with angles of 75/90/-75/90 and 45/90/-45/90 using the finite element method. As a result of the comparison, it was determined that the 75/90/-75/90 winding had approximately 25% higher strength value than the 45/90/-45/90 winding.

Thanks

This study was supported by HIPAS Hydraulics Pneumatics Co.-Design Center. I would like to extend my sincere thanks to Ufuk Alemdaroglu, Tevfik Alpoglu, Ebru Dalkiran, and Fikret Dalkiran for their valuable contributions. I should also mention that this research is a part of the master's thesis prepared at the Institute of Pure and Applied Sciences, Marmara University.

References

  • [1] Dolgov O., Prokopenko D., Kolosov A., Abrosimova I., 2022. Development of a typical structural diagram of the hydraulic system of short-haul passenger aircraft, Transp. Res. Procedia, vol. 63, pp. 1639–1659.
  • [2] Jani D. B., Ashish S., Aditya S., Yash S., Bishambhar S., Nikhil S., Manmohan S., 2019. An overview on aircraft hydraulic system, Int. J. Innov. Res. Technol., vol. 6, no. 5, pp. 6–10.
  • [3] Bagal N. P., Singh K. D., Mishra A. S., Vanalkar D. A. V., 2021. Design of Hydraulic Actuator in a Typical Aerospace Vehicle, Int. J. Eng. Appl. Sci. Technol., vol. 6, no. 5, pp. 4333–4336.
  • [4] Li Y., Shang Y., Wan X., Jiao Z., Yu T.,2024. Design, manufacture, and experiments of lightweight CFRP hydraulic cylinder tube without metal liner, Polym. Compos., vol. 45, no. 3, pp. 2569–2588.
  • [5] Skowrońska J., Kosucki A., Stawiński Ł., 2021. Overview of materials used for the basic elements of hydraulic actuators and sealing systems and their surfaces modification methods, Materials (Basel)., vol. 14, no. 6.
  • [6] Li Y., Shang Y., Wan X., Jiao Z., Yu T.,2023. Design, manufacture, and experiments of lightweight CFRP hydraulic cylinder tube without metal liner, Polym. Compos., no. August, pp. 1–20.
  • [7] Lubecki M., Stosiak M., Skačkauskas P., Karpenko M., Deptuła A., Urbanowicz K., 2022. Development of Composite Hydraulic Actuators: A Review, Actuators, vol. 11, no. 12, pp. 1–15.
  • [8] Joost W. J.,2012. Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering, Jom, vol. 64, no. 9, pp. 1032–1038.
  • [9] Kaluza A., Kleemann S., Fröhlich T., Herrmann C., Vietor T.,2017. Concurrent Design & Life Cycle Engineering in Automotive Lightweight Component Development, Procedia CIRP, vol. 66, pp. 16–21.
  • [10] Cebon D., Ashby M. F., 1992. Materials Selection for Mechanical Design, ASTM Spec. Tech. Publ., vol. STP 1140, pp. 323–335.
  • [11] Marczewska I., Bednarek T., Marczewski A., Sosnowski W., Jakubczak H., Rojek J., 2006. Practical fatigue analysis of hydraulic cylinders and some design recommendations, Int. J. Fatigue, vol. 28, no. 12, pp. 1739–1751.
  • [12] Chang Y., Zhou Y., Wang N., Lu K., Wen W., Xu Y., 2022. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading, Compos. Struct., vol. 313, p. 116925.
  • [13] Coskun T., Sahin O. S., 2023. Comparison of mechanical properties of the Type 1 and Type 2 composite hydraulic cylinder designs : A numerical study no. February, Polymer Composites, vol. 44 pp. 2941–2955.
  • [14] Lubecki M., Selected design issues in hydraulic cylinder made of composite materials Dynamic properties of hydraulic elements View project hydraulic systems, 2018.
  • [15] Scholz S., Kroll L.,2014. Nanocomposite glide surfaces for FRP hydraulic cylinders - Evaluation and test, Compos. Part B Eng., vol. 61, pp. 207–213.
  • [16] Shen F. C.,1995. A filament-wound structure technology overview, Mater. Chem. Phys., vol. 42, no. 2, pp. 96–100.
  • [17] Dharmarao S. S.,2019. Design and Analysis of Thick Pressure Vessels, IJMPERD, vol. 9, no. 5, pp. 125-136.
  • [18] Kaw A. K., Mechanics of Composite Materials. 2005.
  • [19] Cohen D., Mantell S. C., Zhao L., 2001. The effect of fiber volume fraction on filament wound composite pressure vessel strength, Composites Part B: Engineering, vol. 32, no. 5, pp. 413-429.
  • [20] “https://www.matweb.com/search/DataSheet.aspx?MatGUID=af89ddaae1c347caa3b97081ca6d0ebd.” A.D. : 13.11.2024
  • [21] Solazzi L. , Buffoli A.,2021. Fatigue design of hydraulic cylinder made of composite material, Compos. Struct., vol. 277, p. 114647.
  • [22] R. C. Hibbeler, Mechanics of Materials 8th Edition, vol. 11, no. 1. 2011.
  • [23] Hibbert K., Warner G., Brown C., Ajide O., Owolabi G., Azimi A., 2019. The Effects of Build Parameters and Strain Rate on the Mechanical Properties of FDM 3D-Printed Acrylonitrile Butadiene Styrene, Open J. Org. Polym. Mater., vol. 09, no. 01, pp. 1–27.
  • [24] Sanal Z., 2000. Nonlinear analysis of pressure vessels: some examples, International Journal of Pressure Vessels and Piping, vol. 77, no. 12, pp. 705-709.

Havacılık ve uzay uygulamalarına yönelik geliştirilen kompozit hidrolik silindirlerin tasarımı ve analizi

Year 2025, Volume: 3 Issue: 1, 25 - 31, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030103

Abstract

Günümüzde havacılık ve uzay uygulamaları gün geçtikçe önemini artıran teknolojilerdir. Bu teknolojilerin enerji verimliliği yüksek ve etkin olarak uygulanabilir olması önemlidir. Bir uçağın ana sistemleri; navigasyon ve iletişim, güç kontrol sistemleri, uçuş kontrol sistemleri, çarpışma önleyici sistemler gibi sıralanabilir. Uçağın ana sistemlerinden uçuş kontrol sistemleri için hidrolik enerji gerekmektedir. Bir uçakta hidrolik sistemler genel olarak uçuş kontrolünde (kanatçık, yatay irtifa dümeni, yüksek kaldırıcı tertibat gibi), iniş takımlarında (frenler, istikamet verme, iniş takımı bükülmesi gibi), kapı ve merdiven sistemlerinde (kabin ve kargo kapıları, rampalar gibi), ana güç (pervane freni, motorların ters istikamete çalışması gibi) alanlarında kullanılabilir. Hidrolik sistemlerde güç aktarımının son elemanı olan silindirler (aktüatörler) hareket organının en önemli elemanlarından biridir. Hidrolik silindirler hidrolik enerjiyi mekanik enerjiye doğrusal olarak çeviren elemanlardır. Genellikle hidrolik silindirler çelik, alüminyum alaşım ya da havacılıkta titanyum alaşımlarından yapılmaktadır. Hidrolik silindirlerin yüksek çalışma basıncı şartlarını sağlamasından dolayı ağır olmaktadır. Bu da hava araçlarında kullanımı zorlaştırmaktadır. Ağır olan silindir aynı zamanda sistemde istenilen hareket kabiliyetinin kısıtlanmasına, fazla yakıt tüketimine, hava aracının görev süresinin kısalmasına, menzilin azaltılmasına neden olabilir. Bu nedenlerle; havacılık ve uzay uygulamalarında kompozit malzemelere yönelim gerçekleştiği görülmüştür. Söz konusu makalede bir hidrolik silindirin uygun hesaplamalar ve tasarım ile optimize edilerek titanyum alaşım ile birlikte kompozit malzemeden yapılması değerlendirilmektedir. Titanyum alaşımlı silindir borusu üzerine iki farklı açı ile sarılmış karbon fiber ile oluşturulan silindirin mukavemet değerleri sonlu elemanlar yöntemi ile kıyaslanmıştır. Sonlu elemanlar yöntemi kullanılarak 75/90/-75/90 ve 45/90/-45/90 açıları ile iki farklı sarım yapılmıştır. Kıyaslama neticesinde 75/90/-75/90 sarımın 45/90/-45/90 sarımına göre yaklaşık %25 daha yüksek mukavemet değeri olduğu tespit edilmiştir.

References

  • [1] Dolgov O., Prokopenko D., Kolosov A., Abrosimova I., 2022. Development of a typical structural diagram of the hydraulic system of short-haul passenger aircraft, Transp. Res. Procedia, vol. 63, pp. 1639–1659.
  • [2] Jani D. B., Ashish S., Aditya S., Yash S., Bishambhar S., Nikhil S., Manmohan S., 2019. An overview on aircraft hydraulic system, Int. J. Innov. Res. Technol., vol. 6, no. 5, pp. 6–10.
  • [3] Bagal N. P., Singh K. D., Mishra A. S., Vanalkar D. A. V., 2021. Design of Hydraulic Actuator in a Typical Aerospace Vehicle, Int. J. Eng. Appl. Sci. Technol., vol. 6, no. 5, pp. 4333–4336.
  • [4] Li Y., Shang Y., Wan X., Jiao Z., Yu T.,2024. Design, manufacture, and experiments of lightweight CFRP hydraulic cylinder tube without metal liner, Polym. Compos., vol. 45, no. 3, pp. 2569–2588.
  • [5] Skowrońska J., Kosucki A., Stawiński Ł., 2021. Overview of materials used for the basic elements of hydraulic actuators and sealing systems and their surfaces modification methods, Materials (Basel)., vol. 14, no. 6.
  • [6] Li Y., Shang Y., Wan X., Jiao Z., Yu T.,2023. Design, manufacture, and experiments of lightweight CFRP hydraulic cylinder tube without metal liner, Polym. Compos., no. August, pp. 1–20.
  • [7] Lubecki M., Stosiak M., Skačkauskas P., Karpenko M., Deptuła A., Urbanowicz K., 2022. Development of Composite Hydraulic Actuators: A Review, Actuators, vol. 11, no. 12, pp. 1–15.
  • [8] Joost W. J.,2012. Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering, Jom, vol. 64, no. 9, pp. 1032–1038.
  • [9] Kaluza A., Kleemann S., Fröhlich T., Herrmann C., Vietor T.,2017. Concurrent Design & Life Cycle Engineering in Automotive Lightweight Component Development, Procedia CIRP, vol. 66, pp. 16–21.
  • [10] Cebon D., Ashby M. F., 1992. Materials Selection for Mechanical Design, ASTM Spec. Tech. Publ., vol. STP 1140, pp. 323–335.
  • [11] Marczewska I., Bednarek T., Marczewski A., Sosnowski W., Jakubczak H., Rojek J., 2006. Practical fatigue analysis of hydraulic cylinders and some design recommendations, Int. J. Fatigue, vol. 28, no. 12, pp. 1739–1751.
  • [12] Chang Y., Zhou Y., Wang N., Lu K., Wen W., Xu Y., 2022. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading, Compos. Struct., vol. 313, p. 116925.
  • [13] Coskun T., Sahin O. S., 2023. Comparison of mechanical properties of the Type 1 and Type 2 composite hydraulic cylinder designs : A numerical study no. February, Polymer Composites, vol. 44 pp. 2941–2955.
  • [14] Lubecki M., Selected design issues in hydraulic cylinder made of composite materials Dynamic properties of hydraulic elements View project hydraulic systems, 2018.
  • [15] Scholz S., Kroll L.,2014. Nanocomposite glide surfaces for FRP hydraulic cylinders - Evaluation and test, Compos. Part B Eng., vol. 61, pp. 207–213.
  • [16] Shen F. C.,1995. A filament-wound structure technology overview, Mater. Chem. Phys., vol. 42, no. 2, pp. 96–100.
  • [17] Dharmarao S. S.,2019. Design and Analysis of Thick Pressure Vessels, IJMPERD, vol. 9, no. 5, pp. 125-136.
  • [18] Kaw A. K., Mechanics of Composite Materials. 2005.
  • [19] Cohen D., Mantell S. C., Zhao L., 2001. The effect of fiber volume fraction on filament wound composite pressure vessel strength, Composites Part B: Engineering, vol. 32, no. 5, pp. 413-429.
  • [20] “https://www.matweb.com/search/DataSheet.aspx?MatGUID=af89ddaae1c347caa3b97081ca6d0ebd.” A.D. : 13.11.2024
  • [21] Solazzi L. , Buffoli A.,2021. Fatigue design of hydraulic cylinder made of composite material, Compos. Struct., vol. 277, p. 114647.
  • [22] R. C. Hibbeler, Mechanics of Materials 8th Edition, vol. 11, no. 1. 2011.
  • [23] Hibbert K., Warner G., Brown C., Ajide O., Owolabi G., Azimi A., 2019. The Effects of Build Parameters and Strain Rate on the Mechanical Properties of FDM 3D-Printed Acrylonitrile Butadiene Styrene, Open J. Org. Polym. Mater., vol. 09, no. 01, pp. 1–27.
  • [24] Sanal Z., 2000. Nonlinear analysis of pressure vessels: some examples, International Journal of Pressure Vessels and Piping, vol. 77, no. 12, pp. 705-709.
There are 24 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Zeynep Güler

Garip Genç

Publication Date March 28, 2025
Submission Date January 17, 2025
Acceptance Date March 18, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE Z. Güler and G. Genç, “Design and analysis of composite hydraulic cylinders developed for aerospace applications”, IJONFEST, vol. 3, no. 1, pp. 25–31, 2025, doi: 10.61150/ijonfest.2025030103.