Research Article
BibTex RIS Cite

Elektrikli ve Hibrit Araçlar İçin Yangın Güvenlik Önlemleri ve Yangınlarına Müdahale Teknikleri

Year 2025, Volume: 3 Issue: 1, 44 - 58, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030105

Abstract

Bu makale, elektrikli ve hibrit araçların yangın güvenlik önlemleri ile bu araçlarda meydana gelen yangınlara müdahale tekniklerini ele almaktadır. Elektrikli ve hibrit araçların çevresel ve ekonomik avantajları, bu araçların kullanımını artırırken, batarya teknolojilerinden kaynaklanan yangın risklerini de beraberinde getirmektedir. Bu bataryalarda meydana gelen termal kaçaklar, ciddi yangınlara yol açabilmekte ve trafik kazaları sırasında bu risk önemli ölçüde artmaktadır. Elektrikli araçların satış oranları yükselirken, bu araçlarla ilgili yangın vakalarının da artış gösterdiği gözlemlenmiştir. Elektrikli ve hibrit araçların yaygınlaşmasıyla birlikte, bu araçlarla ilişkili yangın olaylarının da artış göstermesi muhtemeldir. Bu durum hem araç üreticileri hem de acil durum ekipleri için yeni stratejilerin geliştirilmesini zorunlu kılmaktadır. Araç içi enerji depolama sistemlerinin güvenliği artırılmalı ve bu konuda toplumun farkındalığı artırılmalıdır. Ayrıca, yangın risklerini en aza indirmek için etkili müdahale tekniklerinin ve önleyici politikaların uygulanması gerekmektedir.

References

  • [1] The Regulation on Fire Protection Of Buildings (2007). Official Gazette (6.735). Ministry of Public Works and settlement
  • [2] Batuhan, I. (2022). Electric vehicles, electric charging stations, and Turkey for the period the amount of estimated future electric vehicle. (Master's Thesis). Higher education Institution thesis retrieved from the database. (Thesis no: 741220)
  • [3] Ritchie, H. (2024). Global tracking data pre-electric vehicles. Published online at OurWorldinData.org. URL: https://ourworldindata.org/electric-car-sales (access date: 10.01.2025).
  • [4] Yıldırım, M. (2022). Safety measures in electric vehicles. (Ph. D. Thesis).Higher education Institution thesis retrieved from the database. (Thesis no:712691).
  • [5] Dorsz, A., & Lewandowski, M. (2022). Analysis of fire hazards associated with the operation of electric vehicles in enclosed structures. Energies, 15(1), 11. https://doi.org/10.3390/en15010011
  • [6] IIEA. (2021). Global EV Outlook 2021. Paris, France: International Energy Agency. URL: https://www.iea.org/reports/global-ev-outlook-2021(access date: 10.01.2025).
  • [7] Ozbugut A. C., & Yılmaz, E. (2024). 100 thousand electric cars were sold in 2024. URL: https://www.aa.com.tr/tr/ekonomi/2024te-100-bine-yakin-elektrikli-otomobil-satildi/3444453(access date: 10.01.2025).
  • [8] TÜİK. (2024). 2024, The number of electric vehicles in Turkey. The Target Fleet. URL: https://ev.hedeffilo.com/evgundem/blog/2024-yilinda-turkiyedeki-elektrikli-arac-sayisi
  • [9] Kazak, D. (2024). Lithium-ion batteries in fire safety: all-electric vehicles in risk assessment, prevention and fight. Premium e-Journal of Social Sciences (PEJOSS), 8(42), 638-652.
  • [10] Alyar, H. (2022). The structure of electric cars and fire risks. International fuels and combustion, Fire Journal, 10, 1-8. https://doi.org/10.52702/fce.1057432
  • [11] Karamangil, M. I. Riding, A., & Thompson, M. (2022). A review of battery fires in electric cars. International fuels and combustion, Fire Journal, 11(1), 29-40. https://doi.org/10.52702/fce.1224612
  • [12] Ju, F., Li, J., Xiao, G., Huang, N., & Biller, S. (2014). A flow model s battery manufacturing quality systems for electric vehicles. IEEE Transactions on Automation science and engineering, 11(1), 230-244. https://doi.org/10.1109/TASE.2013.2237765
  • [13] Kazak, D., & Öncel, H. U. (2024). Firefighters all-electric vehicle fires, with an examination of the struggle. International Journal Of Social Sciences Studies, 10(3), 384-394.
  • [14] Özcan, F. (2024). Safety recommendations for electric vehicle fires. OHS Turkey. URL: https://www.isgturkiye.com/konu/elektrikli-arac-yanginlari-icin-guvenlik-onerileri.10847/
  • [15] Shin, Y. (2024). Seesaw - wed, Electric fire fighting equipment. James Dyson Award. RetriURL: https://www.jamesdysonaward.org/2023/project/seesaw-electric-car-fire-fighting-equipment/(access date: 10.01.2025).
  • [16] Sun, P., Bisschop, R., Niu, H., & Huang, X. (2020). A review of battery fires in electric vehicles. Fire Technology, 56, 1361-1410. https://doi.org/10.1007/s10694-020-00958-2.
  • [17] Bisschop, R. (2020). Handling the lithium-ion batteries in electric vehicles: recovering from and preventing hazardous events. Fire Technology, 56, 2671-2694. https://doi.org/10.1007/s10694-020-01038-1
  • [18] Tohir, M., & Martin-Gomez, C. (2023). Electric vehicle fire risk assessment using fault tree analysis framework. Open Research Europe, 1-20. https://doi.org/10.12688/openreseurope.16538.1
  • [19] Chamber of Mechanical Engineers. (2024). The use of electric vehicles, and fire safety. Ankara: Turkey's electric vehicle working group.
  • [20] Regulation on the Protection of Buildings from Fire (2007). Republic of Turkey Council of Ministers Decision . [21] Griffiths, A. (2023). Wed design challenges in fire safety and risk mitigation for electric vehicle parks. URL: https://www.chapmantaylor.com/insights/design-challenges-and-risk-mitigation-for-electric-vehicle-fire-safety (date of access: 10.01.2025).
  • [22] Colella, F. (2016). Understanding electric vehicle fires. Fire Protection and safety in Tunnels, Stavanger.
  • [23] Long Jr, R. T., Blum, A. F., Actives, T. J., & Cotts, B. R. T. (2013). Best practices for emergency response incidents involving electric vehicles battery hazards: a preliminary report, the full-scale test results. Journal of chemical information and modeling, 53, 1009-1010.
  • [24] Hazardous Materials Recognition Guide. (2014). Istanbul: Istanbul Fire Brigade.
  • [25] Gaziantep Metropolitan Municipality, (2024), Fire Raport “dated 07.05.2024 and numbered 24445”
  • [26] Flour, C., & Aydin, K. (2021). Thermal runaway and fire suppression applications for different types of lithium-ion batteries. Vehicles, 3(3), 480-497. (Access date: 10.01.2025). https://doi.org/10.3390/vehicles3030029
  • [27] Said, A. O., & Stoliarov, S. I. (2021). Analysis of the effectiveness of suppression of lithium-ion battery fires with a clean agent. Fire Safety Journal, 121, 103296. https://doi.org/10.1016/j.firesaf.2021.103296
  • [28] Willstrand, O. (2019). Battery pack for vehicle fire suppression tests. NATIONS Research Institutes of Sweden, Boras, Sweden.
  • [29] Topal, O. (2023). Turkey in electric and hybrid vehicles for the emergency response approaches. The environment, the climate of the City Journal, 2(3), 190-206.

Fire Safety Precautions and Fire Intervention Techniques for Electric and Hybrid Vehicles

Year 2025, Volume: 3 Issue: 1, 44 - 58, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030105

Abstract

This paper addresses the fire safety measures of electric and hybrid vehicles and response techniques to fires that occur in these vehicles. While the environmental and economic advantages of electric and hybrid vehicles increase the use of these vehicles, they also bring fire risks arising from battery technologies. Thermal leaks in these batteries can cause serious fires and this risk increases significantly during traffic accidents. As the sales rates of electric vehicles increase, it has been observed that fire incidents related to these vehicles have also increased. As electric and hybrid vehicles become more widespread, fire incidents associated with these vehicles are likely to increase. This situation necessitates the development of new strategies for both vehicle manufacturers and emergency teams. The safety of in-vehicle energy storage systems should be enhanced and public awareness should be raised. Furthermore, effective response techniques and preventive policies need to be implemented to minimize fire risks.

References

  • [1] The Regulation on Fire Protection Of Buildings (2007). Official Gazette (6.735). Ministry of Public Works and settlement
  • [2] Batuhan, I. (2022). Electric vehicles, electric charging stations, and Turkey for the period the amount of estimated future electric vehicle. (Master's Thesis). Higher education Institution thesis retrieved from the database. (Thesis no: 741220)
  • [3] Ritchie, H. (2024). Global tracking data pre-electric vehicles. Published online at OurWorldinData.org. URL: https://ourworldindata.org/electric-car-sales (access date: 10.01.2025).
  • [4] Yıldırım, M. (2022). Safety measures in electric vehicles. (Ph. D. Thesis).Higher education Institution thesis retrieved from the database. (Thesis no:712691).
  • [5] Dorsz, A., & Lewandowski, M. (2022). Analysis of fire hazards associated with the operation of electric vehicles in enclosed structures. Energies, 15(1), 11. https://doi.org/10.3390/en15010011
  • [6] IIEA. (2021). Global EV Outlook 2021. Paris, France: International Energy Agency. URL: https://www.iea.org/reports/global-ev-outlook-2021(access date: 10.01.2025).
  • [7] Ozbugut A. C., & Yılmaz, E. (2024). 100 thousand electric cars were sold in 2024. URL: https://www.aa.com.tr/tr/ekonomi/2024te-100-bine-yakin-elektrikli-otomobil-satildi/3444453(access date: 10.01.2025).
  • [8] TÜİK. (2024). 2024, The number of electric vehicles in Turkey. The Target Fleet. URL: https://ev.hedeffilo.com/evgundem/blog/2024-yilinda-turkiyedeki-elektrikli-arac-sayisi
  • [9] Kazak, D. (2024). Lithium-ion batteries in fire safety: all-electric vehicles in risk assessment, prevention and fight. Premium e-Journal of Social Sciences (PEJOSS), 8(42), 638-652.
  • [10] Alyar, H. (2022). The structure of electric cars and fire risks. International fuels and combustion, Fire Journal, 10, 1-8. https://doi.org/10.52702/fce.1057432
  • [11] Karamangil, M. I. Riding, A., & Thompson, M. (2022). A review of battery fires in electric cars. International fuels and combustion, Fire Journal, 11(1), 29-40. https://doi.org/10.52702/fce.1224612
  • [12] Ju, F., Li, J., Xiao, G., Huang, N., & Biller, S. (2014). A flow model s battery manufacturing quality systems for electric vehicles. IEEE Transactions on Automation science and engineering, 11(1), 230-244. https://doi.org/10.1109/TASE.2013.2237765
  • [13] Kazak, D., & Öncel, H. U. (2024). Firefighters all-electric vehicle fires, with an examination of the struggle. International Journal Of Social Sciences Studies, 10(3), 384-394.
  • [14] Özcan, F. (2024). Safety recommendations for electric vehicle fires. OHS Turkey. URL: https://www.isgturkiye.com/konu/elektrikli-arac-yanginlari-icin-guvenlik-onerileri.10847/
  • [15] Shin, Y. (2024). Seesaw - wed, Electric fire fighting equipment. James Dyson Award. RetriURL: https://www.jamesdysonaward.org/2023/project/seesaw-electric-car-fire-fighting-equipment/(access date: 10.01.2025).
  • [16] Sun, P., Bisschop, R., Niu, H., & Huang, X. (2020). A review of battery fires in electric vehicles. Fire Technology, 56, 1361-1410. https://doi.org/10.1007/s10694-020-00958-2.
  • [17] Bisschop, R. (2020). Handling the lithium-ion batteries in electric vehicles: recovering from and preventing hazardous events. Fire Technology, 56, 2671-2694. https://doi.org/10.1007/s10694-020-01038-1
  • [18] Tohir, M., & Martin-Gomez, C. (2023). Electric vehicle fire risk assessment using fault tree analysis framework. Open Research Europe, 1-20. https://doi.org/10.12688/openreseurope.16538.1
  • [19] Chamber of Mechanical Engineers. (2024). The use of electric vehicles, and fire safety. Ankara: Turkey's electric vehicle working group.
  • [20] Regulation on the Protection of Buildings from Fire (2007). Republic of Turkey Council of Ministers Decision . [21] Griffiths, A. (2023). Wed design challenges in fire safety and risk mitigation for electric vehicle parks. URL: https://www.chapmantaylor.com/insights/design-challenges-and-risk-mitigation-for-electric-vehicle-fire-safety (date of access: 10.01.2025).
  • [22] Colella, F. (2016). Understanding electric vehicle fires. Fire Protection and safety in Tunnels, Stavanger.
  • [23] Long Jr, R. T., Blum, A. F., Actives, T. J., & Cotts, B. R. T. (2013). Best practices for emergency response incidents involving electric vehicles battery hazards: a preliminary report, the full-scale test results. Journal of chemical information and modeling, 53, 1009-1010.
  • [24] Hazardous Materials Recognition Guide. (2014). Istanbul: Istanbul Fire Brigade.
  • [25] Gaziantep Metropolitan Municipality, (2024), Fire Raport “dated 07.05.2024 and numbered 24445”
  • [26] Flour, C., & Aydin, K. (2021). Thermal runaway and fire suppression applications for different types of lithium-ion batteries. Vehicles, 3(3), 480-497. (Access date: 10.01.2025). https://doi.org/10.3390/vehicles3030029
  • [27] Said, A. O., & Stoliarov, S. I. (2021). Analysis of the effectiveness of suppression of lithium-ion battery fires with a clean agent. Fire Safety Journal, 121, 103296. https://doi.org/10.1016/j.firesaf.2021.103296
  • [28] Willstrand, O. (2019). Battery pack for vehicle fire suppression tests. NATIONS Research Institutes of Sweden, Boras, Sweden.
  • [29] Topal, O. (2023). Turkey in electric and hybrid vehicles for the emergency response approaches. The environment, the climate of the City Journal, 2(3), 190-206.
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Yıldırım Dursun 0000-0001-8206-9105

Atillah Eleşkirtli 0009-0009-0067-5554

Publication Date March 28, 2025
Submission Date February 19, 2025
Acceptance Date March 18, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE Y. Dursun and A. Eleşkirtli, “Fire Safety Precautions and Fire Intervention Techniques for Electric and Hybrid Vehicles”, IJONFEST, vol. 3, no. 1, pp. 44–58, 2025, doi: 10.61150/ijonfest.2025030105.