Research Article
BibTex RIS Cite

The Firefighting and Rescue Wagon Design

Year 2025, Volume: 3 Issue: 2, 123 - 135, 28.09.2025
https://doi.org/10.61150/ijonfest.2025030203

Abstract

The Firefighting and Rescue Wagon (YSKV) is designed as a multifunctional emergency response vehicle for railway transportation accidents, such as fires, explosions, and chemical leaks. This specialized wagon aims to ensure the safe rescue and evacuation of passengers, provide temporary secure storage for hazardous materials, and minimize potential environmental damage. Additionally, it offers the capability to swiftly implement environmental safety measures and conduct effective rescue operations in disaster areas. The wagon provides a unique advantage, particularly in areas where road access is not possible, including railway corridors, bridges, and tunnels. It has been specifically developed for use in locations where conventional rescue and firefighting vehicles cannot reach. This enables rapid response to sudden incidents like fires and supports rescue teams in working safely within the disaster zone.

References

  • [1] Shojaei, F., Qaraeian, P., Firoozbakht, A., Chhabra, D., & Jahangiri, K., 2023. The necessity for an integrated Emergency Operations Center (EOC) among first responders: Lesson learned from two Iranian railway accidents. Heliyon, 9(5).
  • [2] Bowden, B., 2017. An exploration into the relationship between management and market forces: The railroads of Australia and the American West, 1880-1900. Journal of Management History, 23(3), 297-314.
  • [3] Bektas, Y., 2017. The Crimean War as a technological enterprise. Notes and Records: The Royal Society Journal of the History of Science, 71(3), 233-262.
  • [4] Miettinen, R., 2008. Market Potential of Northwest Russia for Telemedicine Applications. Lappeenranta University of Technology, Northern Dimension Research Centre.
  • [5] Brown, H. A., Douglass, K. A., Ejas, S., & Poovathumparambil, V., 2016. Development and implementation of a novel prehospital care system in the state of Kerala, India. Prehospital and disaster medicine, 31(6), 663-666.
  • [6] Long, A. J., Wade, D. D., & Beall, F. C., 2004. 13 Managing for Fire in the Interface: Challenges and Opportunities. Forests at the wildland-urban interface: Conservation and management, 201.
  • [7] Tang, Y., Bi, W., Varga, L., Dolan, T., & Li, Q., 2022. An integrated framework for managing fire resilience of metro station system: Identification, assessment, and optimization. International Journal of Disaster Risk Reduction, 77, 103037.
  • [8] Bojar, P., Woropay, M., Migawa, K., Szubartowski, M., & Muślewski, Ł., 2011. Transport rules and assessment of threats connected with transport of hazardous materials by train. Journal of KONES, 18, 37-43.
  • [9] Golwalkar, K. R., & Kumar, R., 2022. Piping Design and Pumping Systems. In Practical Guidelines for the Chemical Industry: Operation, Processes, and Sustainability in Modern Facilities (pp. 81-130). Cham: Springer International Publishing.
  • [10] Schmidt, M. S., 2017. Atmospheric tank failures: Mechanisms and an unexpected case study. Process safety progress, 36(4), 353-361.
  • [11] Purschwitz, M. A., 2006. Personal protective equipment and safety engineering of machinery. Agricultural Medicine: A Practical Guide, 53-69.
  • [12] Glock, C. H., Grosse, E. H., Neumann, W. P., & Feldman, A., 2021. Assistive devices for manual materials handling in warehouses: a systematic literature review. International Journal of Production Research, 59(11), 3446-3469.
  • [13] Ferguson, L. H., & Janicak, C. A. D. (2005). Fundamentals of fire protection for the safety professional. Government Institutes.
  • [14] Jones, M. R. (2019). Personal protective equipment (PPE): Practical and theoretical considerations. In Chemical Warfare Agents (pp. 303-372). CRC Press.
  • [15] Corbett, G. P. (2009). Fire engineering's handbook for firefighter I and II. Fire Engineering Books.
  • [16] Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., ... & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32.
  • [17] Marcinek, M., & Marková, I. (2014). Working effectiveness of hydraulic rescue equipments for firefighters. Advanced materials research, 1001, 517-525.
  • [18] Meteňko, J., & Marcinek, M. (2018). Hydraulic rescue equipment for firefighters. Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa, 6.
  • [19] Marcinek, M. (2013). Working Time Effectiveness of Hydraulic Rescue Equipment for Firefighters. Internal Security, 5(2), 221.
  • [20] Horváth, L. (2022). Examination of the Application of Currently Used, New or Additional Firefighting Personal Protective Equipment. AARMS–Academic and Applied Research in Military and Public Management Science, 21(3), 49-70.
  • [21] Morris, B. A., 2022. The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew.
  • [22] Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., ... & Joshi, M. K., 2021. Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688.
  • [23] Liu, Y., Tang, X., Zeng, Q., Liu, B., Lai, J., Jin, J., & Li, S., 2024. Experimental and theoretical study on corrosion mechanism of aluminium alloy in different corrosive solutions. Journal of Molecular Liquids, 412, 125894.

Yangın Söndürme ve Kurtarma Vagonu Tasarımı

Year 2025, Volume: 3 Issue: 2, 123 - 135, 28.09.2025
https://doi.org/10.61150/ijonfest.2025030203

Abstract

Yangın Söndürme ve Kurtarma Vagonu (YSKV), demiryolu taşımacılığında meydana gelebilecek kazalarda (örneğin yangın, patlama, kimyasal sızıntı) çok yönlü bir müdahale aracı olarak tasarlanmıştır. Bu özel vagon, yolcuların güvenli bir şekilde kurtarılmasını ve tahliyesini sağlamayı, tehlikeli yüklerin güvenli bir şekilde geçici olarak depolanmasını ve çevreye olası zararların minimize edilmesini amaçlamaktadır. Ayrıca, çevre güvenliği tedbirlerini hızla uygulama ve afet bölgelerinde etkin kurtarma faaliyetleri yürütme kabiliyeti sunar. Vagon, özellikle karayolu ulaşımının mümkün olmadığı alanlarda, demiryolu hattının geçtiği bölgelerde, köprülerde ve tünellerde eşsiz bir avantaj sağlar. Geleneksel kurtarma ve itfaiye araçlarının erişim sağlayamadığı yerlerde kullanılmak üzere geliştirilmiştir. Bu sayede hem yangın gibi ani durumlarda hızlı müdahaleye olanak tanır hem de kurtarma ekiplerinin afet alanında güvenle çalışabilmesine destek olur.

References

  • [1] Shojaei, F., Qaraeian, P., Firoozbakht, A., Chhabra, D., & Jahangiri, K., 2023. The necessity for an integrated Emergency Operations Center (EOC) among first responders: Lesson learned from two Iranian railway accidents. Heliyon, 9(5).
  • [2] Bowden, B., 2017. An exploration into the relationship between management and market forces: The railroads of Australia and the American West, 1880-1900. Journal of Management History, 23(3), 297-314.
  • [3] Bektas, Y., 2017. The Crimean War as a technological enterprise. Notes and Records: The Royal Society Journal of the History of Science, 71(3), 233-262.
  • [4] Miettinen, R., 2008. Market Potential of Northwest Russia for Telemedicine Applications. Lappeenranta University of Technology, Northern Dimension Research Centre.
  • [5] Brown, H. A., Douglass, K. A., Ejas, S., & Poovathumparambil, V., 2016. Development and implementation of a novel prehospital care system in the state of Kerala, India. Prehospital and disaster medicine, 31(6), 663-666.
  • [6] Long, A. J., Wade, D. D., & Beall, F. C., 2004. 13 Managing for Fire in the Interface: Challenges and Opportunities. Forests at the wildland-urban interface: Conservation and management, 201.
  • [7] Tang, Y., Bi, W., Varga, L., Dolan, T., & Li, Q., 2022. An integrated framework for managing fire resilience of metro station system: Identification, assessment, and optimization. International Journal of Disaster Risk Reduction, 77, 103037.
  • [8] Bojar, P., Woropay, M., Migawa, K., Szubartowski, M., & Muślewski, Ł., 2011. Transport rules and assessment of threats connected with transport of hazardous materials by train. Journal of KONES, 18, 37-43.
  • [9] Golwalkar, K. R., & Kumar, R., 2022. Piping Design and Pumping Systems. In Practical Guidelines for the Chemical Industry: Operation, Processes, and Sustainability in Modern Facilities (pp. 81-130). Cham: Springer International Publishing.
  • [10] Schmidt, M. S., 2017. Atmospheric tank failures: Mechanisms and an unexpected case study. Process safety progress, 36(4), 353-361.
  • [11] Purschwitz, M. A., 2006. Personal protective equipment and safety engineering of machinery. Agricultural Medicine: A Practical Guide, 53-69.
  • [12] Glock, C. H., Grosse, E. H., Neumann, W. P., & Feldman, A., 2021. Assistive devices for manual materials handling in warehouses: a systematic literature review. International Journal of Production Research, 59(11), 3446-3469.
  • [13] Ferguson, L. H., & Janicak, C. A. D. (2005). Fundamentals of fire protection for the safety professional. Government Institutes.
  • [14] Jones, M. R. (2019). Personal protective equipment (PPE): Practical and theoretical considerations. In Chemical Warfare Agents (pp. 303-372). CRC Press.
  • [15] Corbett, G. P. (2009). Fire engineering's handbook for firefighter I and II. Fire Engineering Books.
  • [16] Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., ... & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32.
  • [17] Marcinek, M., & Marková, I. (2014). Working effectiveness of hydraulic rescue equipments for firefighters. Advanced materials research, 1001, 517-525.
  • [18] Meteňko, J., & Marcinek, M. (2018). Hydraulic rescue equipment for firefighters. Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa, 6.
  • [19] Marcinek, M. (2013). Working Time Effectiveness of Hydraulic Rescue Equipment for Firefighters. Internal Security, 5(2), 221.
  • [20] Horváth, L. (2022). Examination of the Application of Currently Used, New or Additional Firefighting Personal Protective Equipment. AARMS–Academic and Applied Research in Military and Public Management Science, 21(3), 49-70.
  • [21] Morris, B. A., 2022. The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew.
  • [22] Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., ... & Joshi, M. K., 2021. Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688.
  • [23] Liu, Y., Tang, X., Zeng, Q., Liu, B., Lai, J., Jin, J., & Li, S., 2024. Experimental and theoretical study on corrosion mechanism of aluminium alloy in different corrosive solutions. Journal of Molecular Liquids, 412, 125894.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

İsmail Cihan Satılmış

Egemen Sulukan

Doruk Gürkan

Publication Date September 28, 2025
Submission Date March 14, 2025
Acceptance Date August 4, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

IEEE İ. C. Satılmış, E. Sulukan, and D. Gürkan, “The Firefighting and Rescue Wagon Design”, IJONFEST, vol. 3, no. 2, pp. 123–135, 2025, doi: 10.61150/ijonfest.2025030203.