Research Article
BibTex RIS Cite

Bulanık Anahtarlama Algoritması ile DTC Kontrollü Asenkron Makine için İyileştirilmiş Tork ve Hız Performansları

Year 2023, , 88 - 98, 30.06.2023
https://doi.org/10.29132/ijpas.1120626

Abstract

Doğrudan moment kontrolü, stator akı vektörünün istenilen yörüngede kontrolü esasına dayalı bir vektör kontrol yöntemidir. Stator akı vektörünün kontrolü, optimum evirici çıkış gerilim vektörlerinin doğrudan seçimi ile sağlanmaktadır. Stator akı vektörünün dönüşünde belirlenen yörüngenin sınır değerleri, histerezis denetleyicilerin kullanımı ile belirlenir. Bu çalışmada, doğrudan moment denetimi ile denetlenen üç fazlı bir asenkron motorun, hız ve moment salınımlarının azaltılmasına yönelik iki farklı kontrol yönteminin performans analizleri sunulmuştur. Matlab/Simulink tabanlı benzetim çalışmalarında motorun farklı hız ve moment referansları için performans analizleri yapılmış gerek geçici durum ve gerekse kararlı durum hız ve moment değişimleri karşılaştırmalı olarak sunulmuştur. Elde edilen sonuçlar incelendiğinde, geleneksel denetimde kullanılan PID kontrolörü yerine sunulan yeni bulanık tabanlı denetleyici performansının motor hız ve moment salınımlarının spesifik şartlarında belirgin ölçüde azalma sağlandığı görülmüştür. Bununla birlikte, doğrudan moment denetleyicinin denetim yapısı dikkate alındığında, basit ve sade denetim yapısı korunmuştur. Elde edilen sonuçlara göre FL kontrolörün PID kontrolöründen daha iyi bir sonuç verdiği t=4.5 saniyesinde gösterilmiştir.

References

  • Abdesselem, C. 2008. Commande directe du couple du moteur asynchrone-apport de la logique floue. Thèse de maitrise, Université de Batna, 105 pages, Algerie.
  • Abdullah, A. N., and Ali, M. H. 2020. Direct torque control of IM using PID controller. International Journal of Electrical and Computer Engineering, 10(1), 617.
  • Aggarwal, A., Rai, J. N., and Kandpal, M. 2015. Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 10(2), 43-52.
  • Bevrani, H., and Daneshmand, P. R. 2011. Fuzzy logic-based load-frequency control concerning high penetration of wind turbines. IEEE systems journal, 6(1), 173-180.
  • Brown, D. W., Abbas, M. and Vachtsevanos, G. J. 2011. Turn-off time as an early indicator of insulated gate bipolar transistor latch-up. IEEE Transactions on Power Electronics, 27(2), 479-489.
  • Can, E., and Sayan, H. 2016. PID and fuzzy controlling three phase asynchronous machine by low level DC source three phase inverter. Tehnicki Vjesnik-Technical Gazette, 23(3).
  • Casadei, D., Serra, G., Tani, A., and Zarri, L. 2006. Assessment of direct torque control for induction motor drives. Bulletin of the Polish Academy of Sciences: Technical Sciences, 237-254.
  • Cheok, A. D., and Fukuda, Y. 2002. A new torque and flux control method for switched reluctance motor drives. IEEE Transactions on Power Electronics, 17(4), 543-557.
  • Chikhi, A., Chikhi, K., and Belkacem, S. 2010. Induction Motor Direct Torque Control–Fuzzy Logic Contribution. IU-Journal of Electrical & Electronics Engineering, 10(2), 1207-1212.
  • El-Shimy, M. E., and Zaid, S. A. 2016. Fuzzy PID controller for fast direct torque control of induction motor drives. Journal of Electrical Systems, 12(4), 687-700.
  • Farah, N., Talib, H. N. and Isa, Z. 2021. Fuzzy membership functions tuning for speed controller of induction motor drive: Performance improvement. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1258-1270.
  • Ildarabadi, R., and Ahmadi, A. 2017. Simulation Study of Space Vector Pulse Width Modulation Feeding a Three Phase Induction Motor.
  • Korkmaz, F., Cakir, M. F.and Topaloglu, I. 2012. Fuzzy based stator flux optimizer design for direct torque control. arXiv preprint arXiv:1212.0160.
  • Korkmaz, F., Topaloğlu, İ., and Mamur, H. 2015. Fuzzy logic based direct torque control of induction motor with space vector modulation. arXiv preprint arXiv:1508.01345.
  • Mattavelli, P., Rossetto, L. and Tenti, P. 1997. General-purpose fuzzy controller for DC-DC converters. IEEE transactions on Power Electronics, 12(1), 79-86.
  • Mustapha E., Saad M. and Quentin C. 2022. Twelve sectors DTC strategy of IM for PV water pumping system. Materials Today: Proceedings. 51(7). 2081-2090.
  • Ozturk, S.B. 2008. Direct torque control of permanent magnet synchronous motors with non-sinusoidal back-emf. Phd Thesis, Texas A&M University, 195 pages, United States.
  • Patel, C., Rajeevan, P. P. and Kazmierkowski, M. P. 2011. Fast direct torque control of an open-end induction motor drive using 12-sided polygonal voltage space vectors. IEEE Transactions on Power Electronics, 27(1), 400-410.
  • Saad, B., and Goléa, A. 2017. Direct field-oriented control using fuzzy logic type-2 for induction motor with broken rotor bars. Advances in Modelling & Analysis C, 72(4), 203-212.
  • Said M., Aziz D., Najib E. O. and Mohammed E. M. 2022. Enhancement of the Direct Torque Control by using Artificial Neuron Network for a Doubly Fed Induction Motor. Intelligent Systems with Applications. 13, 200060.
  • Soukaina E. D., Loubna L., Najib E. O. and Mustapha A. L. 2021. Sensorless fuzzy direct torque control of induction motor with sliding mode speed controller. Computers & Electrical Engineering, 96, 107490.
  • Yordanova, S. 2015. Intelligent approaches to real time level control. International Journal of Intelligent Systems and Applications, 7(10), 19.

Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm

Year 2023, , 88 - 98, 30.06.2023
https://doi.org/10.29132/ijpas.1120626

Abstract

Direct Torque Control (DTC) is a vector control method based on the control of the stator flux vector in the desired direction. The control of the stator flux vector is achieved by direct selection of the optimum inverter output voltage vectors. The limit values of the trajectory determined in the rotation of the stator flux vector are determined using hysteresis controllers. In this study, performance analysis of two different control methods for reducing speed and torque oscillations of a three-phase asynchronous motor controlled by direct torque control are presented. In Matlab/Simulink based simulation studies, performance analyses were made for different speed and torque references of the motor, and both the transient and steady state speed and torque changes were presented comparatively. When the obtained results are examined, it is seen that the performance of the new fuzzy-based controller, which is offered instead of the Proportional Integral Derivative (PID) controller used in traditional control, significantly decreases in the specific conditions of motor speed and torque oscillations. However, considering the control structure of the direct torque controller, the simple and plain control structure has been preserved. According to the results obtained, it has been shown that the Fuzzy Logic (FL) controller gives a better result than the PID controller at t=4.5 seconds.

References

  • Abdesselem, C. 2008. Commande directe du couple du moteur asynchrone-apport de la logique floue. Thèse de maitrise, Université de Batna, 105 pages, Algerie.
  • Abdullah, A. N., and Ali, M. H. 2020. Direct torque control of IM using PID controller. International Journal of Electrical and Computer Engineering, 10(1), 617.
  • Aggarwal, A., Rai, J. N., and Kandpal, M. 2015. Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 10(2), 43-52.
  • Bevrani, H., and Daneshmand, P. R. 2011. Fuzzy logic-based load-frequency control concerning high penetration of wind turbines. IEEE systems journal, 6(1), 173-180.
  • Brown, D. W., Abbas, M. and Vachtsevanos, G. J. 2011. Turn-off time as an early indicator of insulated gate bipolar transistor latch-up. IEEE Transactions on Power Electronics, 27(2), 479-489.
  • Can, E., and Sayan, H. 2016. PID and fuzzy controlling three phase asynchronous machine by low level DC source three phase inverter. Tehnicki Vjesnik-Technical Gazette, 23(3).
  • Casadei, D., Serra, G., Tani, A., and Zarri, L. 2006. Assessment of direct torque control for induction motor drives. Bulletin of the Polish Academy of Sciences: Technical Sciences, 237-254.
  • Cheok, A. D., and Fukuda, Y. 2002. A new torque and flux control method for switched reluctance motor drives. IEEE Transactions on Power Electronics, 17(4), 543-557.
  • Chikhi, A., Chikhi, K., and Belkacem, S. 2010. Induction Motor Direct Torque Control–Fuzzy Logic Contribution. IU-Journal of Electrical & Electronics Engineering, 10(2), 1207-1212.
  • El-Shimy, M. E., and Zaid, S. A. 2016. Fuzzy PID controller for fast direct torque control of induction motor drives. Journal of Electrical Systems, 12(4), 687-700.
  • Farah, N., Talib, H. N. and Isa, Z. 2021. Fuzzy membership functions tuning for speed controller of induction motor drive: Performance improvement. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1258-1270.
  • Ildarabadi, R., and Ahmadi, A. 2017. Simulation Study of Space Vector Pulse Width Modulation Feeding a Three Phase Induction Motor.
  • Korkmaz, F., Cakir, M. F.and Topaloglu, I. 2012. Fuzzy based stator flux optimizer design for direct torque control. arXiv preprint arXiv:1212.0160.
  • Korkmaz, F., Topaloğlu, İ., and Mamur, H. 2015. Fuzzy logic based direct torque control of induction motor with space vector modulation. arXiv preprint arXiv:1508.01345.
  • Mattavelli, P., Rossetto, L. and Tenti, P. 1997. General-purpose fuzzy controller for DC-DC converters. IEEE transactions on Power Electronics, 12(1), 79-86.
  • Mustapha E., Saad M. and Quentin C. 2022. Twelve sectors DTC strategy of IM for PV water pumping system. Materials Today: Proceedings. 51(7). 2081-2090.
  • Ozturk, S.B. 2008. Direct torque control of permanent magnet synchronous motors with non-sinusoidal back-emf. Phd Thesis, Texas A&M University, 195 pages, United States.
  • Patel, C., Rajeevan, P. P. and Kazmierkowski, M. P. 2011. Fast direct torque control of an open-end induction motor drive using 12-sided polygonal voltage space vectors. IEEE Transactions on Power Electronics, 27(1), 400-410.
  • Saad, B., and Goléa, A. 2017. Direct field-oriented control using fuzzy logic type-2 for induction motor with broken rotor bars. Advances in Modelling & Analysis C, 72(4), 203-212.
  • Said M., Aziz D., Najib E. O. and Mohammed E. M. 2022. Enhancement of the Direct Torque Control by using Artificial Neuron Network for a Doubly Fed Induction Motor. Intelligent Systems with Applications. 13, 200060.
  • Soukaina E. D., Loubna L., Najib E. O. and Mustapha A. L. 2021. Sensorless fuzzy direct torque control of induction motor with sliding mode speed controller. Computers & Electrical Engineering, 96, 107490.
  • Yordanova, S. 2015. Intelligent approaches to real time level control. International Journal of Intelligent Systems and Applications, 7(10), 19.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Göksu Görel 0000-0002-2852-5760

Wahib Hilouan Mohamed This is me 0000-0003-2964-5673

Early Pub Date June 23, 2023
Publication Date June 30, 2023
Submission Date May 27, 2022
Acceptance Date December 29, 2022
Published in Issue Year 2023

Cite

APA Görel, G., & Hilouan Mohamed, W. (2023). Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm. International Journal of Pure and Applied Sciences, 9(1), 88-98. https://doi.org/10.29132/ijpas.1120626
AMA Görel G, Hilouan Mohamed W. Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm. International Journal of Pure and Applied Sciences. June 2023;9(1):88-98. doi:10.29132/ijpas.1120626
Chicago Görel, Göksu, and Wahib Hilouan Mohamed. “Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm”. International Journal of Pure and Applied Sciences 9, no. 1 (June 2023): 88-98. https://doi.org/10.29132/ijpas.1120626.
EndNote Görel G, Hilouan Mohamed W (June 1, 2023) Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm. International Journal of Pure and Applied Sciences 9 1 88–98.
IEEE G. Görel and W. Hilouan Mohamed, “Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm”, International Journal of Pure and Applied Sciences, vol. 9, no. 1, pp. 88–98, 2023, doi: 10.29132/ijpas.1120626.
ISNAD Görel, Göksu - Hilouan Mohamed, Wahib. “Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm”. International Journal of Pure and Applied Sciences 9/1 (June 2023), 88-98. https://doi.org/10.29132/ijpas.1120626.
JAMA Görel G, Hilouan Mohamed W. Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm. International Journal of Pure and Applied Sciences. 2023;9:88–98.
MLA Görel, Göksu and Wahib Hilouan Mohamed. “Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm”. International Journal of Pure and Applied Sciences, vol. 9, no. 1, 2023, pp. 88-98, doi:10.29132/ijpas.1120626.
Vancouver Görel G, Hilouan Mohamed W. Improved Torque and Speed Performances for DTC Controlled Asynchronous Machine By Fuzzy Switching Algorithm. International Journal of Pure and Applied Sciences. 2023;9(1):88-9.

154501544915448154471544615445