Araştırma Makalesi
BibTex RIS Kaynak Göster

Beta-Cyfluthrin Pestisitin Zebra Midye (Dressienna polymorpha) Üzerindeki Etkisi

Yıl 2021, , 462 - 471, 31.12.2021
https://doi.org/10.29132/ijpas.803520

Öz

Yapılan bu çalışmada, Dreissena polymorpha’da ticari insektisit olan Beta-Cyfluthrin (β-CF)’nin bazı biyokimyasal yanıtları araştırılmıştır. β-CF’nin D. polymorpha üzerindeki 96 saatlik LC50 değeri 509.62 µg L-1 olarak hesaplanmıştır. D. polymorpha, β-CF’nin subletal konsantrasyonlar (LC50 değerinin 1/16, 1/8 ve1/4’ü:32, 64 ve 128 µg L-1)’ına 24 ve 96 saat süre ile maruz bırakılmıştır. D. polymorpha bireylerinde malondialdehit (MDA) ve redükte glutatyon (GSH) düzeyleri ile Asetilkolinesteraz (AChE) enzim aktiviteleri belirlenmiştir. β-CF’ye maruz bırakılan D. polymorpha’da, MDA seviyeleri kontrole kıyasla ve artan konsantrasyonla artmıştır. Kontrole kıyasla ve artan konsantrasyonla GSH seviyesinin azaldığı ve AChE aktivitesi inhibe olduğu belirlenmiştir.
Sonuç olarak, β-CF'ye maruz kalan D. polymorpha bireylerinde oksidatif hasarda artışa, düşük konsantrasyonlarda bile nörotoksisiteye neden olduğu bulunmuştur.

Kaynakça

  • Alişer, A.B., 2020. Zebra Midyesi (Dreissena polymorpha)’nin kadmiyuma karşı bazı biyokimyasal yanıtları. Yüksek Lisans Tezi Munzur Üniversitesi Lisansüstü Eğitim Enstitüsü, Tunceli.
  • Almroth, B.C., Sturve, J., Stephensen, E., Holth, T.F., Forlın, L., 2010. Protein Carbonyls and Antioxidant Defenses in Corkwing Wrasse (Sypmphodus melops) from a Heavy Metal Polluted and a PAH Polluted Site. Marine Environmental Research, 66: 271-277.
  • Bebe, F.N., Panemangalore, M., 2005. Pesticides and Essentials Minerals Modify Endogenous Antioxidants and Cytochrome P450 in Tissues of Rats. Journal of Environmental Science and Health B38: 349-363.
  • Benli, A.Ç.K., 2005. Investigation of Acute Toxicity of Cyfluthrin on Tilapia Fry Oreochromis niloticus L. 1758). Environmental Toxicology and Pharmacology, 20: 279-282. Bobat, A., Hengirmen, O.M., Zaplethal, W. 2001. Tatlısu Ekosisteminde Teknik, Ekonomik ve Ekolojik bir Zararlı: Zebra Midye. Kırsal Çevre Yıllığı, 112-127.
  • Chandrasekara, H.U., Pathiratne, A., 2005. Influence of low concentrations of trichlorfon on hematological parameters and brain acetylcholinesterase activity in common carp, Cyprinus carpio L. Aquaculture Research 36:144–149.
  • Çetinkaya, O., 2005. Akuatik toksikoloji: Balıkbiyodeneyleri. Balık Biyolojisi Araştırma Yöntemleri. Editor: M. Karataş. Nobel Kitap Dağıtım A.Ş. Nobel Yayın No:4, 2. Baskı, Bölüm: 7, 169-218.
  • Della, R.M., Villani, G.R., Di, E.M., Squillacioti, C., De, L.M., Vuotto, P. Staiano, N., 1994. Glutathione depletion induced in rat liver fractions by seven pesticides. Bollettino della Societa italiana di biologia sperimentale, 70(8-9), 185-192.
  • Dembélé, K., Haubruge, E. and Gaspar, C., 2000. Concentration effects of selected ınsecticides on brain acetylcholinesterase in the common carp (Cyprinus carpio L.). Ecotoxicology and Environmental Safety, 49-54.
  • Demirci, Ö., Güven, K., Asma, D., Öğüt, S., Uğurlu, P., 2018. Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicology and environmental safety, 147, 749-758.
  • Dinçel, A.S., Benli, A.Ç.K., Selvi, M., Sarıkaya, R., Şahin, D., Özkul. A., Erkoç, F., 2009. Sublethal Cyfluthrin Toxicity to Carp (Cyprinus carpio L.) Fingerlings: Biochemical, Hematological, Histopathological Alterations. Ecotoxicology and Environmental Safety, 72: 1433-1439. El-Gendy, K.S., Aly, N.M., Mahmoud, F.H., Kenawy, A., El-Sebae, A.K.H., 2010. The Role of Vitamin C as Antioxidant in Protection of Oxidative Stress Induced by Imidacloprid. Food and Chemical Toxicology, 48: 215-221.
  • Elman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7:88-95.
  • Ferrari, A., Venturino, A., de D’Angelo, A.M.P., 2007. Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic Biochem Physiol 88(2):134–142. Guimaraes, A.T.B., Silva De Assis, H.C., Boeger, W., 2007. The effect of trichlorfon on acetylcholinesterase activityand histopathology of cultivated fish Oreochromis niloticus. Ecotoxicology Environmental Safety 68:57–62.
  • Güvenç, D., Aksoy, A., 2010. Samsun Yöresinden Toplanan Çiğ Süt Örneklerinde Bazı Pestisid Kalıntılarının Araştırılması, Kafkas Üniversitesi, Veteriner Fakültesi Dergisi, 16(2): 281-286.
  • Haase, S., Wilck, N., Kleinewietfeld, M., Müller, D.N., Linker, R.A., 2019. Sodium chloride triggers Th17 mediated autoimmunity. Journal of neuroimmunology, 329, 9-13.
  • Hai, D.Q.,, Varga, S., Matkovics, B., 1997 Effects of diethyl-dithiocarbamate on antioxidant system in carp tissue. Acta Biologica Hungarica, 48(1), 1-8.
  • Halliwell, B., Aruoma, O.I., 1991. DNA Damage by Oxgyen-Derived Species Its Mechanism and Measurement in Mammalian Systems. Federation of European Biochemical Societies Letters, 281: 9-19.
  • Halliwell, B., Chirico, S., 1993. Lipid Peroxidation: Its Mechanism, Measurement, and Significance. The American Journal of Clinical Nutrition, 57: 15-25.
  • Halliwell, B., Gutteridge, J.M., 2015. “Free radicals in biology and medicine”, Oxford University Press, USA. Khalil, F., Kang, I.J., Undap, S., Tasmin, R., Qiu, X., Shimasaki, Y. Oshima, Y., 2013. Alterations in social behavior of Japanese medaka (Oryzias latipes) in response to sublethal chlorpyrifos exposure. Chemosphere, 92: 125–130.
  • Livingstone, D.R., 2001. Contaminant-Stimulated Reactive Oxygen Species Produciton and Oxidative Damage in Aquatic Organisms. Marine Pollution Bulletin, 42: 656-666.
  • Livingstone, D.R. 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture, Revue de Medecine Veterinaire, 154(6), 427-430.
  • Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals, Aquatic toxicology, 101(1), 13-30.
  • Mohammad, A., Akram, R., Shahın, S., Sherkoupeh, N., Alı, R., 2004. Pesticides and Oxidative Stress: A Review. Medical Science Monitor, 10: 141-147.
  • Munnia, A., Amasio, M.E., Peluso, M., 2004. Ecocyclic Malondialdehyde and Aromatic DNA Adducts in Larynx Tissues. Free Radical Biology and Medicine, 37: 850-858.
  • Müller, S., Wilck, N., Kleinewietfeld, M., Haase, D. N., Linker, R.A., 2019. Sodium chloride triggers Th17 mediated autoimmunity. Journal of neuroimmunology, 329, 9-13.
  • OECD, 2004. Daphnia sp., Acute Immobilisation Test, OECD Guidelines for Testing of Chemicals, No. 202, OECD, Paris.
  • Oropesa, A.L., Garcia-Cambero, J.P., Soler, F., 2009. Glutathione and Malondialdehyde Levels in Common Carp after Exposure to Simazine. Environmental Toxicology and Pharmacology, 27: 30-38.
  • Oruç, E.O., Sevgiler, Y. Üner, N., 2004. Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl, Comparativ Biochemistry Physiology, 137(C): 43–51.
  • Oruç, E.Ö., 2010. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and Physiology, 96(3): 160-166.
  • Saygı, Ş., 2003. Deneysel toksikolojide toksisite testleri ve test sonuçlarının önemi. Gülhane Tıp Dergisi (GTD) Gülhane Medıcal Journal (GMJ), 291.
  • Serdar, O., 2019. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollutation Research 26(21):21905–21914. Serdar, O., Tatar, Ş., Yıldırım, N., Tanyol, M., Yıldırım, N.. 2019. Biochemical Response of Zebra Mussels (Dreissena polymorpha) Exposed to Sulfamethazine Antibiotic. International Journal of Agricultural and Natural Sciences 12(3):61-64.
  • Slaninova, A., Smutna, M., Modra, H., Svobodova, Z., 2009. Reviews Oxidative stress in fish induced by pesticides, Neuroendocrinology Letters, 30(1), 2.
  • Stenersen, J., 2004. Chemical Pesticides: Mode of Action and Toxicology. CRC Press, Florida, p. 276.
  • Storey, K.B., 1996. Metabolic Adaptations Supporting Anoxia Tolerance in Reptiles: Recent Advances. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 113: 23-35.
  • Tatar, S., Cikcikoglu Yildirim, N., Serdar, O., Yildirim, N., Ogedey, A., 2018. The using of Gammarus pulex as a biomonitor in ecological risk assessment of secondary effluent from municipal wastewater treatment plant in Tunceli, Turkey. Human and Ecological Risk Assessment: An International Journal, 24(3), 819-829.
  • Tatar, Ş., Serdar, O., Yıldırım, N.C., 2019. Kongo kırmızısına maruz bırakılan tatlı su Amphipodu Gammarus pulex'in Antioksidan ve detoksifikasyon sistemindeki değişiklikler. Journal of Anatolian Environmental and Animal Sciences, 4(2), 76-81.
  • Tiryaki, O., Canhilal, R. Horuz, S., 2010. Tarım İlaçları Kullanımı ve Riskleri, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 26(2): 154-169.
  • Uluturhan, E., Darılmaz, E., Kontas, A., Bilgin, M., Alyuruk, H., Altay, O., Sevgi, S., 2019. Seasonal variations of multi-biomarker responses to metals and pesticides pollution in M. galloprovincialis and T. decussatus from Homa Lagoon, Eastern Aegean Sea, Marine Pollution Bulletin, 141, 176-186.
  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M., 2006. “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants”, Ecotoxicology and environmental safety, 64(2), 178-189.
  • Venturino, A., Anguiano, O.L., Gauna, L., Cocca, C., Bergoc, R.M., de D’Angelo, A.M.P., 2001. Thiols and polyamines in the potentiation of malathion toxicity in larval stages of the toad Bufo arenarum. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(2):191–198
  • Xuereb, B., Noury, P., Felten, V., Garric, J., Geffard, O., 2007. Cholinesterase activity in G. pulex (Crustacea Amphipoda): Characterization and effects of chlorpyrifos. Toxicology 236:178–189
  • Yıldırım, F., Karasu Benli, Ç., Gümüş, B. A., Erkmen, B., Gül, G., Batmaz, G., Paçal, E., ve Erkoç, F., 2015. Biyosidal Aktiviteli ZincPyrithione’un İstilacı Tür Dreissena polymorpha (Zebra midyesi)’ya Akut Toksisitesi, 2. Ulusal Biyosidal Kongresi, 9- 3 Kasım.
  • Yüksel, F., Aydin, R., Serdar, O., Pala, A., 2020. Examınıng the biochemical effect of malathion pesticıde on Gammarus pulex (L., 1798). Fresenius Environmental Bulletin 29(10): 9490-9497
  • Zama, D., Meraihi, Z., Tebibel, S., Benayssa, W., Benayache, F., 2007. Chlorpyrifos-Induced Oxidative Stress and Tissue Damage in the Liver Protective Role of the Butanolic Extract of Paronychia argentea L. Indian Journal of Pharmacology, 39: 145-150.

Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha)

Yıl 2021, , 462 - 471, 31.12.2021
https://doi.org/10.29132/ijpas.803520

Öz

In this study, some biochemical responses of Beta-Cyfluthrin (β-CF), which is a commercial insecticide in Dreissena polymorpha, were investigated. The 96 hour LC50 value of β-CF on D. polymorpha was calculated as 509.62 µg L-1. D. polymorpha was exposed to subletal concentrations (1/16, 1/8 and 1/4 of LC50 value: 32, 64 and 128 µg L-1) of β-CF for 24 and 96 hours. Malondialdehyde (MDA) and reduced glutathione (GSH) levels and Acetylcholinesterase (AChE) enzyme activities were determined in D. polymorpha individuals. In D. polymorpha exposed to β-CF, MDA levels increased compared to control and with increasing concentration. It was determined that GSH level decreased and AChE activity was inhibited compared to control and with increasing concentration.
In conclusion, exposure to β-CF resulted in increased oxidative damage and has been found to cause neurotoxicity even at low concentrations.

Kaynakça

  • Alişer, A.B., 2020. Zebra Midyesi (Dreissena polymorpha)’nin kadmiyuma karşı bazı biyokimyasal yanıtları. Yüksek Lisans Tezi Munzur Üniversitesi Lisansüstü Eğitim Enstitüsü, Tunceli.
  • Almroth, B.C., Sturve, J., Stephensen, E., Holth, T.F., Forlın, L., 2010. Protein Carbonyls and Antioxidant Defenses in Corkwing Wrasse (Sypmphodus melops) from a Heavy Metal Polluted and a PAH Polluted Site. Marine Environmental Research, 66: 271-277.
  • Bebe, F.N., Panemangalore, M., 2005. Pesticides and Essentials Minerals Modify Endogenous Antioxidants and Cytochrome P450 in Tissues of Rats. Journal of Environmental Science and Health B38: 349-363.
  • Benli, A.Ç.K., 2005. Investigation of Acute Toxicity of Cyfluthrin on Tilapia Fry Oreochromis niloticus L. 1758). Environmental Toxicology and Pharmacology, 20: 279-282. Bobat, A., Hengirmen, O.M., Zaplethal, W. 2001. Tatlısu Ekosisteminde Teknik, Ekonomik ve Ekolojik bir Zararlı: Zebra Midye. Kırsal Çevre Yıllığı, 112-127.
  • Chandrasekara, H.U., Pathiratne, A., 2005. Influence of low concentrations of trichlorfon on hematological parameters and brain acetylcholinesterase activity in common carp, Cyprinus carpio L. Aquaculture Research 36:144–149.
  • Çetinkaya, O., 2005. Akuatik toksikoloji: Balıkbiyodeneyleri. Balık Biyolojisi Araştırma Yöntemleri. Editor: M. Karataş. Nobel Kitap Dağıtım A.Ş. Nobel Yayın No:4, 2. Baskı, Bölüm: 7, 169-218.
  • Della, R.M., Villani, G.R., Di, E.M., Squillacioti, C., De, L.M., Vuotto, P. Staiano, N., 1994. Glutathione depletion induced in rat liver fractions by seven pesticides. Bollettino della Societa italiana di biologia sperimentale, 70(8-9), 185-192.
  • Dembélé, K., Haubruge, E. and Gaspar, C., 2000. Concentration effects of selected ınsecticides on brain acetylcholinesterase in the common carp (Cyprinus carpio L.). Ecotoxicology and Environmental Safety, 49-54.
  • Demirci, Ö., Güven, K., Asma, D., Öğüt, S., Uğurlu, P., 2018. Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicology and environmental safety, 147, 749-758.
  • Dinçel, A.S., Benli, A.Ç.K., Selvi, M., Sarıkaya, R., Şahin, D., Özkul. A., Erkoç, F., 2009. Sublethal Cyfluthrin Toxicity to Carp (Cyprinus carpio L.) Fingerlings: Biochemical, Hematological, Histopathological Alterations. Ecotoxicology and Environmental Safety, 72: 1433-1439. El-Gendy, K.S., Aly, N.M., Mahmoud, F.H., Kenawy, A., El-Sebae, A.K.H., 2010. The Role of Vitamin C as Antioxidant in Protection of Oxidative Stress Induced by Imidacloprid. Food and Chemical Toxicology, 48: 215-221.
  • Elman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7:88-95.
  • Ferrari, A., Venturino, A., de D’Angelo, A.M.P., 2007. Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic Biochem Physiol 88(2):134–142. Guimaraes, A.T.B., Silva De Assis, H.C., Boeger, W., 2007. The effect of trichlorfon on acetylcholinesterase activityand histopathology of cultivated fish Oreochromis niloticus. Ecotoxicology Environmental Safety 68:57–62.
  • Güvenç, D., Aksoy, A., 2010. Samsun Yöresinden Toplanan Çiğ Süt Örneklerinde Bazı Pestisid Kalıntılarının Araştırılması, Kafkas Üniversitesi, Veteriner Fakültesi Dergisi, 16(2): 281-286.
  • Haase, S., Wilck, N., Kleinewietfeld, M., Müller, D.N., Linker, R.A., 2019. Sodium chloride triggers Th17 mediated autoimmunity. Journal of neuroimmunology, 329, 9-13.
  • Hai, D.Q.,, Varga, S., Matkovics, B., 1997 Effects of diethyl-dithiocarbamate on antioxidant system in carp tissue. Acta Biologica Hungarica, 48(1), 1-8.
  • Halliwell, B., Aruoma, O.I., 1991. DNA Damage by Oxgyen-Derived Species Its Mechanism and Measurement in Mammalian Systems. Federation of European Biochemical Societies Letters, 281: 9-19.
  • Halliwell, B., Chirico, S., 1993. Lipid Peroxidation: Its Mechanism, Measurement, and Significance. The American Journal of Clinical Nutrition, 57: 15-25.
  • Halliwell, B., Gutteridge, J.M., 2015. “Free radicals in biology and medicine”, Oxford University Press, USA. Khalil, F., Kang, I.J., Undap, S., Tasmin, R., Qiu, X., Shimasaki, Y. Oshima, Y., 2013. Alterations in social behavior of Japanese medaka (Oryzias latipes) in response to sublethal chlorpyrifos exposure. Chemosphere, 92: 125–130.
  • Livingstone, D.R., 2001. Contaminant-Stimulated Reactive Oxygen Species Produciton and Oxidative Damage in Aquatic Organisms. Marine Pollution Bulletin, 42: 656-666.
  • Livingstone, D.R. 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture, Revue de Medecine Veterinaire, 154(6), 427-430.
  • Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals, Aquatic toxicology, 101(1), 13-30.
  • Mohammad, A., Akram, R., Shahın, S., Sherkoupeh, N., Alı, R., 2004. Pesticides and Oxidative Stress: A Review. Medical Science Monitor, 10: 141-147.
  • Munnia, A., Amasio, M.E., Peluso, M., 2004. Ecocyclic Malondialdehyde and Aromatic DNA Adducts in Larynx Tissues. Free Radical Biology and Medicine, 37: 850-858.
  • Müller, S., Wilck, N., Kleinewietfeld, M., Haase, D. N., Linker, R.A., 2019. Sodium chloride triggers Th17 mediated autoimmunity. Journal of neuroimmunology, 329, 9-13.
  • OECD, 2004. Daphnia sp., Acute Immobilisation Test, OECD Guidelines for Testing of Chemicals, No. 202, OECD, Paris.
  • Oropesa, A.L., Garcia-Cambero, J.P., Soler, F., 2009. Glutathione and Malondialdehyde Levels in Common Carp after Exposure to Simazine. Environmental Toxicology and Pharmacology, 27: 30-38.
  • Oruç, E.O., Sevgiler, Y. Üner, N., 2004. Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl, Comparativ Biochemistry Physiology, 137(C): 43–51.
  • Oruç, E.Ö., 2010. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and Physiology, 96(3): 160-166.
  • Saygı, Ş., 2003. Deneysel toksikolojide toksisite testleri ve test sonuçlarının önemi. Gülhane Tıp Dergisi (GTD) Gülhane Medıcal Journal (GMJ), 291.
  • Serdar, O., 2019. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollutation Research 26(21):21905–21914. Serdar, O., Tatar, Ş., Yıldırım, N., Tanyol, M., Yıldırım, N.. 2019. Biochemical Response of Zebra Mussels (Dreissena polymorpha) Exposed to Sulfamethazine Antibiotic. International Journal of Agricultural and Natural Sciences 12(3):61-64.
  • Slaninova, A., Smutna, M., Modra, H., Svobodova, Z., 2009. Reviews Oxidative stress in fish induced by pesticides, Neuroendocrinology Letters, 30(1), 2.
  • Stenersen, J., 2004. Chemical Pesticides: Mode of Action and Toxicology. CRC Press, Florida, p. 276.
  • Storey, K.B., 1996. Metabolic Adaptations Supporting Anoxia Tolerance in Reptiles: Recent Advances. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 113: 23-35.
  • Tatar, S., Cikcikoglu Yildirim, N., Serdar, O., Yildirim, N., Ogedey, A., 2018. The using of Gammarus pulex as a biomonitor in ecological risk assessment of secondary effluent from municipal wastewater treatment plant in Tunceli, Turkey. Human and Ecological Risk Assessment: An International Journal, 24(3), 819-829.
  • Tatar, Ş., Serdar, O., Yıldırım, N.C., 2019. Kongo kırmızısına maruz bırakılan tatlı su Amphipodu Gammarus pulex'in Antioksidan ve detoksifikasyon sistemindeki değişiklikler. Journal of Anatolian Environmental and Animal Sciences, 4(2), 76-81.
  • Tiryaki, O., Canhilal, R. Horuz, S., 2010. Tarım İlaçları Kullanımı ve Riskleri, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 26(2): 154-169.
  • Uluturhan, E., Darılmaz, E., Kontas, A., Bilgin, M., Alyuruk, H., Altay, O., Sevgi, S., 2019. Seasonal variations of multi-biomarker responses to metals and pesticides pollution in M. galloprovincialis and T. decussatus from Homa Lagoon, Eastern Aegean Sea, Marine Pollution Bulletin, 141, 176-186.
  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M., 2006. “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants”, Ecotoxicology and environmental safety, 64(2), 178-189.
  • Venturino, A., Anguiano, O.L., Gauna, L., Cocca, C., Bergoc, R.M., de D’Angelo, A.M.P., 2001. Thiols and polyamines in the potentiation of malathion toxicity in larval stages of the toad Bufo arenarum. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(2):191–198
  • Xuereb, B., Noury, P., Felten, V., Garric, J., Geffard, O., 2007. Cholinesterase activity in G. pulex (Crustacea Amphipoda): Characterization and effects of chlorpyrifos. Toxicology 236:178–189
  • Yıldırım, F., Karasu Benli, Ç., Gümüş, B. A., Erkmen, B., Gül, G., Batmaz, G., Paçal, E., ve Erkoç, F., 2015. Biyosidal Aktiviteli ZincPyrithione’un İstilacı Tür Dreissena polymorpha (Zebra midyesi)’ya Akut Toksisitesi, 2. Ulusal Biyosidal Kongresi, 9- 3 Kasım.
  • Yüksel, F., Aydin, R., Serdar, O., Pala, A., 2020. Examınıng the biochemical effect of malathion pesticıde on Gammarus pulex (L., 1798). Fresenius Environmental Bulletin 29(10): 9490-9497
  • Zama, D., Meraihi, Z., Tebibel, S., Benayssa, W., Benayache, F., 2007. Chlorpyrifos-Induced Oxidative Stress and Tissue Damage in the Liver Protective Role of the Butanolic Extract of Paronychia argentea L. Indian Journal of Pharmacology, 39: 145-150.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hilal Söylemez Bu kişi benim 0000-0001-6764-4183

Osman Serdar 0000-0003-1744-8883

Rahmi Aydın 0000-0002-3002-0892

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 1 Ekim 2020
Kabul Tarihi 21 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Söylemez, H., Serdar, O., & Aydın, R. (2021). Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences, 7(3), 462-471. https://doi.org/10.29132/ijpas.803520
AMA Söylemez H, Serdar O, Aydın R. Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences. Aralık 2021;7(3):462-471. doi:10.29132/ijpas.803520
Chicago Söylemez, Hilal, Osman Serdar, ve Rahmi Aydın. “Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna Polymorpha)”. International Journal of Pure and Applied Sciences 7, sy. 3 (Aralık 2021): 462-71. https://doi.org/10.29132/ijpas.803520.
EndNote Söylemez H, Serdar O, Aydın R (01 Aralık 2021) Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences 7 3 462–471.
IEEE H. Söylemez, O. Serdar, ve R. Aydın, “Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha)”, International Journal of Pure and Applied Sciences, c. 7, sy. 3, ss. 462–471, 2021, doi: 10.29132/ijpas.803520.
ISNAD Söylemez, Hilal vd. “Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna Polymorpha)”. International Journal of Pure and Applied Sciences 7/3 (Aralık 2021), 462-471. https://doi.org/10.29132/ijpas.803520.
JAMA Söylemez H, Serdar O, Aydın R. Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences. 2021;7:462–471.
MLA Söylemez, Hilal vd. “Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna Polymorpha)”. International Journal of Pure and Applied Sciences, c. 7, sy. 3, 2021, ss. 462-71, doi:10.29132/ijpas.803520.
Vancouver Söylemez H, Serdar O, Aydın R. Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences. 2021;7(3):462-71.

154501544915448154471544615445