Research Article
BibTex RIS Cite

Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology

Year 2022, Volume: 8 Issue: 1, 71 - 80, 30.06.2022
https://doi.org/10.29132/ijpas.1007938

Abstract

In the present work, a new polymeric adsorbent; Poly(NIPAM-co-AN)/clay composite was prepared via in-situ polymerization. The copolymerization of N-isopropylacrylamide, acrylonitrile and calculated clay (about 5% w/w) were carried out at 65°C in the presence of 10 mL 1,4-dioxane using AIBN as an initiator. Characterization of P(NIPAM-co-AN)/clay composite was determined by FT-IR techniques. NIPAM-AN/clay composite has been used as a novel adsorbent to remove indigo carmine dye from synthetic effluents. Three important process parameters i.e., initial IC concentration (5-30 mg/L), adsorbent dosage (0.01-0.08 g) and contact time (10–180 min) were modeled and optimized to get the best response of indigo carmine removal using a Central Composite Design assembled with Response Surface Methodology. The amount of indigo carmine in the solution was measured using a UV-visible spectrophotometer at a wavelength of 650 nm. Based on the ANOVA statistical value, the adsorption of indigo carmine onto P(NIPAM-co-AN)/clay composite is highly significant, with very low probability value (p<0.001). Twenty test runs were performed and the optimal conditions for indigo carmine adsorption were observed at initial indigo carmine concentration of 17.68 mg/L, the adsorbent dosage of 0.06 g and reaction time 115.47 min. The maximum indigo carmine adsorption efficiency under optimal conditions was 76.21%. It was concluded that NIPAM-AN/clay composite has the potential for removal of IC from aqueous solutions.

References

  • Arslan-Alaton, İ., Ölmez-Hancı, T., Karahan, Pala, İ. ve Orhon, D. (2011). Yüzey aktif maddelerin ileri oksidasyon prosesleri ile arıtımı: Proses optimizasyonu ve toksisite analizi. İtüdergisi/e, 21 (1), 69-80.
  • Batur E., Baytar O., Kutluay S., Horoz S., Şahin Ö. (2021). A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char. Environmental Technology, 42, (3), 505–520.
  • Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari, M. and Sadaoui, Z. (2019). Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus Stones. Microchemical Journal, 146, 1010-1018.
  • Cestari, A.R., Vieira E.F.S.,Tavares A.M.G., Bruns R.E. (2008). The removal of the indigo carmine dye from aqueous solutions using cross-linked chitosan—Evaluation of adsorption thermodynamics using a full factorial design. Journal of Hazardous Materials, 153: 566–574.
  • Chawla P., Sharma, S.K. and Toor, A.P. (2019). Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology. Chemical Engineering Communications, 206 (9), 1123-1138.
  • Dil, E. A., Ghaedi, M. and Asfaram, A. (2017). The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrasonics Sonochemistry, 34, 792–802.
  • Ece M. Ş, Kutluay S. Şahin Ö. and Horoz S. (2020). Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies. Industrial & Engineering Chemistry Research, 59 (48), 21106-21123.
  • Ece M. Ş, Kutluay S., Şahin Ö. (2021). Silica-coated magnetic Fe3O4 nanoparticles as efficient nano-adsorbents for the improvement of the vapor-phase adsorption of benzene. International Journal of Chemistry and Technology, 5 (1), 33-41.
  • Harrache, Z., Abbas, M., Aksil, T., Mohamed, M. (2019). Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchemical Journal,144:180–189.
  • Kumar, R., Singh, R., Kumar, N., Bishnoi, K. and Bishnoi, N. (2009). Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chemical Engineering Journal, 146, 401-407.
  • Kutluay S., Ece M. Ş, Şahin Ö. (2020). Synthesis of magnetic Fe3O4/AC nanoparticles and its application for the removal of gas-phase toluene by adsorption process. International Journal of Chemistry and Technology, 4 (2), 146-155.
  • Lozano-Morales, V., Gardi, I., Nir, S. and Undabeytia, T. (2018). Removal of pharmaceuticals from water by claycationic starch sorbents. Journal of Cleaner Production, 190, 703-711.
  • Mirzabe, G.H. and Keshtkar, A.R. (2015). Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. Journal of Industrial and Engineering Chemistry, 26, 277-285.
  • Mittal A., Mittal J., Kurup L. (2006). Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. Journal of Hazardous Materials,137:591– 602.
  • Pavlovic, M.D., Buntic, A.V., Mihajlovski, K.R., Siler-Marinkovic S.S., Antonovic, D.G., Radovanovic, Z. and Dimitrijevic-Brankovic, S.I. (2014). Rapid cationic dye adsorption on polyphenol-extracted coffee grounds-A response surface methodology approach. Journal of the Taiwan Institute of Chemical Engineers, 45, 1691-1699.
  • Radnia, H., Solaimany Nazar, A.R. and Rashidi, A. (2017). Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surfacemethodology. Journal of the Taiwan Institute of Chemical Engineers, 80, 34-45. Ramesh N.T., Kirana D.K., Ashwini A., Manasa, T.R., (2017). Calcium hydroxide as low cost adsorbent for the effective removal of indigo carmine dye in water. Journal of Saudi Chemical Society, 21:165–171.
  • Sadhukhan, B., Mondal N. K. and Chattoraj S. (2016). Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala International Journal of Modern Science, 2, 145-155.
  • Sharma, J., Prerna Anand, S., Pruthi, V., Chaddha, A.S., Bhatia, J. and Kaith, B.S. (2017). RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies. Materials Chemistry and Physics, 196, 270-283.
  • Tanyol, M. (2017). Optimization of operational parameters for color removal of malachite green-containing wastewater by Fenton oxidation process. Fırat University Journal of Science and Engineering, 29 (1), 183-191.
  • Tepe, O. and Dursun Y.A. (2014). Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environmental Science and Pollution Research, 21, 9911-9920.
  • Tepe, O. and Dursun Y.A. (2021). Optimization of endo-pectinase and pectin lyase production from wheat bran by Bacillus pumilus using response surface methodology. Gazi University Journal of Science, 34 (2), 335-353.
  • Torğut, G., Tanyol, M. and Meşe, Z. (2020). Modeling and optimization of indigo carmine adsorption from aqueous solutions using a novel polymer adsorbent: RSM-CCD. Chemical Engineering Communications, 207, 1157-1170.
  • Vesna, V. P., Sanja, I. S., Aleksandra, R. N. and Sava, J. V. (2013). Adsorption of azo dyes on polymer materials. Hemijska Industrija, 67, 881-900.
  • Vidya Lekshmi, K. P., Yesodharan, S. and Yesodharan, E. P. (2017). MnO2 and MnO2/TiO2 mediated, persulphate enhanced photocatalysis for the removal of indigo carmine from water. European Chemical Bulletin, 6 (5), 177-191. Yörükoğulları E. (1997). Physical adsorption applications in natural zeolites. Anadolu University, 58s.
  • Zhang, J., Li, Y., Zhang, C. and Jing, Y. (2008). Adsorption of malachite green from aqueoussolution onto carbon prepared from Arundo donax root. Journal of Hazardous Materials, 150, 774-782.
  • Zyaie, J., Sheikhi, M., Baniasadi, J., Sahebi, S. and Mohammadi, T. (2018). Assessment of a thermally modified cellulose acetate forward-osmosis membrane using response surface methodology. Chemical Engineering & Technology, 41 (9), 1706-1715.

Cevap Yüzey Metodolojisi Kullanılarak P(NIPAM-co-AN)/Kil Kompozit Üzerine İndigo Karmin Adsorpsiyonunun Modellenmesi ve Optimizasyonu

Year 2022, Volume: 8 Issue: 1, 71 - 80, 30.06.2022
https://doi.org/10.29132/ijpas.1007938

Abstract

Bu çalışmada yeni bir polimerik adsorban olan Poli(NIPAM-co-AN)/kil kompoziti yerinde polimerizasyon ile hazırlanmıştır. N-izopropilakrilamid, akrilonitril ve uygun miktarda alınan kilin (yaklaşık %5 w/w) kopolimerizasyonu, 10 mL 1,4-dioksan varlığında 65°C'de, AIBN (azobisizobütironitril) başlatıcısı varlığında gerçekleştirildi. NIPAM-AN/kil kompoziti IC (indigo karmin) boyasını sentetik atık sulardan uzaklaştırmak için yeni bir adsorban olarak kullanılmıştır. Üç önemli proses parametresi olan başlangıç indigo karmin konsantrasyonu (5-30 mg/L), adsorban dozu (10-80 mg) ve temas süresi (10-180 dakika) yanıt yüzeyi metodolojisi (RSM) ile birleştirilmiş. Merkezi Kompozit Tasarım (CCD) kullanılarak modelleme yapıldı ve en iyi indigo karmin giderme yanıtını elde etmek için optimize edildi. Çözeltideki indigo karmin miktarı, 650 nm dalga boyunda bir UV-görünür spektrofotometre kullanılarak ölçülmüştür. ANOVA (varyans analizi) istatistiksel değerine dayalı olarak, indigo karminin P(NIPAM-co-AN)/kil kompoziti üzerine adsorpsiyonu, çok düşük olasılık değeriyle (p<0.001) oldukça önemlidir. Yirmi test yapıldı ve indigo karmin İK adsorpsiyonu için optimal koşullar, 17.68 mg/L'lik ilk indigo karmin konsantrasyonunda, 60 mg'lık adsorban dozajında ve 115.47 dakikalık reaksiyon süresinde gözlemlendi. Optimum koşullar altında maksimum indigo karmin adsorpsiyon verimi %76.21’ dir. NIPAM-AN/kil kompozitinin indigo karminin sulu çözeltilerden uzaklaştırılması potansiyeline sahip olduğu sonucuna varılmıştır.

References

  • Arslan-Alaton, İ., Ölmez-Hancı, T., Karahan, Pala, İ. ve Orhon, D. (2011). Yüzey aktif maddelerin ileri oksidasyon prosesleri ile arıtımı: Proses optimizasyonu ve toksisite analizi. İtüdergisi/e, 21 (1), 69-80.
  • Batur E., Baytar O., Kutluay S., Horoz S., Şahin Ö. (2021). A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char. Environmental Technology, 42, (3), 505–520.
  • Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari, M. and Sadaoui, Z. (2019). Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus Stones. Microchemical Journal, 146, 1010-1018.
  • Cestari, A.R., Vieira E.F.S.,Tavares A.M.G., Bruns R.E. (2008). The removal of the indigo carmine dye from aqueous solutions using cross-linked chitosan—Evaluation of adsorption thermodynamics using a full factorial design. Journal of Hazardous Materials, 153: 566–574.
  • Chawla P., Sharma, S.K. and Toor, A.P. (2019). Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology. Chemical Engineering Communications, 206 (9), 1123-1138.
  • Dil, E. A., Ghaedi, M. and Asfaram, A. (2017). The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrasonics Sonochemistry, 34, 792–802.
  • Ece M. Ş, Kutluay S. Şahin Ö. and Horoz S. (2020). Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies. Industrial & Engineering Chemistry Research, 59 (48), 21106-21123.
  • Ece M. Ş, Kutluay S., Şahin Ö. (2021). Silica-coated magnetic Fe3O4 nanoparticles as efficient nano-adsorbents for the improvement of the vapor-phase adsorption of benzene. International Journal of Chemistry and Technology, 5 (1), 33-41.
  • Harrache, Z., Abbas, M., Aksil, T., Mohamed, M. (2019). Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchemical Journal,144:180–189.
  • Kumar, R., Singh, R., Kumar, N., Bishnoi, K. and Bishnoi, N. (2009). Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chemical Engineering Journal, 146, 401-407.
  • Kutluay S., Ece M. Ş, Şahin Ö. (2020). Synthesis of magnetic Fe3O4/AC nanoparticles and its application for the removal of gas-phase toluene by adsorption process. International Journal of Chemistry and Technology, 4 (2), 146-155.
  • Lozano-Morales, V., Gardi, I., Nir, S. and Undabeytia, T. (2018). Removal of pharmaceuticals from water by claycationic starch sorbents. Journal of Cleaner Production, 190, 703-711.
  • Mirzabe, G.H. and Keshtkar, A.R. (2015). Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. Journal of Industrial and Engineering Chemistry, 26, 277-285.
  • Mittal A., Mittal J., Kurup L. (2006). Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. Journal of Hazardous Materials,137:591– 602.
  • Pavlovic, M.D., Buntic, A.V., Mihajlovski, K.R., Siler-Marinkovic S.S., Antonovic, D.G., Radovanovic, Z. and Dimitrijevic-Brankovic, S.I. (2014). Rapid cationic dye adsorption on polyphenol-extracted coffee grounds-A response surface methodology approach. Journal of the Taiwan Institute of Chemical Engineers, 45, 1691-1699.
  • Radnia, H., Solaimany Nazar, A.R. and Rashidi, A. (2017). Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surfacemethodology. Journal of the Taiwan Institute of Chemical Engineers, 80, 34-45. Ramesh N.T., Kirana D.K., Ashwini A., Manasa, T.R., (2017). Calcium hydroxide as low cost adsorbent for the effective removal of indigo carmine dye in water. Journal of Saudi Chemical Society, 21:165–171.
  • Sadhukhan, B., Mondal N. K. and Chattoraj S. (2016). Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala International Journal of Modern Science, 2, 145-155.
  • Sharma, J., Prerna Anand, S., Pruthi, V., Chaddha, A.S., Bhatia, J. and Kaith, B.S. (2017). RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies. Materials Chemistry and Physics, 196, 270-283.
  • Tanyol, M. (2017). Optimization of operational parameters for color removal of malachite green-containing wastewater by Fenton oxidation process. Fırat University Journal of Science and Engineering, 29 (1), 183-191.
  • Tepe, O. and Dursun Y.A. (2014). Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environmental Science and Pollution Research, 21, 9911-9920.
  • Tepe, O. and Dursun Y.A. (2021). Optimization of endo-pectinase and pectin lyase production from wheat bran by Bacillus pumilus using response surface methodology. Gazi University Journal of Science, 34 (2), 335-353.
  • Torğut, G., Tanyol, M. and Meşe, Z. (2020). Modeling and optimization of indigo carmine adsorption from aqueous solutions using a novel polymer adsorbent: RSM-CCD. Chemical Engineering Communications, 207, 1157-1170.
  • Vesna, V. P., Sanja, I. S., Aleksandra, R. N. and Sava, J. V. (2013). Adsorption of azo dyes on polymer materials. Hemijska Industrija, 67, 881-900.
  • Vidya Lekshmi, K. P., Yesodharan, S. and Yesodharan, E. P. (2017). MnO2 and MnO2/TiO2 mediated, persulphate enhanced photocatalysis for the removal of indigo carmine from water. European Chemical Bulletin, 6 (5), 177-191. Yörükoğulları E. (1997). Physical adsorption applications in natural zeolites. Anadolu University, 58s.
  • Zhang, J., Li, Y., Zhang, C. and Jing, Y. (2008). Adsorption of malachite green from aqueoussolution onto carbon prepared from Arundo donax root. Journal of Hazardous Materials, 150, 774-782.
  • Zyaie, J., Sheikhi, M., Baniasadi, J., Sahebi, S. and Mohammadi, T. (2018). Assessment of a thermally modified cellulose acetate forward-osmosis membrane using response surface methodology. Chemical Engineering & Technology, 41 (9), 1706-1715.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Güzin Pıhtılı 0000-0003-2261-6810

Mehtap Tanyol 0000-0002-3848-2581

Publication Date June 30, 2022
Submission Date October 11, 2021
Acceptance Date March 23, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Pıhtılı, G., & Tanyol, M. (2022). Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology. International Journal of Pure and Applied Sciences, 8(1), 71-80. https://doi.org/10.29132/ijpas.1007938
AMA Pıhtılı G, Tanyol M. Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology. International Journal of Pure and Applied Sciences. June 2022;8(1):71-80. doi:10.29132/ijpas.1007938
Chicago Pıhtılı, Güzin, and Mehtap Tanyol. “Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-Co-AN)/Clay Composite Using Response Surface Methodology”. International Journal of Pure and Applied Sciences 8, no. 1 (June 2022): 71-80. https://doi.org/10.29132/ijpas.1007938.
EndNote Pıhtılı G, Tanyol M (June 1, 2022) Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology. International Journal of Pure and Applied Sciences 8 1 71–80.
IEEE G. Pıhtılı and M. Tanyol, “Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology”, International Journal of Pure and Applied Sciences, vol. 8, no. 1, pp. 71–80, 2022, doi: 10.29132/ijpas.1007938.
ISNAD Pıhtılı, Güzin - Tanyol, Mehtap. “Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-Co-AN)/Clay Composite Using Response Surface Methodology”. International Journal of Pure and Applied Sciences 8/1 (June 2022), 71-80. https://doi.org/10.29132/ijpas.1007938.
JAMA Pıhtılı G, Tanyol M. Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology. International Journal of Pure and Applied Sciences. 2022;8:71–80.
MLA Pıhtılı, Güzin and Mehtap Tanyol. “Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-Co-AN)/Clay Composite Using Response Surface Methodology”. International Journal of Pure and Applied Sciences, vol. 8, no. 1, 2022, pp. 71-80, doi:10.29132/ijpas.1007938.
Vancouver Pıhtılı G, Tanyol M. Modelling and Optimization of Indigo Carmine Adsorption onto P(NIPAM-co-AN)/Clay Composite Using Response Surface Methodology. International Journal of Pure and Applied Sciences. 2022;8(1):71-80.

154501544915448154471544615445