Research Article
BibTex RIS Cite

Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi

Year 2022, Volume: 8 Issue: 1, 239 - 252, 30.06.2022
https://doi.org/10.29132/ijpas.1028443

Abstract

Pektinazlar, pektik polimerdeki glikozidik bağların hidrolizini katalizleyen enzim ailesinin genel bir adıdır. Bu çalışmada Bacillus pumilus bakterisinin kesikli bir biyoreaktörde pektinaz grubu enzimlerden endo-pektinaz, ekzo-pektinaz ve pektin liyaz üretimi üzerine karıştırma ve hava akış hızlarının etkileri araştırılmıştır. Ayrıca oksijen tüketim hızı ve sıvı faz hacimsel kütle transfer katsayısının değişimi ve karıştırma için güç sayısının hesabı da yapılmıştır. Bacillus pumilus bakterisinin pektinaz grubu enzimlerin üretimi için optimum karıştırma hızı değerinin 300 rpm olduğu tayin edilmiştir. Hava akış hızının enzim aktivite değerlerine etkisinin incelendiği deneylerde en yüksek enzim aktivite değerleri 0.1 vvm’ de elde edilmiştir. 300 rpm karıştırma hızında ve 0.1 vvm hava akış hızında en yüksek pektin liyaz aktivitesi 66. saatte 19.5, ekzo-pektinaz aktivitesi 28. saatte 10.69, endo-pektinaz aktivitesi 66. saatte 102.13 U mL-1 olarak kaydedilmiştir. Sıvı faz hacimsel oksijen transfer katsayısı değeri karıştırma hızının artmasıyla artmıştır. 300 rpm karıştırma hızında en yüksek kLa değeri 26. saatte 0.1524 s-1, 400 rpm’ de 60. saatte 0.2623 s-1 olarak kaydedilmiştir. Üstel üreme bölgesinde oksijen tüketim hızı zamanla artmış, üstel üreme bölgesinden sonra ise azalmıştır. Karıştırma hızı arttırıldığında ise oksijen tüketim hızında azalma meydana gelmiştir. Optimum 300 rpm’ de, sisteme havalandırmanın yapıldığı durumda ki güç değeri Pg= 1.95 W olarak bulunmuştur.

Supporting Institution

Scientific Research Projects Management Unit of Firat University

Project Number

FÜBAP 1674

Thanks

Bu çalışmanın büyük bölümü Özlem Tepe’ nin Doktora Tezinden türetilmiştir. Yazarlar 1674 nolu proje ile bu çalışmaya verdiği destekten dolayı FÜBAP’ a teşekkür ederler.

References

  • Ahmed, J., Thakur, A., Goyal A. (2021). Emerging trends on the role of recombinant pectinolytic enzymes in industries-an overview. Biocatalysis and Agricultural Biotechnology, 38, 102200.
  • Aksöz, E. ve Aksöz, N. (1985). Pektik enzimler. Biyokimya Dergisi, 10 (1), 38-51.
  • Amin, F., Bhatti, H.N., Bilal, M. (2019). Recent advances in the production strategies of microbial pectinases-A review. International Journal of Biological Macromolecules, 122, 1017–1026.
  • Bandaiphet, C. ve Prasertsan, P. (2006). Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66, 216–228.
  • Bandyopadhyay, B. ve Humphrey, A.E. (1967). Dynamic measurement of the volumetric oxygen tranfer coefficient in fermentation systems. Biotechnology and Bioengineering, IX, 533-544.
  • Cruz-Guerrero, A., Barzana, E., Garcia-Garibay, M. ve Gomez-Ruiz, L. (1999). Dissolved oxygen threshold for the repression of endo-polygalacturonase production by Kluyveromyces marxianus. Process Biochemistry, 34, 621–624.
  • Demirci, Y. (2006). Reaksiyon mühendisliği prensipleriyle rekombinant L-Fenilalanin üretimi için biyoproses geliştirilmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Dursun, A.Y. (1998). Atıksulardaki ağır metal-siyanür kompleks iyonlarının serbest ve tutuklanmış Pseudomonas fluorescens ile biyolojik arıtımının kesikli ve sürekli sistemlerde karşılaştırmalı olarak incelenmesi, Hacettepe Ünivesitesi. Doktora Tezi.
  • Fadzilah, K. ve Mashitah, M.D. (2010). Cellulases production in palm oil mill effluent: effect of aeration and agitation. Journal of Applied Sciences, 10 (24), 3307-3312.
  • Fasim, A., More, V.S., More, S.S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68–76.
  • Favela-Torres, E., Volke-Sepulveda, T. ve Viniegra-Gonzales, G. (2006). Production of hydrolytic depolymerising pectinases. Food Technology Biotechnology, 44 (2), 221–227.
  • Feng, Y., He, Z., Ong, S.L., Hu, J., Zhang, Z. ve Ng W.J. (2003). Optimization of agitation, aeration, and temperature conditions for maximum -mannanase production. Enzyme and Microbial Technology, 32, 282–289.
  • Ferreira, P., Lopes, M., Mota, M., Belo, I. (2016). Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochemical Engineering Journal, 110, 35–42.
  • Garcia-Ochoa, F. ve Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnology Advances, 27, 153–176.
  • Garcia-Ochoa, F., Gomez, E., Santos, V.E. ve Merchuk, J.C. (2010). Oxygen uptake rate in microbial processes: an overview. Biochemical Engineering Journal, 49, 289–307.
  • Gomez, E., Santos, V.E., Alcon, A. ve Garcia-Ochoa, F. (2006). Oxygen transport rate on Rhodococcus erythropolis cultures: effect on growth and BDS capability. Chemical Engineering Science, 61, 4595–4604.
  • Gummadi, S.N. ve Kumar, D.S. (2006). The effect of microbiological parameters on production of pectin lyase and pectate lyase by Debaryomyces nepalensis: A statistical approach. Research Journal of Microbiology, 1(3), 220-227.
  • Gummadi, S.N. ve Kumar, D.S. (2008). Batch and fed batch production of pectin lyase and pectate lyase by novel strain Debaryomyces nepalensis in bioreactor. Bioresource Technology, 99, 874–881.
  • Haykır, I. (2007). Investigation of bioprocess parameters for glucose ısomerase production by Bacillus thermoantarcticusthe, Middle East Technical University, Yüksek Lisans Tezi.
  • Hoondal, G.S., Tiwari, R.P., Tewari, R., Dahiya, N. ve Beg, Q.K. (2002). Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 59, 409–418.
  • Ibrahim, C.O. (2008). Development of applications of industrial enzymes from malaysian ındigenous microbial sources. Bioresource Technology, 99, 4572–4582.
  • John, J., Surendranathan Kaimal, K.K., Smith, M.L., Rahman, P.K.S.M., Chellam, P.V. (2020). Advances in upstream and downstream strategies of pectinase bioprocessing: A review. International Journal of Biological Macromolecules 162 1086–1099.
  • Kao, P.-M., Chen, C.-I., Huang, S.-C., Chang, Y.-C., Tsai, P.-J. ve Liu, Y.-C. (2007). Effects of shear stress and mass transfer on chitinase production by Paenibacillus sp. CHE-N1. Biochemical Engineering Journal, 34, 172–178.
  • Kashyap, D.R., Vohra, P.K., Chopra, S. ve Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77:215-227.
  • Kirk, O., Borchert, T.V. ve Fuglsang, C.C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.
  • Korkmaz, N. (2007). Recombinant therapeutic protease production by Bacillus sp., Middle East Technical University, Yüksek Lisans Tezi.
  • Lee, B.-H., Kim, B.-K., Lee, Y.-J., Chung, C.H. ve Lee, J.-W. (2010). Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology, 46, 38–42.
  • Li, X., Xu, C.‑Q., Luo, Y.‑D., Zhang, S., Huang, C., Zou,· K., Tan, Y.‑L., Wu, Y.‑X., Deng, Z.‑S. (2018). Influence of the flow field on α-cyclodextrin glycosyltransferase production by Escherichia coli BL21. Bioprocess and Biosystems Engineering, 41, 819–829.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. ve Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-75.
  • Marques, D.A.V., Torres, B.R., Porto, A.L.F., Pessoa-Júnior, A. ve Converti, A. (2009). Comparison of oxygen mass transfer coefficient in simple and extractive fermentation systems. Biochemical Engineering Journal, 47, 122–126.
  • Mill, P.J. ve Tuttobello, R. (1961). The pectic enzymes of Aspergillus niger 2. Endo polygalacoturonase. Biochemical Journal, 79, 57-64.
  • Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426-428.
  • Mishra, S., Kumar, V., Sarkar, J., Rathore, A.S. (2021). CFD based mass transfer modeling of a single use bioreactor for production of monoclonal antibody biotherapeutics. Chemical Engineering Journal, 412, 128592.
  • Naik, S.C., Kaul, P., Barse, B., Banerjee, A. ve Banerjee, U.C. (2008). Studies on the production of enantioselective nitrilase in a stirred tank bioreactor by Pseudomonas putida MTCC 5110. Bioresource Technology, 99, 26–31.
  • Nedjma, M., Hoffmann, N. ve Belarbi, A. (2001). Selective and sensitive detection of pectin lyase activity using a colorimetric test: application to the screening of microorganisms possessing pectin lyase activity. Analytical Biochemistry, 291, 290–296.
  • Nur Asshifa, M.N., Zambry, N.S., Salwa, M.S., Yahya, A.R.M. (2017). The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor. 3 Biotech, 7, 189.
  • Ogawa, J. ve Shimizu, S. (2002). Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in japan. Current Opinion in Biotechnology, 13, 367–375.
  • Olughu, W., Galbraith, D., Paget, C., Ruscoe, S., Smith, J., Mason, A. (2021). Does the BioBLU 0.3f single‑use scale to the BioFlo® 320 reuseable bioreactor on a matched volumetric oxygen mass transfer coefficient? World Journal of Microbiology and Biotechnology, 37, 11.
  • Orman, M.A. (2007). Extracellular recombinant human growth hormone production by Pichia pastoris. Middle East Technical University Graduate School of Natural and Applied Sciences, Yüksek Lisans Tezi.
  • Ozzeybek, M., Cekmecelioglu, D. (2022). Formulation of apple pomace, orange peel, and hazelnut shell mix for co-production of bacterial pectinase and cellulase enzymes by mixture design method, Biomass Conversion and Biorefinery, doi.org/10.1007/s13399-022-02409-0.
  • Öncü, Ş. (2007). Investigation of the effects of dissolved oxygen concentration, aeration and agitation on the morphology and rheology in submerged fungal fermentation, İzmir Institute of Technology, Master Thesis.
  • Potumarthi, R., Subhakar, C. ve Jetty, A. (2007). Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochemical Engineering Journal, 34, 185–192.
  • Ramachandran, S. (2005). Isolation, purification and characterization of pectinase from Penicillum citrinum, School of Biosciences Mahatma Gandhi University Kottayam, Kerela India, Doctoral Thesis.
  • Reid, I. ve Ricard, M. (2000). Pectinase in paper making: solving retention problems in mechanical pulps bleached with hydrogen peroxide. Enzyme and Microbial Technology, 26, 115–123.
  • Shuler, M.L. ve Kargı, F. (2002). Bioprocess engineering: basic concepts (2nd Ed.). Prentice Hall Inc., USA.
  • Soetaert, W. ve Vandamme, E. (2006). The impact of ındustrial biotechnology. Biotechnology Journal, 1, 756–769.
  • Songpim, M., Vaithanomsat, P. ve Chuntranuluck, S. (2010). Optimization of pectate lyase production from Paenibacillus polymyxa N10 using response surface methodology. The Open Biology Journal, 3, 1-7.
  • Tuttobello, R. ve Mill, P.J. (1961). The pectic enzymes of Aspergillus niger 1. the production of active mixtures of pectic enzymes. Biochemical Journal, 79, 51-57.
  • Ulgen, K. ve Mavituna, F. (1998). Oxygen transfer and uptake in Streptomyces coelicolor A3(2) culture in a batch bioreactor. Journal of Chemical Technology and Biotechnology, 73, 243-250.
  • Venugopal, C., Jayachandra, T. ve Anu Appaiah, K.A. (2007). Effect of aeration on the production of endo-pectinase from coffee pulp by a novel thermophilic fungi Mycotypha sp. strain No. AKM 1801. Biotechnology, 6(2), 245-250.
  • Willants, W.G., Mc Cartney, L., Mackie, W. ve Knox, J.P. (2001). Pectin: cell biology and structural prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9-27.
  • Yılmaz, Ö.D. (2008). Metabolik mühendislik ve reaksiyon mühendisliği prensipleriyle hücre dışı rekombinant insan büyüme hormonu üretimi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.

Production of Pectinase Enzymes by Bacillus pumilus in Bioreactor and Investigation of the Effect of Mixing and Airflow Rate

Year 2022, Volume: 8 Issue: 1, 239 - 252, 30.06.2022
https://doi.org/10.29132/ijpas.1028443

Abstract

Pectinases are a general name for a family of enzymes that catalyze the hydrolysis of glycosidic bonds in pectic polymers. In this study, the effects of stirring speed and airflow rate on the production of endo-pectinase, exo-pectinase and pectin lyase from pectinase group enzymes in a batch bioreactor were investigated. In addition, the oxygen consumption rate and the change of the liquid phase volumetric mass transfer coefficient and the power number for stirring were also calculated. It was determined that the optimum stirring speed for the production of pectinase group enzymes of Bacillus pumilus bacteria was 300 rpm. In experiments where the effect of airflow rate on enzyme activity was investigated, the highest enzyme activity values were obtained at 0.1 vvm. The highest pectin lyase, exo-pectinase and endo-pectinase activities were recorded as 19.5 at the 66th hour, 10.69 at the 28th hour and 102.13 U mL-1 at the 66th hour, respectively at a stirring speed of 300 rpm and an airflow rate of 0.1 vvm. The liquid phase volumetric oxygen transfer coefficient value increased with increasing stirring speed. The highest kLa value was recorded as 0.1524 h-1 at the 26th hour at 300 rpm stirring speed and 0.2623 h-1 at the 60th hour at 400 rpm. The oxygen consumption rate increased in the exponential growing zone and decreased after the exponential growing zone. When the stirring speed was increased, the oxygen consumption rate decreased. At optimum 300 rpm, the power value in the case of aeration to the system was found to be 1.95 W.

Project Number

FÜBAP 1674

References

  • Ahmed, J., Thakur, A., Goyal A. (2021). Emerging trends on the role of recombinant pectinolytic enzymes in industries-an overview. Biocatalysis and Agricultural Biotechnology, 38, 102200.
  • Aksöz, E. ve Aksöz, N. (1985). Pektik enzimler. Biyokimya Dergisi, 10 (1), 38-51.
  • Amin, F., Bhatti, H.N., Bilal, M. (2019). Recent advances in the production strategies of microbial pectinases-A review. International Journal of Biological Macromolecules, 122, 1017–1026.
  • Bandaiphet, C. ve Prasertsan, P. (2006). Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66, 216–228.
  • Bandyopadhyay, B. ve Humphrey, A.E. (1967). Dynamic measurement of the volumetric oxygen tranfer coefficient in fermentation systems. Biotechnology and Bioengineering, IX, 533-544.
  • Cruz-Guerrero, A., Barzana, E., Garcia-Garibay, M. ve Gomez-Ruiz, L. (1999). Dissolved oxygen threshold for the repression of endo-polygalacturonase production by Kluyveromyces marxianus. Process Biochemistry, 34, 621–624.
  • Demirci, Y. (2006). Reaksiyon mühendisliği prensipleriyle rekombinant L-Fenilalanin üretimi için biyoproses geliştirilmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Dursun, A.Y. (1998). Atıksulardaki ağır metal-siyanür kompleks iyonlarının serbest ve tutuklanmış Pseudomonas fluorescens ile biyolojik arıtımının kesikli ve sürekli sistemlerde karşılaştırmalı olarak incelenmesi, Hacettepe Ünivesitesi. Doktora Tezi.
  • Fadzilah, K. ve Mashitah, M.D. (2010). Cellulases production in palm oil mill effluent: effect of aeration and agitation. Journal of Applied Sciences, 10 (24), 3307-3312.
  • Fasim, A., More, V.S., More, S.S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68–76.
  • Favela-Torres, E., Volke-Sepulveda, T. ve Viniegra-Gonzales, G. (2006). Production of hydrolytic depolymerising pectinases. Food Technology Biotechnology, 44 (2), 221–227.
  • Feng, Y., He, Z., Ong, S.L., Hu, J., Zhang, Z. ve Ng W.J. (2003). Optimization of agitation, aeration, and temperature conditions for maximum -mannanase production. Enzyme and Microbial Technology, 32, 282–289.
  • Ferreira, P., Lopes, M., Mota, M., Belo, I. (2016). Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochemical Engineering Journal, 110, 35–42.
  • Garcia-Ochoa, F. ve Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnology Advances, 27, 153–176.
  • Garcia-Ochoa, F., Gomez, E., Santos, V.E. ve Merchuk, J.C. (2010). Oxygen uptake rate in microbial processes: an overview. Biochemical Engineering Journal, 49, 289–307.
  • Gomez, E., Santos, V.E., Alcon, A. ve Garcia-Ochoa, F. (2006). Oxygen transport rate on Rhodococcus erythropolis cultures: effect on growth and BDS capability. Chemical Engineering Science, 61, 4595–4604.
  • Gummadi, S.N. ve Kumar, D.S. (2006). The effect of microbiological parameters on production of pectin lyase and pectate lyase by Debaryomyces nepalensis: A statistical approach. Research Journal of Microbiology, 1(3), 220-227.
  • Gummadi, S.N. ve Kumar, D.S. (2008). Batch and fed batch production of pectin lyase and pectate lyase by novel strain Debaryomyces nepalensis in bioreactor. Bioresource Technology, 99, 874–881.
  • Haykır, I. (2007). Investigation of bioprocess parameters for glucose ısomerase production by Bacillus thermoantarcticusthe, Middle East Technical University, Yüksek Lisans Tezi.
  • Hoondal, G.S., Tiwari, R.P., Tewari, R., Dahiya, N. ve Beg, Q.K. (2002). Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 59, 409–418.
  • Ibrahim, C.O. (2008). Development of applications of industrial enzymes from malaysian ındigenous microbial sources. Bioresource Technology, 99, 4572–4582.
  • John, J., Surendranathan Kaimal, K.K., Smith, M.L., Rahman, P.K.S.M., Chellam, P.V. (2020). Advances in upstream and downstream strategies of pectinase bioprocessing: A review. International Journal of Biological Macromolecules 162 1086–1099.
  • Kao, P.-M., Chen, C.-I., Huang, S.-C., Chang, Y.-C., Tsai, P.-J. ve Liu, Y.-C. (2007). Effects of shear stress and mass transfer on chitinase production by Paenibacillus sp. CHE-N1. Biochemical Engineering Journal, 34, 172–178.
  • Kashyap, D.R., Vohra, P.K., Chopra, S. ve Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77:215-227.
  • Kirk, O., Borchert, T.V. ve Fuglsang, C.C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.
  • Korkmaz, N. (2007). Recombinant therapeutic protease production by Bacillus sp., Middle East Technical University, Yüksek Lisans Tezi.
  • Lee, B.-H., Kim, B.-K., Lee, Y.-J., Chung, C.H. ve Lee, J.-W. (2010). Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology, 46, 38–42.
  • Li, X., Xu, C.‑Q., Luo, Y.‑D., Zhang, S., Huang, C., Zou,· K., Tan, Y.‑L., Wu, Y.‑X., Deng, Z.‑S. (2018). Influence of the flow field on α-cyclodextrin glycosyltransferase production by Escherichia coli BL21. Bioprocess and Biosystems Engineering, 41, 819–829.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. ve Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-75.
  • Marques, D.A.V., Torres, B.R., Porto, A.L.F., Pessoa-Júnior, A. ve Converti, A. (2009). Comparison of oxygen mass transfer coefficient in simple and extractive fermentation systems. Biochemical Engineering Journal, 47, 122–126.
  • Mill, P.J. ve Tuttobello, R. (1961). The pectic enzymes of Aspergillus niger 2. Endo polygalacoturonase. Biochemical Journal, 79, 57-64.
  • Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426-428.
  • Mishra, S., Kumar, V., Sarkar, J., Rathore, A.S. (2021). CFD based mass transfer modeling of a single use bioreactor for production of monoclonal antibody biotherapeutics. Chemical Engineering Journal, 412, 128592.
  • Naik, S.C., Kaul, P., Barse, B., Banerjee, A. ve Banerjee, U.C. (2008). Studies on the production of enantioselective nitrilase in a stirred tank bioreactor by Pseudomonas putida MTCC 5110. Bioresource Technology, 99, 26–31.
  • Nedjma, M., Hoffmann, N. ve Belarbi, A. (2001). Selective and sensitive detection of pectin lyase activity using a colorimetric test: application to the screening of microorganisms possessing pectin lyase activity. Analytical Biochemistry, 291, 290–296.
  • Nur Asshifa, M.N., Zambry, N.S., Salwa, M.S., Yahya, A.R.M. (2017). The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor. 3 Biotech, 7, 189.
  • Ogawa, J. ve Shimizu, S. (2002). Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in japan. Current Opinion in Biotechnology, 13, 367–375.
  • Olughu, W., Galbraith, D., Paget, C., Ruscoe, S., Smith, J., Mason, A. (2021). Does the BioBLU 0.3f single‑use scale to the BioFlo® 320 reuseable bioreactor on a matched volumetric oxygen mass transfer coefficient? World Journal of Microbiology and Biotechnology, 37, 11.
  • Orman, M.A. (2007). Extracellular recombinant human growth hormone production by Pichia pastoris. Middle East Technical University Graduate School of Natural and Applied Sciences, Yüksek Lisans Tezi.
  • Ozzeybek, M., Cekmecelioglu, D. (2022). Formulation of apple pomace, orange peel, and hazelnut shell mix for co-production of bacterial pectinase and cellulase enzymes by mixture design method, Biomass Conversion and Biorefinery, doi.org/10.1007/s13399-022-02409-0.
  • Öncü, Ş. (2007). Investigation of the effects of dissolved oxygen concentration, aeration and agitation on the morphology and rheology in submerged fungal fermentation, İzmir Institute of Technology, Master Thesis.
  • Potumarthi, R., Subhakar, C. ve Jetty, A. (2007). Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochemical Engineering Journal, 34, 185–192.
  • Ramachandran, S. (2005). Isolation, purification and characterization of pectinase from Penicillum citrinum, School of Biosciences Mahatma Gandhi University Kottayam, Kerela India, Doctoral Thesis.
  • Reid, I. ve Ricard, M. (2000). Pectinase in paper making: solving retention problems in mechanical pulps bleached with hydrogen peroxide. Enzyme and Microbial Technology, 26, 115–123.
  • Shuler, M.L. ve Kargı, F. (2002). Bioprocess engineering: basic concepts (2nd Ed.). Prentice Hall Inc., USA.
  • Soetaert, W. ve Vandamme, E. (2006). The impact of ındustrial biotechnology. Biotechnology Journal, 1, 756–769.
  • Songpim, M., Vaithanomsat, P. ve Chuntranuluck, S. (2010). Optimization of pectate lyase production from Paenibacillus polymyxa N10 using response surface methodology. The Open Biology Journal, 3, 1-7.
  • Tuttobello, R. ve Mill, P.J. (1961). The pectic enzymes of Aspergillus niger 1. the production of active mixtures of pectic enzymes. Biochemical Journal, 79, 51-57.
  • Ulgen, K. ve Mavituna, F. (1998). Oxygen transfer and uptake in Streptomyces coelicolor A3(2) culture in a batch bioreactor. Journal of Chemical Technology and Biotechnology, 73, 243-250.
  • Venugopal, C., Jayachandra, T. ve Anu Appaiah, K.A. (2007). Effect of aeration on the production of endo-pectinase from coffee pulp by a novel thermophilic fungi Mycotypha sp. strain No. AKM 1801. Biotechnology, 6(2), 245-250.
  • Willants, W.G., Mc Cartney, L., Mackie, W. ve Knox, J.P. (2001). Pectin: cell biology and structural prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9-27.
  • Yılmaz, Ö.D. (2008). Metabolik mühendislik ve reaksiyon mühendisliği prensipleriyle hücre dışı rekombinant insan büyüme hormonu üretimi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özlem Tepe 0000-0001-8336-3699

Arzu Yadigar Dursun 0000-0001-9412-5522

Project Number FÜBAP 1674
Publication Date June 30, 2022
Submission Date November 25, 2021
Acceptance Date April 21, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Tepe, Ö., & Dursun, A. Y. (2022). Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences, 8(1), 239-252. https://doi.org/10.29132/ijpas.1028443
AMA Tepe Ö, Dursun AY. Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. June 2022;8(1):239-252. doi:10.29132/ijpas.1028443
Chicago Tepe, Özlem, and Arzu Yadigar Dursun. “Biyoreaktörde Bacillus Pumilus Ile Pektinaz Enzimlerinin Üretimi Ve Karıştırma Ve Hava Akış Hızının Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences 8, no. 1 (June 2022): 239-52. https://doi.org/10.29132/ijpas.1028443.
EndNote Tepe Ö, Dursun AY (June 1, 2022) Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences 8 1 239–252.
IEEE Ö. Tepe and A. Y. Dursun, “Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi”, International Journal of Pure and Applied Sciences, vol. 8, no. 1, pp. 239–252, 2022, doi: 10.29132/ijpas.1028443.
ISNAD Tepe, Özlem - Dursun, Arzu Yadigar. “Biyoreaktörde Bacillus Pumilus Ile Pektinaz Enzimlerinin Üretimi Ve Karıştırma Ve Hava Akış Hızının Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences 8/1 (June 2022), 239-252. https://doi.org/10.29132/ijpas.1028443.
JAMA Tepe Ö, Dursun AY. Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. 2022;8:239–252.
MLA Tepe, Özlem and Arzu Yadigar Dursun. “Biyoreaktörde Bacillus Pumilus Ile Pektinaz Enzimlerinin Üretimi Ve Karıştırma Ve Hava Akış Hızının Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences, vol. 8, no. 1, 2022, pp. 239-52, doi:10.29132/ijpas.1028443.
Vancouver Tepe Ö, Dursun AY. Biyoreaktörde Bacillus pumilus ile Pektinaz Enzimlerinin Üretimi ve Karıştırma ve Hava Akış Hızının Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. 2022;8(1):239-52.

154501544915448154471544615445