Research Article
BibTex RIS Cite

Biyomedikal Uygulamalar için T/M Yöntemiyle Üretilen Özel Tasarım Kontrollü Gözenekli İmplantların Temel Özelliklerinin Araştırılması

Year 2025, Volume: 11 Issue: 1, 56 - 70, 30.06.2025
https://doi.org/10.29132/ijpas.1639276

Abstract

Bu çalışma; biyomedikal uygulamalar için toz metalurjisi (T/M) yöntemi ile üretilen implant benzeri gözenekli saf titanyum malzemelerin üretimini araştırmaktadır. Malzeme, kemik uyumu ve mukavemeti artırmak için tasarlanmış katı bir titanyum çekirdek ve gözenekli bir titanyum dış katmandan oluşmaktadır. Gözenekli yapı oluşturmak amacı ile Magnezyum tozu (50 µm) ağırlıkça %10, 20 ve 30 oranlarında kullanılmıştır. Numuneler argon atmosferinde 1000°C, 1100°C ve 1200°C'de farklı sürelerde (60, 90 ve 120 dakika) sinterlenmiş ve Magnezyum çıkarılmıştır. Deneysel çalışma; çekme test cihazında çekerek sıyırma testi ile gerçekleştirilmiştir. Sinterleme sıcaklığı, süresi ve tane boyutunun etkileri Taguchi yöntemiyle analiz edilmiştir. Eklem kalitesini değerlendirmek ve mukavemeti optimize etmek için ANOVA ve Sinyal-Gürültü (S/N) oranı analizleri uygulanmıştır. Bulgular, yüksek mukavemetli gözenekli titanyum implantlar için uygun maliyetli tasarım parametrelerinin anlaşılmasına katkıda bulunarak işleme koşullarının mekanik performans üzerindeki etkisini vurgulamaktadır.

References

  • Yang, XL., Du, XF., Xu, ZL. et al. (2024). Progress in processing of porous titanium: a review. Rare Metals, 43, 1932–1955. https://doi.org/10.1007/s12598-023-02570-z
  • Abd-Elaziem, W., Mohammed, M. M., Yehia, H. M., Sebaey, T. A., Khan, T. (2024). Porous titanium for medical implants. Sci. Park Publ, 1(25), 10-62184.
  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., Daoush, W. M. (2024). Titanium-Based alloys and composites for orthopedic implants applications: a comprehensive review. Materials & Design, 112850.
  • Usta, Y. ve Köylü, A. (2012). Yakıt Hücrelerinde Kullanılacak Gözenekli Paslanmaz Çelik Toz Metal Parçaların Üretim Parametrelerinin Araştırılması, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 27(2), 265-274.
  • Bauer, S., Schmuki, P., Von Der Mark, K., Park, J. (2013). Engineering biocompatible implant surfaces: part I: materials and surfaces. Progress in Materials Science, 58(3), 261-326.
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-aided design, 69, 65-89.
  • Huang, S. H., Liu, P., Mokasdar, A., Hou, L. (2013). Additive manufacturing and its societal impact: a literature review. The International journal of advanced manufacturing technology, 67, 1191-1203.
  • Andani, M. T., Moghaddam, N. S., Haberland, C., Dean, D., Miller, M. J., Elahinia, M. (2014). Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta biomaterialia, 10(10), 4058-4070.
  • Akdogan G., Ti-6Al-4V Alaşımının Biyokorozyon ve Biyouyumluluk Özelliklerinin Araştırılması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara/Türkiye, 1998.
  • Bandyopadhyay, A., Mitra, I., Avila, J. D., Upadhyayula, M., Bose, S. (2023). Porous metal implants: processing, properties, and challenges. International Journal of Extreme Manufacturing, 5(3), 032014.
  • Taddei, E.B., (2005). Characterization of Ti-35Nb-Zr-5Ta Alloyed Produced by Powder Metallurgy, Materials Science Forum, Trans. Tech. Pub., Switzerland, 498-499, 34-39.
  • Pałka, K., Pokrowiecki, R. (2018). Porous titanium implants: a review. Advanced Engineering Materials, 20(5), 1700648.
  • Najafizadeh, M., Yazdi, S., Bozorg, M., Ghasempour-Mouziraji, M., Hosseinzadeh, M., Zarrabian, M., Cavaliere, P. (2024). Classification and applications of titanium and its alloys: A review. Journal of Alloys and Compounds Communications, 100019.
  • Wang W, Ouyang Y, Poh CK. (2011). Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singap. 40(5),237-44. PMID: 21678015.
  • Zardiackas, LD., Dillon, LD., Mitchell, DW., Nunnery, LA., Poggie, R., (2001)Structure, Metallurgy, and Mechanical Properties of a Porous Tantalum Foam J. Biomed Mater Research 58(2),180.
  • Bram M, Stiller C, Buchkremer HP, Stöver D, Baur H, (2000). High-Porosity Titanium, Stainless Steel, and Superalloy Parts. Adv Eng Mater; 2:196-199.
  • Kawamata, S., Kawai, T., Yasuge, E., Hoshi, I., Minamino, T., Kurosu, S., Yamada, H. (2024). Investigation of the mechanical strength of artificial metallic mandibles with lattice structure for mandibular reconstruction. Materials, 17(14), 3557.
  • Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T, Processing of biocompatible porous Ti and Mg. Script Mat, 45: 1147-53, 2001.
  • Roe, SC., Implant Materials: Structural Advances in Small Animal Total Joint Replacement, Advances in Small Animal Total Joint Replacement, ISBN: 978-0-470-95961-9, 272 pages, Vol 2, Dec 2012.
  • Nogueira, P., Magrinho, J. P., Silva, M. B., de Deus, A. M., Vaz, M. F. (2024). Compression properties of cellular iron lattice structures used to mimic bone characteristics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207241241799.
  • Harrysson OLA., Cansızoğlu Ö., Marcellin-Little DJ., Cormier DR., West HA., (2008). Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering: C 28 (3), 366-373.
  • Yalçın, B., Toz Metalurjisi Yöntemiyle İmal Edilen Titanyum Alaşımı İmplantların Temel Özelliklerinin Araştırılması, (Doktora Tezi), Süleyman Demirel Üniversitesi, 2007.
  • Tuikampee, S., Chaijareenont, P., Rungsiyakull, P., Yavirach, A. (2024). Titanium Surface Modification Techniques to Enhance Osteoblasts and Bone Formation for Dental Implants: A Narrative Review on Current Advances. Metals, 14(5), 515.
  • Pourhajrezaei, S., Abbas, Z., Khalili, M. A., Madineh, H., Jooya, H., Babaeizad, A., Samadi, A. (2024). Bioactive polymers: A comprehensive review on bone grafting biomaterials. International Journal of Biological Macromolecules, 134615.
  • Schuh, A., Luyten, J., Vidael, R., Hönle, W., Schmickal, T. (2007). Porous titanium implant materials and their potential in orthopedic surgery. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 38(12), 1015-1018.
  • Laptev, A., Bram, M. (2015). Manufacturing hollow titanium parts by powder metallurgy route and space holder technique. Materials letters, 160, 101-103.
  • M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur. (2000). High-porosity titanium, stainless steel and superalloy parts, Adv. Eng. Mater., 2 pp. 196-199.
  • Zhu, L., Luo, D., Liu, Y. (2020). Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International Journal of Oral Science, 12(1), 6.
  • Kim, S. W., Jung, H. D., Kang, M. H., Kim, H. E., Koh, Y. H., Estrin, Y. (2013). Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Materials Science and Engineering: C, 33(5), 2808-2815.
  • Torres, Y., Lascano, S., Bris, J., Pavón, J., Rodriguez, J. A. (2014). Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Materials Science and Engineering: C, 37, 148-155.
  • Qadir, M., Li, Y., Biesiekierski, A., Wen, C. (2019). Optimized fabrication and characterization of TiO2–Nb2O5–ZrO2 nanotubes on β-phase TiZr35Nb28 alloy for biomedical applications via the Taguchi method. ACS Biomaterials Science & Engineering, 5(6), 2750-2761.
  • Jahanshahi, M., Sanati, M. H., & Babaei, Z. (2008). Optimization of parameters for the fabrication of gelatin nanoparticles by the Taguchi robust design method. Journal of Applied Statistics, 35(12), 1345-1353.
  • Chen, W. H., Uribe, M. C., Kwon, E. E., Lin, K. Y. A., Park, Y. K., Ding, L., Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917.
  • Sharma, S. K., Gajević, S., Sharma, L. K., Pradhan, R., Miladinović, S., Ašonja, A., Stojanović, B. (2024). Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials, 17(21), 5157.
  • Gur, A. K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., Yigitturk, N. (2014). Wear properties of Fe-Cr-C and B4C powder coating on AISI 316 stainless steel analyzed by the Taguchi method. Materials Testing, 56(5), 393-398.
  • Gür, A. K., Çalıgulu, U., & Taşkın, M. (2011). The Optımısatıon of Adhesıve Wear Behavıor of Almgsi/Sic Alumınyum Composıte with Taguchı Method. Australian Journal of Basic and Applied Sciences, 5(9), 1584-1590.

Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications

Year 2025, Volume: 11 Issue: 1, 56 - 70, 30.06.2025
https://doi.org/10.29132/ijpas.1639276

Abstract

This study investigates the production of implant-like porous pure titanium materials for biomedical applications, produced by powder metallurgy (T/M). The material consists of a solid titanium core and a porous titanium outer layer designed to enhance bone conformability and strength. Magnesium powder (50 µm) was used in proportions of 10, 20 and 30 wt% to create the porous structure. The samples were sintered in argon atmosphere at 1000°C, 1100°C and 1200°C for different times (60, 90 and 120 minutes) and Magnesium was removed. The experimental work was carried out by tensile stripping test in a tensile testing machine. The effects of sintering temperature, time and grain size were analyzed by Taguchi method. ANOVA and Signal-to-Noise (S/N) ratio analyses were applied to evaluate joint quality and optimize strength. The findings contribute to the understanding of cost-effective design parameters for high-strength porous titanium implants, highlighting the influence of processing conditions on mechanical performance.

Supporting Institution

DÜBAP

References

  • Yang, XL., Du, XF., Xu, ZL. et al. (2024). Progress in processing of porous titanium: a review. Rare Metals, 43, 1932–1955. https://doi.org/10.1007/s12598-023-02570-z
  • Abd-Elaziem, W., Mohammed, M. M., Yehia, H. M., Sebaey, T. A., Khan, T. (2024). Porous titanium for medical implants. Sci. Park Publ, 1(25), 10-62184.
  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., Daoush, W. M. (2024). Titanium-Based alloys and composites for orthopedic implants applications: a comprehensive review. Materials & Design, 112850.
  • Usta, Y. ve Köylü, A. (2012). Yakıt Hücrelerinde Kullanılacak Gözenekli Paslanmaz Çelik Toz Metal Parçaların Üretim Parametrelerinin Araştırılması, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 27(2), 265-274.
  • Bauer, S., Schmuki, P., Von Der Mark, K., Park, J. (2013). Engineering biocompatible implant surfaces: part I: materials and surfaces. Progress in Materials Science, 58(3), 261-326.
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-aided design, 69, 65-89.
  • Huang, S. H., Liu, P., Mokasdar, A., Hou, L. (2013). Additive manufacturing and its societal impact: a literature review. The International journal of advanced manufacturing technology, 67, 1191-1203.
  • Andani, M. T., Moghaddam, N. S., Haberland, C., Dean, D., Miller, M. J., Elahinia, M. (2014). Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta biomaterialia, 10(10), 4058-4070.
  • Akdogan G., Ti-6Al-4V Alaşımının Biyokorozyon ve Biyouyumluluk Özelliklerinin Araştırılması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara/Türkiye, 1998.
  • Bandyopadhyay, A., Mitra, I., Avila, J. D., Upadhyayula, M., Bose, S. (2023). Porous metal implants: processing, properties, and challenges. International Journal of Extreme Manufacturing, 5(3), 032014.
  • Taddei, E.B., (2005). Characterization of Ti-35Nb-Zr-5Ta Alloyed Produced by Powder Metallurgy, Materials Science Forum, Trans. Tech. Pub., Switzerland, 498-499, 34-39.
  • Pałka, K., Pokrowiecki, R. (2018). Porous titanium implants: a review. Advanced Engineering Materials, 20(5), 1700648.
  • Najafizadeh, M., Yazdi, S., Bozorg, M., Ghasempour-Mouziraji, M., Hosseinzadeh, M., Zarrabian, M., Cavaliere, P. (2024). Classification and applications of titanium and its alloys: A review. Journal of Alloys and Compounds Communications, 100019.
  • Wang W, Ouyang Y, Poh CK. (2011). Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singap. 40(5),237-44. PMID: 21678015.
  • Zardiackas, LD., Dillon, LD., Mitchell, DW., Nunnery, LA., Poggie, R., (2001)Structure, Metallurgy, and Mechanical Properties of a Porous Tantalum Foam J. Biomed Mater Research 58(2),180.
  • Bram M, Stiller C, Buchkremer HP, Stöver D, Baur H, (2000). High-Porosity Titanium, Stainless Steel, and Superalloy Parts. Adv Eng Mater; 2:196-199.
  • Kawamata, S., Kawai, T., Yasuge, E., Hoshi, I., Minamino, T., Kurosu, S., Yamada, H. (2024). Investigation of the mechanical strength of artificial metallic mandibles with lattice structure for mandibular reconstruction. Materials, 17(14), 3557.
  • Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T, Processing of biocompatible porous Ti and Mg. Script Mat, 45: 1147-53, 2001.
  • Roe, SC., Implant Materials: Structural Advances in Small Animal Total Joint Replacement, Advances in Small Animal Total Joint Replacement, ISBN: 978-0-470-95961-9, 272 pages, Vol 2, Dec 2012.
  • Nogueira, P., Magrinho, J. P., Silva, M. B., de Deus, A. M., Vaz, M. F. (2024). Compression properties of cellular iron lattice structures used to mimic bone characteristics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207241241799.
  • Harrysson OLA., Cansızoğlu Ö., Marcellin-Little DJ., Cormier DR., West HA., (2008). Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering: C 28 (3), 366-373.
  • Yalçın, B., Toz Metalurjisi Yöntemiyle İmal Edilen Titanyum Alaşımı İmplantların Temel Özelliklerinin Araştırılması, (Doktora Tezi), Süleyman Demirel Üniversitesi, 2007.
  • Tuikampee, S., Chaijareenont, P., Rungsiyakull, P., Yavirach, A. (2024). Titanium Surface Modification Techniques to Enhance Osteoblasts and Bone Formation for Dental Implants: A Narrative Review on Current Advances. Metals, 14(5), 515.
  • Pourhajrezaei, S., Abbas, Z., Khalili, M. A., Madineh, H., Jooya, H., Babaeizad, A., Samadi, A. (2024). Bioactive polymers: A comprehensive review on bone grafting biomaterials. International Journal of Biological Macromolecules, 134615.
  • Schuh, A., Luyten, J., Vidael, R., Hönle, W., Schmickal, T. (2007). Porous titanium implant materials and their potential in orthopedic surgery. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 38(12), 1015-1018.
  • Laptev, A., Bram, M. (2015). Manufacturing hollow titanium parts by powder metallurgy route and space holder technique. Materials letters, 160, 101-103.
  • M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur. (2000). High-porosity titanium, stainless steel and superalloy parts, Adv. Eng. Mater., 2 pp. 196-199.
  • Zhu, L., Luo, D., Liu, Y. (2020). Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International Journal of Oral Science, 12(1), 6.
  • Kim, S. W., Jung, H. D., Kang, M. H., Kim, H. E., Koh, Y. H., Estrin, Y. (2013). Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Materials Science and Engineering: C, 33(5), 2808-2815.
  • Torres, Y., Lascano, S., Bris, J., Pavón, J., Rodriguez, J. A. (2014). Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Materials Science and Engineering: C, 37, 148-155.
  • Qadir, M., Li, Y., Biesiekierski, A., Wen, C. (2019). Optimized fabrication and characterization of TiO2–Nb2O5–ZrO2 nanotubes on β-phase TiZr35Nb28 alloy for biomedical applications via the Taguchi method. ACS Biomaterials Science & Engineering, 5(6), 2750-2761.
  • Jahanshahi, M., Sanati, M. H., & Babaei, Z. (2008). Optimization of parameters for the fabrication of gelatin nanoparticles by the Taguchi robust design method. Journal of Applied Statistics, 35(12), 1345-1353.
  • Chen, W. H., Uribe, M. C., Kwon, E. E., Lin, K. Y. A., Park, Y. K., Ding, L., Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917.
  • Sharma, S. K., Gajević, S., Sharma, L. K., Pradhan, R., Miladinović, S., Ašonja, A., Stojanović, B. (2024). Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials, 17(21), 5157.
  • Gur, A. K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., Yigitturk, N. (2014). Wear properties of Fe-Cr-C and B4C powder coating on AISI 316 stainless steel analyzed by the Taguchi method. Materials Testing, 56(5), 393-398.
  • Gür, A. K., Çalıgulu, U., & Taşkın, M. (2011). The Optımısatıon of Adhesıve Wear Behavıor of Almgsi/Sic Alumınyum Composıte with Taguchı Method. Australian Journal of Basic and Applied Sciences, 5(9), 1584-1590.
There are 36 citations in total.

Details

Primary Language English
Subjects Biomechanic, Powder Metallurgy, Manufacturing Metallurgy
Journal Section Research Article
Authors

Kadir Turan 0000-0002-4065-9649

M. Selçuk Keskin 0000-0001-6233-1807

Haluk Kejanlı 0000-0002-4987-6316

Şükrü Çetinkaya 0000-0002-7501-8497

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date February 13, 2025
Acceptance Date March 26, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Turan, K., Keskin, M. S., Kejanlı, H., Çetinkaya, Ş. (2025). Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications. International Journal of Pure and Applied Sciences, 11(1), 56-70. https://doi.org/10.29132/ijpas.1639276
AMA Turan K, Keskin MS, Kejanlı H, Çetinkaya Ş. Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications. International Journal of Pure and Applied Sciences. June 2025;11(1):56-70. doi:10.29132/ijpas.1639276
Chicago Turan, Kadir, M. Selçuk Keskin, Haluk Kejanlı, and Şükrü Çetinkaya. “Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P M Method for Biomedical Applications”. International Journal of Pure and Applied Sciences 11, no. 1 (June 2025): 56-70. https://doi.org/10.29132/ijpas.1639276.
EndNote Turan K, Keskin MS, Kejanlı H, Çetinkaya Ş (June 1, 2025) Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications. International Journal of Pure and Applied Sciences 11 1 56–70.
IEEE K. Turan, M. S. Keskin, H. Kejanlı, and Ş. Çetinkaya, “Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications”, International Journal of Pure and Applied Sciences, vol. 11, no. 1, pp. 56–70, 2025, doi: 10.29132/ijpas.1639276.
ISNAD Turan, Kadir et al. “Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P M Method for Biomedical Applications”. International Journal of Pure and Applied Sciences 11/1 (June2025), 56-70. https://doi.org/10.29132/ijpas.1639276.
JAMA Turan K, Keskin MS, Kejanlı H, Çetinkaya Ş. Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications. International Journal of Pure and Applied Sciences. 2025;11:56–70.
MLA Turan, Kadir et al. “Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P M Method for Biomedical Applications”. International Journal of Pure and Applied Sciences, vol. 11, no. 1, 2025, pp. 56-70, doi:10.29132/ijpas.1639276.
Vancouver Turan K, Keskin MS, Kejanlı H, Çetinkaya Ş. Investigation Basic Properties of Custom Designed Controlled Porous Implants Produced by P/M Method for Biomedical Applications. International Journal of Pure and Applied Sciences. 2025;11(1):56-70.

154501544915448154471544615445