Research Article
BibTex RIS Cite

Dahili Hava Soğutmalı Gaz Türbini Kanatçıkları için 2.5D Kafes Yapılarının Tasarımı ve Sonlu Elemanlar Analizi

Year 2025, Volume: 11 Issue: 1, 240 - 251, 30.06.2025
https://doi.org/10.29132/ijpas.1643610

Abstract

Malzeme özelliklerini değiştirmeden hafif tasarımlar yapmak, havacılık için çok önemlidir. Ayrıca, yüksek sıcaklıklarda çalışan metal jet motoru parçalarının, örneğin gaz türbini kanatçıklarının etkili bir şekilde soğutulması, motor verimliliğini artırmak ve gaz türbini kanatçıklarının ömrünü uzatmak için gereklidir. Bu bağlamda, eklemeli imalat alanındaki gelişmelerle paralel olarak, hem önemli ölçüde ağırlık azaltımı sağlayan hem de etkili soğutma için büyük yüzey alanı sunan kafes yapılar, son zamanlarda oldukça popüler bir konu haline gelmiştir. Bu çalışmada, iç hava soğutmalı gaz türbini kanaçıkları için kare, üçgen ve altıgen 2.5D kafes yapıları tasarlanmış ve sonlu elemanlar yöntemi ile analiz edilmiştir. Hava soğutma kanallarına sahip geleneksel bir gaz türbini kanadı referans olarak kullanılmıştır. Sonuçlar, kafes tasarımları sayesinde gaz türbini kanadında %17,14'e kadar ağırlık azaltımı ve %93,43'e kadar hava soğutma yüzeyi artışı sağlanabileceğini göstermiştir. Maksimum gerilme, güvenlik faktörü (FOS) ve deformasyon gibi sonuçlar ile birlikte ağırlık azaltımı ve yüzey alanı artışı değerlendirildiğinde, en uygun 2.5D kafes tasarımının altıgen olduğu sonucuna varılmıştır.

References

  • I. Merzlikin, A. Zueva, S. Kievskaya, E. Shkoropat, and K. Popov, “The market of air transportation and cargo transportation in the investment strategy of transport enterprises,” Transportation Research Procedia, vol. 63, pp. 1420–1430, 2022, doi: 10.1016/j.trpro.2022.06.153.
  • J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M. W. P. Savelsbergh, “Chapter 7 Transportation on Demand,” in Handbooks in Operations Research and Management Science, vol. 14, C. Barnhart and G. Laporte, Eds., Elsevier, 2007, pp. 429–466, doi: 10.1016/S0927-0507(06)14007-4.
  • T. Young, Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations. Wiley, 2017.
  • K. Seymour, M. Held, G. Georges, and K. Boulouchos, “Fuel Estimation in Air Transportation: Modeling global fuel consumption for commercial aviation,” Transportation Research Part D: Transport and Environment, vol. 88, p. 102528, Nov. 2020, doi: 10.1016/j.trd.2020.102528.
  • D. A. Senzig, G. G. Fleming, and R. J. Iovinelli, “Modeling of Terminal-Area Airplane Fuel Consumption,” Journal of Aircraft, vol. 46, no. 4, pp. 1089–1093, 2009, doi: 10.2514/1.42025.
  • A. K. Kundu, Aircraft Design. in Cambridge Aerospace Series. Cambridge University Press, 2010. doi: 10.1017/CBO9780511844652.
  • A. F. Simões and R. Schaeffer, “The Brazilian air transportation sector in the context of global climate change: CO2 emissions and mitigation alternatives,” Energy Conversion and Man-agement, vol. 46, no. 4, pp. 501–513, Mar. 2005, doi: 10.1016/j.enconman.2004.06.017.
  • L. M. Amoo, “On the design and structural analysis of jet engine fan blade structures,” Pro-gress in Aerospace Sciences, vol. 60, pp. 1–11, Jul. 2013, doi: 10.1016/j.paerosci.2012.08.002.
  • R. Royce, The Jet Engine, 5th Edition. Wiley, 2015.
  • Y. Kroyan, M. Wojcieszyk, O. Kaario, and M. Larmi, “Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines,” Energy, vol. 255, p. 124790, 2022, doi: 10.1016/j.energy.2022.124790.
  • R. Viswanathan, D. Gandy, and K. Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, Materials Park, OH: ASM International, 2004..
  • S. G. U. Chandrasekhar and L.-J. Yang, Eds., Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018), vol. 1. Springer, 2019, doi: 10.1007/978-981-13-2697-4.
  • J. R. Davis, ASM Specialty Handbook: Heat-Resistant Materials. ASM International, 1997.
  • K. K. Rathod, P. G. Patil, and P. R. Patel, “Heat Treatment of Steam-Turbine Rotor Blade by Induction Hardening,” International Journal of Scientific & Engineering Research, vol. 8, no. 3, pp. 694–697, 2017.
  • M. Y. Abdollahzadeh Jamalabadi, “Thermal radiation effects on creep behavior of the turbine blade,” Multidiscipline Modeling in Materials and Structures, vol. 12, no. 2, pp. 291–314, Aug. 2016, doi: 10.1108/MMMS-09-2015-0053.
  • T. Gibbons and I. G. Wright, “A review of materials for gas turbines firing syngas fuels,” Oak Ridge National Laboratory, Oak Ridge, TN, Tech. Rep., May 2009, doi: 10.2172/970884.
  • J.-C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed. CRC Press, 2012. doi: 10.1201/b13616.
  • E. F. Schum, R. E. Oldrieve, F. S. Stepka, and L. F. P. Laboratory, “Fabrication and en-durance of air-cooled strut-supported turbine blades with struts cast of X-40 alloy,” National Advisory Committee for Aeronautics, Washington, D.C., Tech. Rep., 1956.
  • D. Cherrared, “Numerical simulation of film cooling a turbine blade through a row of holes,” Journal of Thermal Engineering, vol. 3, no. 2, pp. 1110–1120, 2017, doi: 10.18186/thermal.298609.
  • T. Verstraete, S. Amaral, R. Van den Braembussche, and T. Arts, “Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization,” Journal of Turbomachinery, vol. 132, no. 2, Apr. 2010, doi: 10.1115/1.3104615.
  • Q. Yin, Z. Liu, B. Wang, K. Ma, Y. Cai, and Q. Song, “Improving thermal conductivity of Inconel 718 through thermoelectric coupling to reduce cutting temperature,” Journal of Ma-terials Research and Technology, vol. 20, pp. 950–957, Sep. 2022, doi: 10.1016/j.jmrt.2022.07.124.
  • M. Yadav, A. Misra, A. Malhotra, and N. Kumar, “Design and analysis of a high-pressure turbine blade in a jet engine using advanced materials,” Materials Today: Proceedings, vol. 25, pp. 639–645, 2020, doi: 10.1016/j.matpr.2019.07.530.
  • M. Bahari, M. Rostami, A. Entezari, S. Ghahremani, and M. Etminan, “A comparative analysis and optimization of two supersonic hybrid SOFC and turbine-less jet engine pro-pulsion system for UAV,” Fuel, vol. 319, p. 123796, Jul. 2022, doi: 10.1016/j.fuel.2022.123796.
  • Z. Ji, J. Qin, K. Cheng, S. Zhang, and P. Dong, “Performance assessment of a solid oxide fuel cell turbine-less jet hybrid engine integrated with a fan and afterburners,” Aerospace Science and Technology, vol. 116, p. 106800, Sep. 2021, doi: 10.1016/j.ast.2021.106800.
  • O. Balli, “Turbine wheel fracture analysis of Jet Fuel Starter (JFS) engine used on F16 mil-itary aircraft,” Engineering Failure Analysis, vol. 128, p. 105616, Oct. 2021, doi: 10.1016/j.engfailanal.2021.105616.
  • P. Jiang, M. Rifat, and S. Basu, “Impact of surface roughness and porosity on lattice struc-tures fabricated by additive manufacturing – A computational study,” Procedia Manufac-turing, vol. 48, pp. 781–789, 2020, doi: 10.1016/j.promfg.2020.05.114.
  • M. G. Gok, “Creation and finite-element analysis of multi-lattice structure design in hip stem implant to reduce the stress-shielding effect,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 236, no. 2, pp. 429–439, 2022, doi: 10.1177/14644207211046200.
  • D. Kang, S. Park, Y. Son, S. Yeon, S. H. Kim, and I. Kim, “Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process,” Materials and Design, vol. 175, p. 107786, 2019, doi: 10.1016/j.matdes.2019.107786.
  • M. G. Gok and O. Cihan, “Numerical analysis of the use of different lattice designs and materials for reciprocating engine connecting rods,” Scientia Iranica, vol. 29, no. 3, pp. 123–134, May 2022, doi: 10.24200/sci.2022.59400.6216.
  • R. Alkentar, F. Máté, and T. Mankovits, “Investigation of the Performance of Ti6Al4V Lattice Structures Designed for Biomedical Implants Using the Finite Element Method,” Materials, vol. 15, no. 18, p. 6335, Sep. 2022, doi: 10.3390/ma15186335.
  • E. A. A. Alkebsi, H. Ameddah, T. Outtas, and A. Almutawakel, “Design of graded lattice structures in turbine blades using topology optimization,” International Journal of Computer Integrated Manufacturing, vol. 34, no. 4, pp. 370–384, 2021, doi: 10.1080/0951192X.2021.1872106.
  • D. B. Witkin, D. Patel, T. V Albright, G. E. Bean, and T. McLouth, “Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion,” International Journal of Fatigue, vol. 132, p. 105392, Mar. 2020, doi: 10.1016/j.ijfatigue.2019.105392.
  • S. Hussain, W. A. W. Ghopa, S. S. K. Singh, A. H. Azman, and S. Abdullah, “Experimental and Numerical Vibration Analysis of Octet-Truss-Lattice-Based Gas Turbine Blades,” Metals, vol. 12, no. 2, 2022, doi: 10.3390/met12020340.
  • Y. Zhao, K. Li, M. Gargani, and W. Xiong, “A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization,” Additive Manufacturing, vol. 36, p. 101404, Dec. 2020, doi: 10.1016/j.addma.2020.101404.
  • A. Ikpe, O. Efe-Ononeme, and G. Ariavie, “Thermo-Structural Analysis of First Stage Gas Turbine Rotor Blade Materials for Optimum Service Performance,” International Journal Of Engineering & Applied Sciences, vol. 10, no. 2, pp. 118–130, 2018, doi: 10.24107/ijeas.447650.
  • O. Ononeme-Efe, A. Ikpe, and G. Ariave, “Modal Analysis of Conventional Gas Turbine Blade Materials (Udimet 500 and IN738) For Industrial Applications,” Journal of Engineering Technology and Applied Sciences, vol. 3, no. 2, pp. 119–133, Aug. 2018, doi: 10.30931/jetas.452857.
  • S. Alsarayefi and B. Mohamad, “Effects of transient load on gas turbine blade stress and fatigue life characteristic,” International Journal of Mechanical Research and Applications in Engineering (IJMRAE), vol. 10, no. 1, pp. 37–44, 2018.
  • G. Chintala and P. Gudimetla, “Optimum Material Evaluation for Gas Turbine Blade Using Reverse Engineering (RE) and FEA,” Procedia Engineering, vol. 97, pp. 1332–1340, 2014, doi: 10.1016/j.proeng.2014.12.413.

Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades

Year 2025, Volume: 11 Issue: 1, 240 - 251, 30.06.2025
https://doi.org/10.29132/ijpas.1643610

Abstract

Making lightweight designs without changing the properties of materials is very important for aviation. In addition, effective cooling of metallic jet engine parts operating at high temperatures, such as gas turbine blades, is necessary to increase the efficiency of the engine and extend the service life of the gas turbine blade. In this regard, in parallel with the developments in additive manufacturing, lattice structures that provide both significant weight reduction and large surface area for effective cooling have recently started to be a hot topic. In this study, square, triangular and hexagonal 2.5D lattice structures were designed for the internal air-cooled gas turbine blade and analyzed by the finite element method. A conventional gas turbine blade with air cooling channels was used as a reference. The results showed that up to 17.14% weight reduction and up to 93.43% air cooling surface area increase can be achieved in the gas turbine blade thanks to lattice designs. When the results of maximum stress, FOS and deformation in turbine blades, as well as weight reduction and surface area increase, were evaluated together, it was concluded that the most suitable 2.5D lattice design was hexagonal.

References

  • I. Merzlikin, A. Zueva, S. Kievskaya, E. Shkoropat, and K. Popov, “The market of air transportation and cargo transportation in the investment strategy of transport enterprises,” Transportation Research Procedia, vol. 63, pp. 1420–1430, 2022, doi: 10.1016/j.trpro.2022.06.153.
  • J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M. W. P. Savelsbergh, “Chapter 7 Transportation on Demand,” in Handbooks in Operations Research and Management Science, vol. 14, C. Barnhart and G. Laporte, Eds., Elsevier, 2007, pp. 429–466, doi: 10.1016/S0927-0507(06)14007-4.
  • T. Young, Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations. Wiley, 2017.
  • K. Seymour, M. Held, G. Georges, and K. Boulouchos, “Fuel Estimation in Air Transportation: Modeling global fuel consumption for commercial aviation,” Transportation Research Part D: Transport and Environment, vol. 88, p. 102528, Nov. 2020, doi: 10.1016/j.trd.2020.102528.
  • D. A. Senzig, G. G. Fleming, and R. J. Iovinelli, “Modeling of Terminal-Area Airplane Fuel Consumption,” Journal of Aircraft, vol. 46, no. 4, pp. 1089–1093, 2009, doi: 10.2514/1.42025.
  • A. K. Kundu, Aircraft Design. in Cambridge Aerospace Series. Cambridge University Press, 2010. doi: 10.1017/CBO9780511844652.
  • A. F. Simões and R. Schaeffer, “The Brazilian air transportation sector in the context of global climate change: CO2 emissions and mitigation alternatives,” Energy Conversion and Man-agement, vol. 46, no. 4, pp. 501–513, Mar. 2005, doi: 10.1016/j.enconman.2004.06.017.
  • L. M. Amoo, “On the design and structural analysis of jet engine fan blade structures,” Pro-gress in Aerospace Sciences, vol. 60, pp. 1–11, Jul. 2013, doi: 10.1016/j.paerosci.2012.08.002.
  • R. Royce, The Jet Engine, 5th Edition. Wiley, 2015.
  • Y. Kroyan, M. Wojcieszyk, O. Kaario, and M. Larmi, “Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines,” Energy, vol. 255, p. 124790, 2022, doi: 10.1016/j.energy.2022.124790.
  • R. Viswanathan, D. Gandy, and K. Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, Materials Park, OH: ASM International, 2004..
  • S. G. U. Chandrasekhar and L.-J. Yang, Eds., Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018), vol. 1. Springer, 2019, doi: 10.1007/978-981-13-2697-4.
  • J. R. Davis, ASM Specialty Handbook: Heat-Resistant Materials. ASM International, 1997.
  • K. K. Rathod, P. G. Patil, and P. R. Patel, “Heat Treatment of Steam-Turbine Rotor Blade by Induction Hardening,” International Journal of Scientific & Engineering Research, vol. 8, no. 3, pp. 694–697, 2017.
  • M. Y. Abdollahzadeh Jamalabadi, “Thermal radiation effects on creep behavior of the turbine blade,” Multidiscipline Modeling in Materials and Structures, vol. 12, no. 2, pp. 291–314, Aug. 2016, doi: 10.1108/MMMS-09-2015-0053.
  • T. Gibbons and I. G. Wright, “A review of materials for gas turbines firing syngas fuels,” Oak Ridge National Laboratory, Oak Ridge, TN, Tech. Rep., May 2009, doi: 10.2172/970884.
  • J.-C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed. CRC Press, 2012. doi: 10.1201/b13616.
  • E. F. Schum, R. E. Oldrieve, F. S. Stepka, and L. F. P. Laboratory, “Fabrication and en-durance of air-cooled strut-supported turbine blades with struts cast of X-40 alloy,” National Advisory Committee for Aeronautics, Washington, D.C., Tech. Rep., 1956.
  • D. Cherrared, “Numerical simulation of film cooling a turbine blade through a row of holes,” Journal of Thermal Engineering, vol. 3, no. 2, pp. 1110–1120, 2017, doi: 10.18186/thermal.298609.
  • T. Verstraete, S. Amaral, R. Van den Braembussche, and T. Arts, “Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization,” Journal of Turbomachinery, vol. 132, no. 2, Apr. 2010, doi: 10.1115/1.3104615.
  • Q. Yin, Z. Liu, B. Wang, K. Ma, Y. Cai, and Q. Song, “Improving thermal conductivity of Inconel 718 through thermoelectric coupling to reduce cutting temperature,” Journal of Ma-terials Research and Technology, vol. 20, pp. 950–957, Sep. 2022, doi: 10.1016/j.jmrt.2022.07.124.
  • M. Yadav, A. Misra, A. Malhotra, and N. Kumar, “Design and analysis of a high-pressure turbine blade in a jet engine using advanced materials,” Materials Today: Proceedings, vol. 25, pp. 639–645, 2020, doi: 10.1016/j.matpr.2019.07.530.
  • M. Bahari, M. Rostami, A. Entezari, S. Ghahremani, and M. Etminan, “A comparative analysis and optimization of two supersonic hybrid SOFC and turbine-less jet engine pro-pulsion system for UAV,” Fuel, vol. 319, p. 123796, Jul. 2022, doi: 10.1016/j.fuel.2022.123796.
  • Z. Ji, J. Qin, K. Cheng, S. Zhang, and P. Dong, “Performance assessment of a solid oxide fuel cell turbine-less jet hybrid engine integrated with a fan and afterburners,” Aerospace Science and Technology, vol. 116, p. 106800, Sep. 2021, doi: 10.1016/j.ast.2021.106800.
  • O. Balli, “Turbine wheel fracture analysis of Jet Fuel Starter (JFS) engine used on F16 mil-itary aircraft,” Engineering Failure Analysis, vol. 128, p. 105616, Oct. 2021, doi: 10.1016/j.engfailanal.2021.105616.
  • P. Jiang, M. Rifat, and S. Basu, “Impact of surface roughness and porosity on lattice struc-tures fabricated by additive manufacturing – A computational study,” Procedia Manufac-turing, vol. 48, pp. 781–789, 2020, doi: 10.1016/j.promfg.2020.05.114.
  • M. G. Gok, “Creation and finite-element analysis of multi-lattice structure design in hip stem implant to reduce the stress-shielding effect,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 236, no. 2, pp. 429–439, 2022, doi: 10.1177/14644207211046200.
  • D. Kang, S. Park, Y. Son, S. Yeon, S. H. Kim, and I. Kim, “Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process,” Materials and Design, vol. 175, p. 107786, 2019, doi: 10.1016/j.matdes.2019.107786.
  • M. G. Gok and O. Cihan, “Numerical analysis of the use of different lattice designs and materials for reciprocating engine connecting rods,” Scientia Iranica, vol. 29, no. 3, pp. 123–134, May 2022, doi: 10.24200/sci.2022.59400.6216.
  • R. Alkentar, F. Máté, and T. Mankovits, “Investigation of the Performance of Ti6Al4V Lattice Structures Designed for Biomedical Implants Using the Finite Element Method,” Materials, vol. 15, no. 18, p. 6335, Sep. 2022, doi: 10.3390/ma15186335.
  • E. A. A. Alkebsi, H. Ameddah, T. Outtas, and A. Almutawakel, “Design of graded lattice structures in turbine blades using topology optimization,” International Journal of Computer Integrated Manufacturing, vol. 34, no. 4, pp. 370–384, 2021, doi: 10.1080/0951192X.2021.1872106.
  • D. B. Witkin, D. Patel, T. V Albright, G. E. Bean, and T. McLouth, “Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion,” International Journal of Fatigue, vol. 132, p. 105392, Mar. 2020, doi: 10.1016/j.ijfatigue.2019.105392.
  • S. Hussain, W. A. W. Ghopa, S. S. K. Singh, A. H. Azman, and S. Abdullah, “Experimental and Numerical Vibration Analysis of Octet-Truss-Lattice-Based Gas Turbine Blades,” Metals, vol. 12, no. 2, 2022, doi: 10.3390/met12020340.
  • Y. Zhao, K. Li, M. Gargani, and W. Xiong, “A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization,” Additive Manufacturing, vol. 36, p. 101404, Dec. 2020, doi: 10.1016/j.addma.2020.101404.
  • A. Ikpe, O. Efe-Ononeme, and G. Ariavie, “Thermo-Structural Analysis of First Stage Gas Turbine Rotor Blade Materials for Optimum Service Performance,” International Journal Of Engineering & Applied Sciences, vol. 10, no. 2, pp. 118–130, 2018, doi: 10.24107/ijeas.447650.
  • O. Ononeme-Efe, A. Ikpe, and G. Ariave, “Modal Analysis of Conventional Gas Turbine Blade Materials (Udimet 500 and IN738) For Industrial Applications,” Journal of Engineering Technology and Applied Sciences, vol. 3, no. 2, pp. 119–133, Aug. 2018, doi: 10.30931/jetas.452857.
  • S. Alsarayefi and B. Mohamad, “Effects of transient load on gas turbine blade stress and fatigue life characteristic,” International Journal of Mechanical Research and Applications in Engineering (IJMRAE), vol. 10, no. 1, pp. 37–44, 2018.
  • G. Chintala and P. Gudimetla, “Optimum Material Evaluation for Gas Turbine Blade Using Reverse Engineering (RE) and FEA,” Procedia Engineering, vol. 97, pp. 1332–1340, 2014, doi: 10.1016/j.proeng.2014.12.413.
There are 38 citations in total.

Details

Primary Language English
Subjects Computational Material Sciences, Metals and Alloy Materials
Journal Section Articles
Authors

Mustafa Güven Gök 0000-0002-5959-0549

Halil İbrahim Kurt 0000-0002-5992-8853

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date February 20, 2025
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Gök, M. G., & Kurt, H. İ. (2025). Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades. International Journal of Pure and Applied Sciences, 11(1), 240-251. https://doi.org/10.29132/ijpas.1643610
AMA Gök MG, Kurt Hİ. Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades. International Journal of Pure and Applied Sciences. June 2025;11(1):240-251. doi:10.29132/ijpas.1643610
Chicago Gök, Mustafa Güven, and Halil İbrahim Kurt. “Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades”. International Journal of Pure and Applied Sciences 11, no. 1 (June 2025): 240-51. https://doi.org/10.29132/ijpas.1643610.
EndNote Gök MG, Kurt Hİ (June 1, 2025) Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades. International Journal of Pure and Applied Sciences 11 1 240–251.
IEEE M. G. Gök and H. İ. Kurt, “Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades”, International Journal of Pure and Applied Sciences, vol. 11, no. 1, pp. 240–251, 2025, doi: 10.29132/ijpas.1643610.
ISNAD Gök, Mustafa Güven - Kurt, Halil İbrahim. “Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades”. International Journal of Pure and Applied Sciences 11/1 (June2025), 240-251. https://doi.org/10.29132/ijpas.1643610.
JAMA Gök MG, Kurt Hİ. Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades. International Journal of Pure and Applied Sciences. 2025;11:240–251.
MLA Gök, Mustafa Güven and Halil İbrahim Kurt. “Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades”. International Journal of Pure and Applied Sciences, vol. 11, no. 1, 2025, pp. 240-51, doi:10.29132/ijpas.1643610.
Vancouver Gök MG, Kurt Hİ. Design And Finite Element Analysis Of 2.5D Lattice Structures For Internal Air-Cooled Gas Turbine Blades. International Journal of Pure and Applied Sciences. 2025;11(1):240-51.

154501544915448154471544615445