BibTex RIS Cite

Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source

Year 2013, Volume: 3 Issue: 3, 717 - 724, 01.09.2013

Abstract

In recent years, Gallium Antimonide (GaSb), which has smallest bandgap among III-V semiconductors family, became the subject of extensive investigations in the field of thermophotovoltaic (TPV) converters, because of the recent improvements in optoelectronic technology. In this paper, we investigated the heat to electricity conversion efficiency of a GaSb radioisotope thermophotovoltaic (RTPV) converter, taking account of the photons with energy below the cells bandgap using a comprehensive analytical process. The results show that a conversion efficiency greater than 28% can be obtained for radiator’s temperature of 1600k, at ambiant temperature. This efficiency will decrease as the cell temperature increase.

References

  • A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, England, V.M. Andreev, A.S. Vlasov, V.P. Khvostikov, O.A. Khvostikova, P.Y. Gazaryan, S.V. Sorokina, N.A. Sadchikov, “Solar thermophotovoltaic convertors based on tungsten emitters”, J. Sol. Energy Eng. – Trans. ASME , pp. 298-303, 2007.
  • A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, M. Mazzer, “The challenge of thermophotovoltaic applications”, Semiconductor Science and Technology. Vol. 18, pp. 174-183, 2003. for
  • Donald L. Chubb, Fundamentals of thermophotovoltaic energy conversion, First Edition, Elsevier, 2007.
  • T. Bauer, Thermophotovoltaics Basic principles and critical aspects of system design, Springer, 2011.
  • W. M. Yang, S. K. Chou, C. Shu, Z. W. Li, H. Xue, “Research generators”, Solar Energy Materials & Solar Cells, Vol. , pp. 95-104, 2003. power
  • S. Malvadkar and E. Parsons, “Analysis of Potential Power Sources for Inspection Robots in Natural Gas Transmission Pipelines”, Topical Report DE-FC26- NT41155, National Energy Technology Laboratory, May 7, 2007.
  • A. Schock, M. Mulcunda, C. Or, V. Kumar, and G. Summers, “Design, Analysis, and Optimization of a Radioisotope Thermo-photovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Mission”, Acta Astronautica, Vol. 37, pp. 21-57, 1995.
  • A. Kovacs and P. Janhunen, “Thermo-photovoltaic spacecraft electricity generation”, Astrophys. Space Sci. Trans., 6, pp. 19-26, 2010.
  • V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng and S. Ermer, “Thermophotovoltaic Energy Conversion for Space”, The journal of physical chemistry, C, Vol. 112, pp. 7841-7845, 2008.
  • S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley, Interscience, 2006.
  • Y. Wang, N.F.Chen, X.W.Zhang, T.M.Huang, Z.G.Yin, Y.S.Wang, H.Zhang, “Evaluation of thermal radiation thermophotovoltaic cell based on an analytical absorption coefficient model”, Solar Energy Materials & Solar Cells, Vol. 94, pp. 1704-1710, 2010. of GaSb
  • X. Peng, X. Guo, B. Zhang , X. Li, X. Zhao, X. Dong, W. Zheng, G. Du, “Numerical analysis of the short-circuit thermophotovoltaic Technology, Vol. 52, pp. 152-157, 2009. GaInAsSb diodes”, Infrared Physics & B. Vinter, Optoélectronique,
  • A. Chandola, R. Pino and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb”, Semiconductor Science and Technology, Vol. 20, pp. 893, 2005.
  • L. L. Li, W. Xu, Z. Zeng, A. R. Wright, C. Zhang, J. Zhang, Y. L. Shi, “Mid-infrared absorption by short- period InAs/GaSb type II superlattices”, Microelectronics Journal, Vol. 40, pp. 815-817, 2009. Ioffe Physico-Technical http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaSb/band str.html Institute:
  • A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, “Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3”, Applied Physics Letters, Vol. , Issue 14, pp. 143502-143502-3 , 2010.
  • V. Andreev, V. Khvostikov, and A. Vlasov, “Solar Thermophotovoltaics”, Springer Series in Optical Sciences, Vol. 130/2007, pp.175-197, 2007.
  • K. Qiu, A. C. S. Hayden, M. G. Mauk, O. V. Sulima, “Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources“, Solar Energy Materials & Solar Cells, Vol. 90, pp. 68- , 2006.»
Year 2013, Volume: 3 Issue: 3, 717 - 724, 01.09.2013

Abstract

References

  • A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, England, V.M. Andreev, A.S. Vlasov, V.P. Khvostikov, O.A. Khvostikova, P.Y. Gazaryan, S.V. Sorokina, N.A. Sadchikov, “Solar thermophotovoltaic convertors based on tungsten emitters”, J. Sol. Energy Eng. – Trans. ASME , pp. 298-303, 2007.
  • A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, M. Mazzer, “The challenge of thermophotovoltaic applications”, Semiconductor Science and Technology. Vol. 18, pp. 174-183, 2003. for
  • Donald L. Chubb, Fundamentals of thermophotovoltaic energy conversion, First Edition, Elsevier, 2007.
  • T. Bauer, Thermophotovoltaics Basic principles and critical aspects of system design, Springer, 2011.
  • W. M. Yang, S. K. Chou, C. Shu, Z. W. Li, H. Xue, “Research generators”, Solar Energy Materials & Solar Cells, Vol. , pp. 95-104, 2003. power
  • S. Malvadkar and E. Parsons, “Analysis of Potential Power Sources for Inspection Robots in Natural Gas Transmission Pipelines”, Topical Report DE-FC26- NT41155, National Energy Technology Laboratory, May 7, 2007.
  • A. Schock, M. Mulcunda, C. Or, V. Kumar, and G. Summers, “Design, Analysis, and Optimization of a Radioisotope Thermo-photovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Mission”, Acta Astronautica, Vol. 37, pp. 21-57, 1995.
  • A. Kovacs and P. Janhunen, “Thermo-photovoltaic spacecraft electricity generation”, Astrophys. Space Sci. Trans., 6, pp. 19-26, 2010.
  • V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng and S. Ermer, “Thermophotovoltaic Energy Conversion for Space”, The journal of physical chemistry, C, Vol. 112, pp. 7841-7845, 2008.
  • S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley, Interscience, 2006.
  • Y. Wang, N.F.Chen, X.W.Zhang, T.M.Huang, Z.G.Yin, Y.S.Wang, H.Zhang, “Evaluation of thermal radiation thermophotovoltaic cell based on an analytical absorption coefficient model”, Solar Energy Materials & Solar Cells, Vol. 94, pp. 1704-1710, 2010. of GaSb
  • X. Peng, X. Guo, B. Zhang , X. Li, X. Zhao, X. Dong, W. Zheng, G. Du, “Numerical analysis of the short-circuit thermophotovoltaic Technology, Vol. 52, pp. 152-157, 2009. GaInAsSb diodes”, Infrared Physics & B. Vinter, Optoélectronique,
  • A. Chandola, R. Pino and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb”, Semiconductor Science and Technology, Vol. 20, pp. 893, 2005.
  • L. L. Li, W. Xu, Z. Zeng, A. R. Wright, C. Zhang, J. Zhang, Y. L. Shi, “Mid-infrared absorption by short- period InAs/GaSb type II superlattices”, Microelectronics Journal, Vol. 40, pp. 815-817, 2009. Ioffe Physico-Technical http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaSb/band str.html Institute:
  • A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, “Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3”, Applied Physics Letters, Vol. , Issue 14, pp. 143502-143502-3 , 2010.
  • V. Andreev, V. Khvostikov, and A. Vlasov, “Solar Thermophotovoltaics”, Springer Series in Optical Sciences, Vol. 130/2007, pp.175-197, 2007.
  • K. Qiu, A. C. S. Hayden, M. G. Mauk, O. V. Sulima, “Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources“, Solar Energy Materials & Solar Cells, Vol. 90, pp. 68- , 2006.»
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Faycal Bouzid This is me

Publication Date September 1, 2013
Published in Issue Year 2013 Volume: 3 Issue: 3

Cite

APA Bouzid, F. (2013). Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source. International Journal Of Renewable Energy Research, 3(3), 717-724.
AMA Bouzid F. Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source. International Journal Of Renewable Energy Research. September 2013;3(3):717-724.
Chicago Bouzid, Faycal. “Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source”. International Journal Of Renewable Energy Research 3, no. 3 (September 2013): 717-24.
EndNote Bouzid F (September 1, 2013) Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source. International Journal Of Renewable Energy Research 3 3 717–724.
IEEE F. Bouzid, “Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source”, International Journal Of Renewable Energy Research, vol. 3, no. 3, pp. 717–724, 2013.
ISNAD Bouzid, Faycal. “Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source”. International Journal Of Renewable Energy Research 3/3 (September 2013), 717-724.
JAMA Bouzid F. Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source. International Journal Of Renewable Energy Research. 2013;3:717–724.
MLA Bouzid, Faycal. “Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source”. International Journal Of Renewable Energy Research, vol. 3, no. 3, 2013, pp. 717-24.
Vancouver Bouzid F. Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source. International Journal Of Renewable Energy Research. 2013;3(3):717-24.