BibTex RIS Cite

MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter

Year 2013, Volume: 3 Issue: 1, 186 - 191, 01.03.2013

Abstract

Abstract─ In this paper, the MPPT (Maximum Power Point Tracking) with DC submersible solar pump is implemented in MATLAB with output sensing direct control method using Cuk converter. The simulated system consists of the BP SX 150S photovoltaic (PV) module, the ideal Cuk converter, the MPPT control, and the dc submersible solar pump. The selection of the purturb & observe (P&O) algorithm permits the use of output sensing direct control method which eliminates the input voltage and current sensors. The direct control method adjusts of duty cycle within the MPP tracking algorithm. The way to adjust the duty cycle is totally based on the theory of load matching. When the value of Rload (Load of DC submersible pump) matches with that of Ropt, the maximum power transfer from PV to the load will occur. These two are, however, independent and rarely matches in practice. The goal of the MPPT is to match the impedance of load to the optimal impedance of PV.

References

  • Azadeh Safari and Saad Mekhilef, “Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter,” IEEE Trans. on Ind. Electron., vol. 58, no. 4, pp. 1154- , April 2011.
  • R.-J. Wai, W.-H. Wang, and C.-Y. Lin, “High- performance stand-alone photovoltaic generation MPPT technique for photovoltaic-based Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and C. Y. Won, “A real maximum power tracking method for mismatching compensation in PV array under partially shaded conditions,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1001-1009, Apr. 2011.
  • L. Zhang, W. G. Hurley, and W. H. Wolfle, “A new approach to acieve maximum power point tracking for PV system with a variable inductor,” IEEE Trans. Power Electron. Vol. 26, no. 4, pp. 1031-1037, Apr. 2011.
  • L. Zhou, Y. Chen, and F. Jia, “New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1038-1048, apr. 2011.
  • S. Chun and A. Kwasinski, “Analysis of classical root-finding methods applied to digital maximum power point tracking for sustainable photovoltaic energy generation,” IEEE Trans. Power Electron., vol. 26. No. , pp. 3730-3743, Dec. 2011.
  • T. L. Nguyen and K. S. Low, “A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic system,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3456-3467. Oct. 2010.
  • S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson, “Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control,” IEEE Trans. Power Electron., vol. 24, no. 10. Pp. 2531-2540, oct. 2010.
  • C. Hua, J. Lin, and C. Shen, “Implementation of a DSP controlled photovoltaic system with peak power tracking,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 107, Feb. 1998.
  • T. Noguchi, S. Togashi, and R. Nakamoto, “Short- current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 223, Feb. 2002.
  • N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT corresponding to weather conditions for PV generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1065, Jun. 2006. searching for parameters
  • N. Femia, G. Petrone, G. Spagnuolo, andM. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
  • N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, andM. Vitelli, “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 934-950, Jul. 2007.
  • E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 46-54, Jan. A. Pandey, N. Dasgupta, and A. K. Mukerjee, “Design issues in implementing MPPT for improved tracking and dynamic performance,” in Proc. 32nd IECON, Nov. 2006, pp. 4387-4391.
  • M. Vaigundamoorthi and R. Ramesh, “ZVS-PWM active-clamping modified Cuk converter based MPPT for solar PV modules,” European Journal of Scientific Research, vol. 58, no. 3, pp. 305-315, 2011.
  • Joe-Air Jiang, Tsong-Liang Huang, Ying-Tung Hsiao and Chia-Hong Chen, “Maximum Power Tracking for Photovoltaic Power Systems” Tamkang Journal of Science and Engineering, Vol. 8, No 2, pp. 147-153, Trishan Esram, Patrick L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques” IEEE Trans. on energy conversion, vol. 22, no. 2, pp.439-449, June 2007
  • Durán,E J., Galán, M., Sidrach-de-Cardona, Andşjar J.M, “Measuring the I-V Curve of Photovoltaic generators-analyzing topologies” IEEE ind. Eelectron. magazine, pp.4-14, Sept. 2009 dc dc converter
  • Tse,K.K., Ho,M.T., Henry S.-H., Chung., Ron Hui,S.Y, “A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation” IEEE Trans. on power Electron., vol. 17, no. 6, pp .980- , Nov. 2002.
  • Henry Shu-Hung Chung., Tse,K.K., Ron Hui,S.Y., Mok,C.M.,Ho,M.T, “A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter” IEEE Trans. on power electron., vol. 18, no. 3, pp.717-724. May 2003.
  • BP Solar BP SX150S - 150W Multi-crystalline Photovoltaic Module Datasheet, 2001.
  • Akihiro Oi, “Design and simulation of photovoltaic water pumping system,” Sept. 2005.
  • Taufik, EE410 Power Electronics I - Lecture Note Cal Poly State University, San Luis Obispo, 2004
  • D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 476- 490, Jul. 1991.
  • K. K. Tse, B. M. T. Ho, H. S.-H. Chung, and S. Y. R. Hui, “A comparative study of maximum-power-point trackers for photovoltaic panels using switching- frequency modulation scheme,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 410-418, Apr. 2004.
  • I.-S. Kim, M.-B. Kim, and M.-J. Youn, “New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid- connected photovoltaic system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1027-1035, Jun. 2006.
  • W. Xiao,M. G. J. Lind,W. G. Dunford, and A. Capel, “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1017-1026, Jun. 2006.
  • M. K. Gupta, Rohit Jain, “Design and simulation of photovoltaic system using advance MPPT”, International Journal of Advance Technology & Engg. Research, Vol. , pp. 73-76, July 2012
  • Kyocera Solar Inc. Solar Water Pump Applications Guide 2001
Year 2013, Volume: 3 Issue: 1, 186 - 191, 01.03.2013

Abstract

References

  • Azadeh Safari and Saad Mekhilef, “Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter,” IEEE Trans. on Ind. Electron., vol. 58, no. 4, pp. 1154- , April 2011.
  • R.-J. Wai, W.-H. Wang, and C.-Y. Lin, “High- performance stand-alone photovoltaic generation MPPT technique for photovoltaic-based Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and C. Y. Won, “A real maximum power tracking method for mismatching compensation in PV array under partially shaded conditions,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1001-1009, Apr. 2011.
  • L. Zhang, W. G. Hurley, and W. H. Wolfle, “A new approach to acieve maximum power point tracking for PV system with a variable inductor,” IEEE Trans. Power Electron. Vol. 26, no. 4, pp. 1031-1037, Apr. 2011.
  • L. Zhou, Y. Chen, and F. Jia, “New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1038-1048, apr. 2011.
  • S. Chun and A. Kwasinski, “Analysis of classical root-finding methods applied to digital maximum power point tracking for sustainable photovoltaic energy generation,” IEEE Trans. Power Electron., vol. 26. No. , pp. 3730-3743, Dec. 2011.
  • T. L. Nguyen and K. S. Low, “A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic system,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3456-3467. Oct. 2010.
  • S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson, “Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control,” IEEE Trans. Power Electron., vol. 24, no. 10. Pp. 2531-2540, oct. 2010.
  • C. Hua, J. Lin, and C. Shen, “Implementation of a DSP controlled photovoltaic system with peak power tracking,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 107, Feb. 1998.
  • T. Noguchi, S. Togashi, and R. Nakamoto, “Short- current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 223, Feb. 2002.
  • N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT corresponding to weather conditions for PV generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1065, Jun. 2006. searching for parameters
  • N. Femia, G. Petrone, G. Spagnuolo, andM. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
  • N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, andM. Vitelli, “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 934-950, Jul. 2007.
  • E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 46-54, Jan. A. Pandey, N. Dasgupta, and A. K. Mukerjee, “Design issues in implementing MPPT for improved tracking and dynamic performance,” in Proc. 32nd IECON, Nov. 2006, pp. 4387-4391.
  • M. Vaigundamoorthi and R. Ramesh, “ZVS-PWM active-clamping modified Cuk converter based MPPT for solar PV modules,” European Journal of Scientific Research, vol. 58, no. 3, pp. 305-315, 2011.
  • Joe-Air Jiang, Tsong-Liang Huang, Ying-Tung Hsiao and Chia-Hong Chen, “Maximum Power Tracking for Photovoltaic Power Systems” Tamkang Journal of Science and Engineering, Vol. 8, No 2, pp. 147-153, Trishan Esram, Patrick L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques” IEEE Trans. on energy conversion, vol. 22, no. 2, pp.439-449, June 2007
  • Durán,E J., Galán, M., Sidrach-de-Cardona, Andşjar J.M, “Measuring the I-V Curve of Photovoltaic generators-analyzing topologies” IEEE ind. Eelectron. magazine, pp.4-14, Sept. 2009 dc dc converter
  • Tse,K.K., Ho,M.T., Henry S.-H., Chung., Ron Hui,S.Y, “A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation” IEEE Trans. on power Electron., vol. 17, no. 6, pp .980- , Nov. 2002.
  • Henry Shu-Hung Chung., Tse,K.K., Ron Hui,S.Y., Mok,C.M.,Ho,M.T, “A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter” IEEE Trans. on power electron., vol. 18, no. 3, pp.717-724. May 2003.
  • BP Solar BP SX150S - 150W Multi-crystalline Photovoltaic Module Datasheet, 2001.
  • Akihiro Oi, “Design and simulation of photovoltaic water pumping system,” Sept. 2005.
  • Taufik, EE410 Power Electronics I - Lecture Note Cal Poly State University, San Luis Obispo, 2004
  • D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 476- 490, Jul. 1991.
  • K. K. Tse, B. M. T. Ho, H. S.-H. Chung, and S. Y. R. Hui, “A comparative study of maximum-power-point trackers for photovoltaic panels using switching- frequency modulation scheme,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 410-418, Apr. 2004.
  • I.-S. Kim, M.-B. Kim, and M.-J. Youn, “New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid- connected photovoltaic system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1027-1035, Jun. 2006.
  • W. Xiao,M. G. J. Lind,W. G. Dunford, and A. Capel, “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1017-1026, Jun. 2006.
  • M. K. Gupta, Rohit Jain, “Design and simulation of photovoltaic system using advance MPPT”, International Journal of Advance Technology & Engg. Research, Vol. , pp. 73-76, July 2012
  • Kyocera Solar Inc. Solar Water Pump Applications Guide 2001
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mukesh Kumar Gupta This is me

Publication Date March 1, 2013
Published in Issue Year 2013 Volume: 3 Issue: 1

Cite

APA Gupta, M. K. (2013). MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter. International Journal Of Renewable Energy Research, 3(1), 186-191.
AMA Gupta MK. MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter. International Journal Of Renewable Energy Research. March 2013;3(1):186-191.
Chicago Gupta, Mukesh Kumar. “MPPT Simulation With DC Submersible Solar Pump Using Output Sensing Direct Control Method and Cuk Converter”. International Journal Of Renewable Energy Research 3, no. 1 (March 2013): 186-91.
EndNote Gupta MK (March 1, 2013) MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter. International Journal Of Renewable Energy Research 3 1 186–191.
IEEE M. K. Gupta, “MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter”, International Journal Of Renewable Energy Research, vol. 3, no. 1, pp. 186–191, 2013.
ISNAD Gupta, Mukesh Kumar. “MPPT Simulation With DC Submersible Solar Pump Using Output Sensing Direct Control Method and Cuk Converter”. International Journal Of Renewable Energy Research 3/1 (March 2013), 186-191.
JAMA Gupta MK. MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter. International Journal Of Renewable Energy Research. 2013;3:186–191.
MLA Gupta, Mukesh Kumar. “MPPT Simulation With DC Submersible Solar Pump Using Output Sensing Direct Control Method and Cuk Converter”. International Journal Of Renewable Energy Research, vol. 3, no. 1, 2013, pp. 186-91.
Vancouver Gupta MK. MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter. International Journal Of Renewable Energy Research. 2013;3(1):186-91.