BibTex RIS Cite

Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power

Year 2012, Volume: 2 Issue: 3, 528 - 534, 01.09.2012

Abstract

In this paper, a control of a variable speed wind generator (VSWG) system based on a doubly fed induction machine connected to the network associated to a flywheel energy storage system (FESS) is considered. The maximum power point tracking (MPPT) method, the independent control power of generator, the grid connection, and the control of flywheel energy storage system are studied. The flywheel energy storage system consists of a power electronic converter supplying a squirrel-cage induction machine coupled to a flywheel. This study investigates also, the possibility to compensate the reactive power.  In order to validate the control method and to show the performances of the proposed system, its model is simulated for different operating points.

References

  • C.Belfedal, Commande d'une machine asynchrone à double alimentation en vue de son application dans le domaine de l’énergie éolienne - Etude et Expérimentation , thèse de doctorat en électrotechnique, Université des Sciences et de la Technologie d’Oran Mohamed BOUDIAF, 2007. D.Aouzellag, K.Ghedamsi, E.M.Berkouk, Network
  • Power Flow Control of The Wind Generator, Elsevier, Renewable Energy, inpress, 2009.
  • V. Courtecuisse, Supervision d’une centrale multi sources à base d’éoliennes et de stockage d’énergie connectée au réseau électrique, thèse de doctorat en génie électrique, l’École Nationale Supérieure d'Arts et Métiers, 2008.
  • S.Belfedhal, E.M.Berkouk, Modeling and Control of Wind Power Conversion System with a Flywheel Energy Storage System, EVER’11, Monaco, 2011.
  • S.Belfedhal, E.M.Berkouk, Modeling and Control of Wind Power Conversion System with a Flywheel Energy Storage System, IJRER, Vol.1, No3, pp.152-161, 2011.
  • A. Davigny, Participation aux services système de fermes d’éoliennes à vitesse variable intégrant du stockage inertiel d’énergie, thèse de doctorat en génie électrique, Université des Sciences et Technologies de Lille, 2004.
  • L.Leclercq, Apport du stockage inertiel associé à des éoliennes dans un réseau électrique en vue d’assurer des services systèmes, Thèse de doctorat. Ecole doctorale sciences pour l’ingénieur, Université des Sciences et Technologie de Lille, 2004.
  • T.Zhou, Commande et Supervision Energétique d’un Générateur Hybride Actif Eolien incluant du Stockage sous forme d’Hydrogène et des Super-Condensateurs pour l’Intégration dans le Système Electrique d’un Micro Réseau, thèse de doctorat en Génie électrique, Ecole Centrale de Lille,2009.
  • G.Cimuca, Système inertiel de stockage d'énergie associé à des générateurs éoliens, Thèse de doctorat, université de Lille, 2004. G.Esmaili, Application of Advanced Power
  • Electronics in Renewable Energy Sources and Hybrid Generating Systems, Degree Doctor of Philosophy thesis, Ohio State University, 2006.
  • H. E. M.LOPEZ, Maximum Power Tracking Control Scheme for Wind Generator Systems, Master of Science in Electrical Engineering, Texas A&M University, 2007.
  • S.EL-Aimani, B, Françoi, F. Minne, B.Robyns, “Modeling and simulation of doubly fed induction generators for variable speed wind turbines integrated in a distribution network” 10th European conference on power electronics and applications, (EPE), Toulouse, France, 2-4 September 2003.
  • Nicholas P. W. Strachan, J.Dragan, Improving Wind Power Quality using an Integrated Wind Energy Conversion and Storage System (WECSS), IEEE 2009.
  • T.Ghennam, E.M.Berkouk, B.Francois, Modeling and Control of a Doubly Fed Induction Generator (DFIG) Based Wind Conversion System, IEEE transaction, 2009. Appendix Parameters
  • Blades number: 3, R=35.25 m, G=90, J (Turbine+DFIG) = g/m2, =1.22Kg/m3, PDFIG=1.5MW, sR=0.012Ω, Rr=0.021Ω, Msr=0.035 H, sL =0.035+2.037.10-4 H, rL =0.035+1.75.10-4 H, P=2, f=0.0024 N.m.s/rd, Vs=690V. IM and FESS parameters: vs=690V, fP =450kW, Rs IM=0.051 Ω, R s IM r IM=0.051 Ω, L
Year 2012, Volume: 2 Issue: 3, 528 - 534, 01.09.2012

Abstract

References

  • C.Belfedal, Commande d'une machine asynchrone à double alimentation en vue de son application dans le domaine de l’énergie éolienne - Etude et Expérimentation , thèse de doctorat en électrotechnique, Université des Sciences et de la Technologie d’Oran Mohamed BOUDIAF, 2007. D.Aouzellag, K.Ghedamsi, E.M.Berkouk, Network
  • Power Flow Control of The Wind Generator, Elsevier, Renewable Energy, inpress, 2009.
  • V. Courtecuisse, Supervision d’une centrale multi sources à base d’éoliennes et de stockage d’énergie connectée au réseau électrique, thèse de doctorat en génie électrique, l’École Nationale Supérieure d'Arts et Métiers, 2008.
  • S.Belfedhal, E.M.Berkouk, Modeling and Control of Wind Power Conversion System with a Flywheel Energy Storage System, EVER’11, Monaco, 2011.
  • S.Belfedhal, E.M.Berkouk, Modeling and Control of Wind Power Conversion System with a Flywheel Energy Storage System, IJRER, Vol.1, No3, pp.152-161, 2011.
  • A. Davigny, Participation aux services système de fermes d’éoliennes à vitesse variable intégrant du stockage inertiel d’énergie, thèse de doctorat en génie électrique, Université des Sciences et Technologies de Lille, 2004.
  • L.Leclercq, Apport du stockage inertiel associé à des éoliennes dans un réseau électrique en vue d’assurer des services systèmes, Thèse de doctorat. Ecole doctorale sciences pour l’ingénieur, Université des Sciences et Technologie de Lille, 2004.
  • T.Zhou, Commande et Supervision Energétique d’un Générateur Hybride Actif Eolien incluant du Stockage sous forme d’Hydrogène et des Super-Condensateurs pour l’Intégration dans le Système Electrique d’un Micro Réseau, thèse de doctorat en Génie électrique, Ecole Centrale de Lille,2009.
  • G.Cimuca, Système inertiel de stockage d'énergie associé à des générateurs éoliens, Thèse de doctorat, université de Lille, 2004. G.Esmaili, Application of Advanced Power
  • Electronics in Renewable Energy Sources and Hybrid Generating Systems, Degree Doctor of Philosophy thesis, Ohio State University, 2006.
  • H. E. M.LOPEZ, Maximum Power Tracking Control Scheme for Wind Generator Systems, Master of Science in Electrical Engineering, Texas A&M University, 2007.
  • S.EL-Aimani, B, Françoi, F. Minne, B.Robyns, “Modeling and simulation of doubly fed induction generators for variable speed wind turbines integrated in a distribution network” 10th European conference on power electronics and applications, (EPE), Toulouse, France, 2-4 September 2003.
  • Nicholas P. W. Strachan, J.Dragan, Improving Wind Power Quality using an Integrated Wind Energy Conversion and Storage System (WECSS), IEEE 2009.
  • T.Ghennam, E.M.Berkouk, B.Francois, Modeling and Control of a Doubly Fed Induction Generator (DFIG) Based Wind Conversion System, IEEE transaction, 2009. Appendix Parameters
  • Blades number: 3, R=35.25 m, G=90, J (Turbine+DFIG) = g/m2, =1.22Kg/m3, PDFIG=1.5MW, sR=0.012Ω, Rr=0.021Ω, Msr=0.035 H, sL =0.035+2.037.10-4 H, rL =0.035+1.75.10-4 H, P=2, f=0.0024 N.m.s/rd, Vs=690V. IM and FESS parameters: vs=690V, fP =450kW, Rs IM=0.051 Ω, R s IM r IM=0.051 Ω, L
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Seifeddine Belfedhal This is me

EL-Madjid Berkouk This is me

Y. Meslem This is me

Youcef Soufi This is me

Publication Date September 1, 2012
Published in Issue Year 2012 Volume: 2 Issue: 3

Cite

APA Belfedhal, S., Berkouk, E.-M., Meslem, Y., Soufi, Y. (2012). Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power. International Journal Of Renewable Energy Research, 2(3), 528-534.
AMA Belfedhal S, Berkouk EM, Meslem Y, Soufi Y. Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power. International Journal Of Renewable Energy Research. September 2012;2(3):528-534.
Chicago Belfedhal, Seifeddine, EL-Madjid Berkouk, Y. Meslem, and Youcef Soufi. “Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power”. International Journal Of Renewable Energy Research 2, no. 3 (September 2012): 528-34.
EndNote Belfedhal S, Berkouk E-M, Meslem Y, Soufi Y (September 1, 2012) Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power. International Journal Of Renewable Energy Research 2 3 528–534.
IEEE S. Belfedhal, E.-M. Berkouk, Y. Meslem, and Y. Soufi, “Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power”, International Journal Of Renewable Energy Research, vol. 2, no. 3, pp. 528–534, 2012.
ISNAD Belfedhal, Seifeddine et al. “Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power”. International Journal Of Renewable Energy Research 2/3 (September 2012), 528-534.
JAMA Belfedhal S, Berkouk E-M, Meslem Y, Soufi Y. Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power. International Journal Of Renewable Energy Research. 2012;2:528–534.
MLA Belfedhal, Seifeddine et al. “Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power”. International Journal Of Renewable Energy Research, vol. 2, no. 3, 2012, pp. 528-34.
Vancouver Belfedhal S, Berkouk E-M, Meslem Y, Soufi Y. Modeling and Control of Wind Power Conversion System With a Flywheel Energy Storage System and Compensation of Reactive Power. International Journal Of Renewable Energy Research. 2012;2(3):528-34.