Research Article
BibTex RIS Cite

Emotions on Social Media: A Sentiment Analysis Approach Based on Twitter (X) Data on the Russian-Ukraine War

Year 2023, Volume: 16 Issue: 2, 445 - 459, 31.12.2023
https://doi.org/10.37093/ijsi.1336016

Abstract

Twitter (X) is an important tool that reflects the feelings and attitudes of the public. For this reason, in this study, especially when it comes to events that concern society, Twitter provides an opportunity to both follow the agenda and understand the reactions through instant sharing. Twitter is a social media platform that allows the public to convey their feelings, thoughts, and attitudes to the masses. Twitter provides the opportunity to stay up-to-date and understand reactions through instant posts, especially for social events. In this research, Twitter posts made with the Ukraine hashtag between March 1 and April 30, 2022, during the Russia-Ukraine War, were eliminated with the "war" filter, and the expressions were analyzed using the sentiment analysis method. Various URLs were eliminated, and research was carried out on ten thousand tweets. The tweets obtained were categorized as positive, negative, and neutral. Accordingly, the expressions containing positive, negative, and neutral emotions were analyzed by determining the emotional inferences of the words in the tweets with an artificial intelligence algorithm and then detailed by the researchers with content analysis. In this sense, this study becomes important in understanding how the masses express their reactions through emotional social media platforms and what their emotions are in this process. Therefore, this research can be a clue for the consequences of international war on the masses.

Ethical Statement

The authors declare that this article complies with ethical standards and rules.

Supporting Institution

No financial support was received from any person or institution for the study.

References

  • Adwan, O. M. A. R., Al–Tawil, M., Huneiti, A., Shahin, R., Zayed, A. A., & Al–Dibsi, R. (2020). Twitter sentiment analysis approaches: A survey. International Journal of Emerging Technologies in Learning, 15(15), 79–93. https://doi.org/10.3991/ijet.v15i15.14467
  • Almohaimeed, A. S. (2017). Using tweets sentiment analysis to predict stock market movement (Doctoral dissertation, Auburn University).
  • Appel, O., Chiclana, F., & Carter, J. (2015). Main concepts, state of the art and future research questions in sentiment analysis. Acta Polytechnica Hungarica, 12(3), 87–108. http://dx.doi.org/10.12700/APH.12.3.2015.3.6
  • Aslan, M. (2022). Rusya’nın Ukrayna’ya saldırısının siyasi ve askeri değerlendirmesi [Political and military evaluation of Russia’s attack on Ukraine]. SETA–Perspektif, 332, 1–4. https://setav.org/assets/uploads/2022/02/P332.pdf.
  • Aslan, M. (2023). Rusya–Ukrayna savaşının bir yılı [One year of the Russia–Ukraine war]. Seta.
  • Aydıngün, A. (2022). Rusya–Ukrayna savaşının sosyolojik açıdan tahlili [Sociological analysis of the Russia–Ukraine war] (AVİM Rapor No: 20). Avrasya İncelemeleri Merkezi. Terazi Yayıncılık.
  • Bağcan, S., Tuncay, E., Savaş, S. (2021). Sosyal medyada demokrasiye lider müdahalesini gözlemlemek: 2020 ABD başkanlık seçimlerinde Donal Trump ve Joe Biden’ın tweetlerinin içerik ve duygu analizi açısından incelenmesi [Observing the leader’s intervention to democracy on social media: An analysis of the tweets of Trump and Biden on Twıtter in the 2020 US presidential elections in terms of content and sentiment analysis]. The Turkish Online Journal of Design Art and Communication, 11(3), 1073–1097. https://dergipark.org.tr/tr/pub/tojdac/issue/62647/911077
  • Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer‐Mediated Communication, 13(1), 210–230. https://doi.org/10.1111/j.1083–6101.2007.00393.x
  • Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A., & Van Bavel, J. J. (2017). Emotion shapes the diffusion of moralized content in social networks. Proceedings of the National Academy of Sciences, 114(28), 7313–7318. https://doi.org/10.1073/pnas.1618923114
  • Burke, M., & Develin, M. (2016). Once more with feeling: Supportive responses to social sharing on Facebook. In Proceedings of the 19th ACM Conference on Computer–Supported Cooperative Work & Social Computing (pp. 1462–1474). https://dl.acm.org/doi/proceedings/10.1145/2818048
  • Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent systems, 28(2), 15–21. https://doi.org/10.1109/MIS.2013.30
  • Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
  • Chatterje–Doody, P. N., & Crilley, R. (2019). Making sense of emotions and affective investments in war: RT and the Syrian conflict on YouTube. Media and Communication, 7(3), 167. https://doi.org/10.17645/mac.v7i3.1911
  • Chen, K. (2021). Research on the functions of users’ emotions in social media product design. In E3S Web of Conferences (Vol. 253, p. 02010). EDP Sciences.
  • Chislova, N. M. (2014). Means of expressing the joy emotion in modern Internet communication. Theoretical and applied aspects of linguistics: Com of mat. of II international. Science– pract. conf. of young researcher. Moscow: M.A. Sholokhov Moscow state University for the Humanities.
  • Comito, C. (2023). The role of social media in the battle against COVID-19. In P. Chatterjee & M. Esposito (Eds.), Artificial Intelligence in Healthcare and COVID-19 (pp. 105–124). Academic Press. https://doi.org/10.1016/B978-0-323-90531-2.00002-3
  • Çelikaslan, M. N. (2022). Ukrayna–Rusya savaşı: Avrupalı bir milletin yıkımı [Ukraine–Russia war: the destruction of a European nation]. Türk Yönetim ve Ekonomi Araştırmaları Dergisi, 3(1), 53–65. https://sakajournals.org/ojs/index.php/tjmer/article/view/56
  • Davutoğlu, A. (2010). Stratejik derinlik: Türkiye’nin uluslararası konumu [Strategic depth: Türkiye’s international position]. Küre Yayınları.
  • Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
  • Ekman, P. (1999). Basic Emotions. In T. Dalgleish & M. Power (Eds.), Handbook of Cognition and Emotion (pp. 45–60). John Wiley & Sons.
  • Esuli, A., & Sebastiani, F. (2007). SentiWordNet: A high–coverage lexical resource for opinion mining. Evaluation, 17(1), 1–26. http://nmis.isti.cnr.it/sebastiani/Publications/2007TR02.pdf
  • Fidan, M., & Lokmanoğlu, E. (2023). Sosyal medya savaşlarında yeni bir kavram: Rusya–Ukrayna savaşı özelinde dijital ambargo [A new concept in social media wars: Russia–Ukraine war and digital embargo]. Bilecik Şeyh Edebali University Journal of Social Science, 8(1), 28–38. https://doi.org/10.33905/bseusbed.1200734
  • Fujii, S., Kunii, Y., Nonaka, S., Hamaie, Y., Hino, M., Egawa, S., Kuriyama, S., & Tomita, H. (2023). Real–time prediction of medical demand and mental health status in Ukraine under Russian invasion using tweet analysis. The Tohoku Journal of Experimental Medicine, 259(3), 177–188. https://doi.org/10.1620/tjem.2022.J111
  • Garcia, M. B., & Cunanan–Yabut, A. (2022). Public sentiment and emotion analyses of Twitter data on the 2022 Russian invasion of Ukraine. 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), (pp. 242–247). https://doi.org/10.1109/ICITACEE55701.2022.9924136
  • Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of Twitter sentiment analysis methods. ACM Computing Surveys (CSUR), 49(2), 1–41. https://doi.org/10.1145/2938640
  • Gonçalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013, October). Comparing and combining sentiment analysis methods. In Proceedings of the first ACM conference on Online social networks (pp. 27–38). https://dl.acm.org/doi/10.1145/2512938.2512951
  • Hyvärinen, H., & Beck, R. (2018). Emotions trump facts: The role of emotions in on social media: A literature review. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 1797–1806). http://dx.doi.org/10.24251/HICSS.2018.226
  • Johnson, P. R., & Yang, S. (2009, August). Uses and gratifications of Twitter: An examination of user motives and satisfaction of Twitter use. In Communication Technology Division of the annual convention of the Association for Education in Journalism and Mass Communication in Boston, MA (Vol. 54).
  • Joshi, P. (2017). Artificial intelligence with Python. Packt Publishing Ltd.
  • Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
  • Kasmani, M. F., Sabran, R., & Ramle, N. (2014). Can Twitter be an effective platform for political discourse in Malaysia? A study of #PRU13. Procedia – Social and Behavioral Sciences, 155, 348–355. https://doi.org/10.1016/j.sbspro.2014.10.304
  • Kayıkçı, Ş. (2022). SenDemonNet: Sentiment analysis for demonetization tweets using heuristic deep neural network. Multimedia Tools and Applications, 81(8), 11341-11378. https://doi.org/10.1007/s11042-022-11929-w
  • Kharde, V., & Sonawane, P. (2016). Sentiment analysis of Twitter data: A survey of techniques. International Journal of Computer Applications, 139(11), 5–15. https://doi.org/10.5120/ijca2016908625
  • Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications. https://doi.org/10.4135/9781071878781
  • Lange–Ionatamishvili, E., & Svetoka, S. (2015). Strategic communications and social media in the Russia Ukraine conflict. In K. Geers (Ed.), Cyber war in perspective: Russian aggression against Ukraine (pp. 103–111). NATO Cooperative Cyber Defence Center of Excellence.
  • Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490. http://dx.doi.org/10.1287/mnsc.1030.0136
  • Mæland, B., Brunstad, P., & Mæland, B. (2009). Enduring military boredom: From 1750 to the present. Springer.
  • Malešević, S. (2010). The sociology of war and violence. Cambridge University Press.
  • Malešević, S. (2021). Emotions and warfare: The social dynamics of close–range fighting. In Oxford Research Encyclopedia of Politics. UK.
  • Mallick, P. K. (2022). Ukraine is winning the information war against Russia on social media: But experts say it is far from over. Centre for Land Warfare Studies.
  • Moshagen, M., & Hilbig, B. E. (2022, March 7). Citizens’ psychological reactions following the Russian invasion of the Ukraine: A cross–national study. PsyArXiv. https://doi.org/10.31234/osf.io/teh8y
  • Orehek, E., & Human, L. J. (2016). Self–expression on social media: Do tweets present accurate and positive portraits of ımpulsivity, self–esteem, and attachment style? Personality and Social Psychology Bulletin, 43(1), 60–70. https://doi.org/10.1177/0146167216675332
  • Öztürk, Ş. (2023). Rusya–Ukrayna savaşı üzerinden uluslararası sisteme dair bir değerlendirme [An assessment on the internatıonal system over the Russia–Ukraine war]. Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (32), 449–462. https://dergipark.org.tr/tr/pub/diclesosbed/issue/76043/1203938
  • Pang, B., Lee, L., & Vaithyanathan, S. (2002, May 28). Thumbs up? Sentiment classification using machine learning techniques. Cornell University. ArXiv.org/abs/cs/0205070
  • Panger, G. T. (2017). Emotion in social media. University of California, Berkeley.
  • Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89(4), 344–350. http://www.jstor.org/stable/27857503
  • Ramirez–Sayago, E. (2020). Sentiment analysis from Twitter data regarding the COVID–19 pandemic. https://www.researchgate.net/publication/346453096_Sentiment_Analysis_from_Twitter_Data_Regarding_the_COVID–19_Pandemic
  • Reich, S. M. (2010). Adolescents’ sense of community on Myspace and Facebook: A mixed–methods approach. Journal of Community Psychology, 38(6), 688–705. https://doi.org/10.1002/jcop.20389
  • Robertson, S. P., Douglas, S., Maruyama, M., & Semaan, B. (2013). Political discourse on social networking sites: Sentiment, in–group/out–group orientation and rationality. Information Polity, 18(2), 107–126. http://dx.doi.org/10.3233/IP–130303
  • Sabatovych, I. (2019). Do social media create revolutions? Using Twitter sentiment analysis for predicting the Maidan Revolution in Ukraine. Global Media and Communication, 15(3), 275–283. https://doi.org/10.1177/1742766519872780
  • Serrano–Puche, J. (2016). Internet and emotions: New trends in an emerging field of research. Media Education Journal, Comunicar, 46(24), 19–26. https://doi.org/10.3916/C46–2016–02
  • Sönmez, A. S., Bıçakcı, H., & Yıldırım, C. (2015). Kırım sorunu bağlamında Rusya–Ukrayna ilişkilerinin analizi [Analysis of Russia–Ukraine relations in context of Crimea problem]. International Journal of Social Sciences and Education Research, 1(3), 656–670.) https://doi.org/10.24289/ijsser.279144
  • Thelwall, M., Wilkinson, D., & Uppal, S. (2010). Data mining emotion in social network communication: Gender differences in Myspace. Journal of the American Society for Information Science and Technology, 61(1), 190–199. https://doi.org/10.1002/asi.21180
  • Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012, July). A system for real–time Twitter sentiment analysis of 2012 US presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations (pp. 115–120). https://aclanthology.org/P12–3020.pdf
  • Waterloo, S. F., Baumgartner, S. E., Peter, J., & Valkenburg, P. M. (2018). Norms of online expressions of emotion: Comparing Facebook, Twitter, Instagram, and WhatsApp. New Media & Society, 20(5), 1813–1831. https://doi.org/10.1177/1461444817707349
  • Webster, S. W., & Albertson, B. (2022). Emotion and politics: Noncognitive psychological biases in public opinion. Annual Review of Political Science, 25(1), 401–418. https://doi.org/10.1146/annurev–polisci–051120–105353
  • Weeks, B. E., Ardèvol–Abreu, A., & Gil de Zúñiga, H. (2017). Online influence? Social media use, opinion leadership, and political persuasion. International Journal of Public Opinion Research, 29(2), 214–239. https://doi.org/10.1093/ijpor/edv050
  • White, M. D., & Marsh, E. E. (2006). Content analysis: A flexible methodology. Library Trends, 55(1), 22–45. https://doi.org/10.1353/lib.2006.0053
  • Widén, G., Lindström, J., Brännback, M., Huvila, I., & Nyström, A. G. (2015). Mixed emotions in active social media use–fun and convenient or shameful and embarrassing? In Conference 2015 Proceedings. http://hdl.handle.net/2142/73460
  • Wilson, V., (2011). Research methods: Content analysis. Evidence Based Library and Information Practice, 6(4), 177–179. http://doi.org/10.1177/0165551504044668
  • Yazıcı, F., & Apak, C. (2022). Rusya–Ukrayna savaşı haberleri üzerine bir inceleme: Sputnik Türkiye Twitter hesabı örneği [A review on the Russia–Ukraine war news: The example of Sputnik Türkiye Twitter account]. Erciyes Akademi, 36(3), 1055–1070. https://doi.org/10.48070/erciyesakademi.1143475
  • Yu, H., & John–Baptiste, S. (2016). Emotion expression on social networking sites: A study of young persons’ use of Facebook and Twitter in the UK. In 5th Annual International Conference on Cognitive and Behavioral Psychology (pp. 81–86). http://dx.doi.org/10.5176/2251–1865_CBP16.20
Year 2023, Volume: 16 Issue: 2, 445 - 459, 31.12.2023
https://doi.org/10.37093/ijsi.1336016

Abstract

References

  • Adwan, O. M. A. R., Al–Tawil, M., Huneiti, A., Shahin, R., Zayed, A. A., & Al–Dibsi, R. (2020). Twitter sentiment analysis approaches: A survey. International Journal of Emerging Technologies in Learning, 15(15), 79–93. https://doi.org/10.3991/ijet.v15i15.14467
  • Almohaimeed, A. S. (2017). Using tweets sentiment analysis to predict stock market movement (Doctoral dissertation, Auburn University).
  • Appel, O., Chiclana, F., & Carter, J. (2015). Main concepts, state of the art and future research questions in sentiment analysis. Acta Polytechnica Hungarica, 12(3), 87–108. http://dx.doi.org/10.12700/APH.12.3.2015.3.6
  • Aslan, M. (2022). Rusya’nın Ukrayna’ya saldırısının siyasi ve askeri değerlendirmesi [Political and military evaluation of Russia’s attack on Ukraine]. SETA–Perspektif, 332, 1–4. https://setav.org/assets/uploads/2022/02/P332.pdf.
  • Aslan, M. (2023). Rusya–Ukrayna savaşının bir yılı [One year of the Russia–Ukraine war]. Seta.
  • Aydıngün, A. (2022). Rusya–Ukrayna savaşının sosyolojik açıdan tahlili [Sociological analysis of the Russia–Ukraine war] (AVİM Rapor No: 20). Avrasya İncelemeleri Merkezi. Terazi Yayıncılık.
  • Bağcan, S., Tuncay, E., Savaş, S. (2021). Sosyal medyada demokrasiye lider müdahalesini gözlemlemek: 2020 ABD başkanlık seçimlerinde Donal Trump ve Joe Biden’ın tweetlerinin içerik ve duygu analizi açısından incelenmesi [Observing the leader’s intervention to democracy on social media: An analysis of the tweets of Trump and Biden on Twıtter in the 2020 US presidential elections in terms of content and sentiment analysis]. The Turkish Online Journal of Design Art and Communication, 11(3), 1073–1097. https://dergipark.org.tr/tr/pub/tojdac/issue/62647/911077
  • Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer‐Mediated Communication, 13(1), 210–230. https://doi.org/10.1111/j.1083–6101.2007.00393.x
  • Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A., & Van Bavel, J. J. (2017). Emotion shapes the diffusion of moralized content in social networks. Proceedings of the National Academy of Sciences, 114(28), 7313–7318. https://doi.org/10.1073/pnas.1618923114
  • Burke, M., & Develin, M. (2016). Once more with feeling: Supportive responses to social sharing on Facebook. In Proceedings of the 19th ACM Conference on Computer–Supported Cooperative Work & Social Computing (pp. 1462–1474). https://dl.acm.org/doi/proceedings/10.1145/2818048
  • Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent systems, 28(2), 15–21. https://doi.org/10.1109/MIS.2013.30
  • Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
  • Chatterje–Doody, P. N., & Crilley, R. (2019). Making sense of emotions and affective investments in war: RT and the Syrian conflict on YouTube. Media and Communication, 7(3), 167. https://doi.org/10.17645/mac.v7i3.1911
  • Chen, K. (2021). Research on the functions of users’ emotions in social media product design. In E3S Web of Conferences (Vol. 253, p. 02010). EDP Sciences.
  • Chislova, N. M. (2014). Means of expressing the joy emotion in modern Internet communication. Theoretical and applied aspects of linguistics: Com of mat. of II international. Science– pract. conf. of young researcher. Moscow: M.A. Sholokhov Moscow state University for the Humanities.
  • Comito, C. (2023). The role of social media in the battle against COVID-19. In P. Chatterjee & M. Esposito (Eds.), Artificial Intelligence in Healthcare and COVID-19 (pp. 105–124). Academic Press. https://doi.org/10.1016/B978-0-323-90531-2.00002-3
  • Çelikaslan, M. N. (2022). Ukrayna–Rusya savaşı: Avrupalı bir milletin yıkımı [Ukraine–Russia war: the destruction of a European nation]. Türk Yönetim ve Ekonomi Araştırmaları Dergisi, 3(1), 53–65. https://sakajournals.org/ojs/index.php/tjmer/article/view/56
  • Davutoğlu, A. (2010). Stratejik derinlik: Türkiye’nin uluslararası konumu [Strategic depth: Türkiye’s international position]. Küre Yayınları.
  • Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
  • Ekman, P. (1999). Basic Emotions. In T. Dalgleish & M. Power (Eds.), Handbook of Cognition and Emotion (pp. 45–60). John Wiley & Sons.
  • Esuli, A., & Sebastiani, F. (2007). SentiWordNet: A high–coverage lexical resource for opinion mining. Evaluation, 17(1), 1–26. http://nmis.isti.cnr.it/sebastiani/Publications/2007TR02.pdf
  • Fidan, M., & Lokmanoğlu, E. (2023). Sosyal medya savaşlarında yeni bir kavram: Rusya–Ukrayna savaşı özelinde dijital ambargo [A new concept in social media wars: Russia–Ukraine war and digital embargo]. Bilecik Şeyh Edebali University Journal of Social Science, 8(1), 28–38. https://doi.org/10.33905/bseusbed.1200734
  • Fujii, S., Kunii, Y., Nonaka, S., Hamaie, Y., Hino, M., Egawa, S., Kuriyama, S., & Tomita, H. (2023). Real–time prediction of medical demand and mental health status in Ukraine under Russian invasion using tweet analysis. The Tohoku Journal of Experimental Medicine, 259(3), 177–188. https://doi.org/10.1620/tjem.2022.J111
  • Garcia, M. B., & Cunanan–Yabut, A. (2022). Public sentiment and emotion analyses of Twitter data on the 2022 Russian invasion of Ukraine. 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), (pp. 242–247). https://doi.org/10.1109/ICITACEE55701.2022.9924136
  • Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of Twitter sentiment analysis methods. ACM Computing Surveys (CSUR), 49(2), 1–41. https://doi.org/10.1145/2938640
  • Gonçalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013, October). Comparing and combining sentiment analysis methods. In Proceedings of the first ACM conference on Online social networks (pp. 27–38). https://dl.acm.org/doi/10.1145/2512938.2512951
  • Hyvärinen, H., & Beck, R. (2018). Emotions trump facts: The role of emotions in on social media: A literature review. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 1797–1806). http://dx.doi.org/10.24251/HICSS.2018.226
  • Johnson, P. R., & Yang, S. (2009, August). Uses and gratifications of Twitter: An examination of user motives and satisfaction of Twitter use. In Communication Technology Division of the annual convention of the Association for Education in Journalism and Mass Communication in Boston, MA (Vol. 54).
  • Joshi, P. (2017). Artificial intelligence with Python. Packt Publishing Ltd.
  • Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
  • Kasmani, M. F., Sabran, R., & Ramle, N. (2014). Can Twitter be an effective platform for political discourse in Malaysia? A study of #PRU13. Procedia – Social and Behavioral Sciences, 155, 348–355. https://doi.org/10.1016/j.sbspro.2014.10.304
  • Kayıkçı, Ş. (2022). SenDemonNet: Sentiment analysis for demonetization tweets using heuristic deep neural network. Multimedia Tools and Applications, 81(8), 11341-11378. https://doi.org/10.1007/s11042-022-11929-w
  • Kharde, V., & Sonawane, P. (2016). Sentiment analysis of Twitter data: A survey of techniques. International Journal of Computer Applications, 139(11), 5–15. https://doi.org/10.5120/ijca2016908625
  • Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications. https://doi.org/10.4135/9781071878781
  • Lange–Ionatamishvili, E., & Svetoka, S. (2015). Strategic communications and social media in the Russia Ukraine conflict. In K. Geers (Ed.), Cyber war in perspective: Russian aggression against Ukraine (pp. 103–111). NATO Cooperative Cyber Defence Center of Excellence.
  • Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490. http://dx.doi.org/10.1287/mnsc.1030.0136
  • Mæland, B., Brunstad, P., & Mæland, B. (2009). Enduring military boredom: From 1750 to the present. Springer.
  • Malešević, S. (2010). The sociology of war and violence. Cambridge University Press.
  • Malešević, S. (2021). Emotions and warfare: The social dynamics of close–range fighting. In Oxford Research Encyclopedia of Politics. UK.
  • Mallick, P. K. (2022). Ukraine is winning the information war against Russia on social media: But experts say it is far from over. Centre for Land Warfare Studies.
  • Moshagen, M., & Hilbig, B. E. (2022, March 7). Citizens’ psychological reactions following the Russian invasion of the Ukraine: A cross–national study. PsyArXiv. https://doi.org/10.31234/osf.io/teh8y
  • Orehek, E., & Human, L. J. (2016). Self–expression on social media: Do tweets present accurate and positive portraits of ımpulsivity, self–esteem, and attachment style? Personality and Social Psychology Bulletin, 43(1), 60–70. https://doi.org/10.1177/0146167216675332
  • Öztürk, Ş. (2023). Rusya–Ukrayna savaşı üzerinden uluslararası sisteme dair bir değerlendirme [An assessment on the internatıonal system over the Russia–Ukraine war]. Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (32), 449–462. https://dergipark.org.tr/tr/pub/diclesosbed/issue/76043/1203938
  • Pang, B., Lee, L., & Vaithyanathan, S. (2002, May 28). Thumbs up? Sentiment classification using machine learning techniques. Cornell University. ArXiv.org/abs/cs/0205070
  • Panger, G. T. (2017). Emotion in social media. University of California, Berkeley.
  • Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89(4), 344–350. http://www.jstor.org/stable/27857503
  • Ramirez–Sayago, E. (2020). Sentiment analysis from Twitter data regarding the COVID–19 pandemic. https://www.researchgate.net/publication/346453096_Sentiment_Analysis_from_Twitter_Data_Regarding_the_COVID–19_Pandemic
  • Reich, S. M. (2010). Adolescents’ sense of community on Myspace and Facebook: A mixed–methods approach. Journal of Community Psychology, 38(6), 688–705. https://doi.org/10.1002/jcop.20389
  • Robertson, S. P., Douglas, S., Maruyama, M., & Semaan, B. (2013). Political discourse on social networking sites: Sentiment, in–group/out–group orientation and rationality. Information Polity, 18(2), 107–126. http://dx.doi.org/10.3233/IP–130303
  • Sabatovych, I. (2019). Do social media create revolutions? Using Twitter sentiment analysis for predicting the Maidan Revolution in Ukraine. Global Media and Communication, 15(3), 275–283. https://doi.org/10.1177/1742766519872780
  • Serrano–Puche, J. (2016). Internet and emotions: New trends in an emerging field of research. Media Education Journal, Comunicar, 46(24), 19–26. https://doi.org/10.3916/C46–2016–02
  • Sönmez, A. S., Bıçakcı, H., & Yıldırım, C. (2015). Kırım sorunu bağlamında Rusya–Ukrayna ilişkilerinin analizi [Analysis of Russia–Ukraine relations in context of Crimea problem]. International Journal of Social Sciences and Education Research, 1(3), 656–670.) https://doi.org/10.24289/ijsser.279144
  • Thelwall, M., Wilkinson, D., & Uppal, S. (2010). Data mining emotion in social network communication: Gender differences in Myspace. Journal of the American Society for Information Science and Technology, 61(1), 190–199. https://doi.org/10.1002/asi.21180
  • Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012, July). A system for real–time Twitter sentiment analysis of 2012 US presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations (pp. 115–120). https://aclanthology.org/P12–3020.pdf
  • Waterloo, S. F., Baumgartner, S. E., Peter, J., & Valkenburg, P. M. (2018). Norms of online expressions of emotion: Comparing Facebook, Twitter, Instagram, and WhatsApp. New Media & Society, 20(5), 1813–1831. https://doi.org/10.1177/1461444817707349
  • Webster, S. W., & Albertson, B. (2022). Emotion and politics: Noncognitive psychological biases in public opinion. Annual Review of Political Science, 25(1), 401–418. https://doi.org/10.1146/annurev–polisci–051120–105353
  • Weeks, B. E., Ardèvol–Abreu, A., & Gil de Zúñiga, H. (2017). Online influence? Social media use, opinion leadership, and political persuasion. International Journal of Public Opinion Research, 29(2), 214–239. https://doi.org/10.1093/ijpor/edv050
  • White, M. D., & Marsh, E. E. (2006). Content analysis: A flexible methodology. Library Trends, 55(1), 22–45. https://doi.org/10.1353/lib.2006.0053
  • Widén, G., Lindström, J., Brännback, M., Huvila, I., & Nyström, A. G. (2015). Mixed emotions in active social media use–fun and convenient or shameful and embarrassing? In Conference 2015 Proceedings. http://hdl.handle.net/2142/73460
  • Wilson, V., (2011). Research methods: Content analysis. Evidence Based Library and Information Practice, 6(4), 177–179. http://doi.org/10.1177/0165551504044668
  • Yazıcı, F., & Apak, C. (2022). Rusya–Ukrayna savaşı haberleri üzerine bir inceleme: Sputnik Türkiye Twitter hesabı örneği [A review on the Russia–Ukraine war news: The example of Sputnik Türkiye Twitter account]. Erciyes Akademi, 36(3), 1055–1070. https://doi.org/10.48070/erciyesakademi.1143475
  • Yu, H., & John–Baptiste, S. (2016). Emotion expression on social networking sites: A study of young persons’ use of Facebook and Twitter in the UK. In 5th Annual International Conference on Cognitive and Behavioral Psychology (pp. 81–86). http://dx.doi.org/10.5176/2251–1865_CBP16.20
There are 62 citations in total.

Details

Primary Language English
Subjects Big Data, Screen and Media Culture, International Relations (Other)
Journal Section Articles
Authors

Ayşen Temel Eginli 0000-0003-4830-4524

Neslihan Özmelek Taş 0000-0002-6348-2495

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date August 1, 2023
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Temel Eginli, A., & Özmelek Taş, N. (2023). Emotions on Social Media: A Sentiment Analysis Approach Based on Twitter (X) Data on the Russian-Ukraine War. International Journal of Social Inquiry, 16(2), 445-459. https://doi.org/10.37093/ijsi.1336016

---------------------------------------------------------------------------------------------------------------------------------------------------

26134 26133     Content on this site is licensed under a Creative Commons Attribution 4.0 International license.

---------------------------------------------------------------------------------------------------------------------------------------------------