Research Article
BibTex RIS Cite

The effect of salinity stress on germination parameters in Satureja thymbra L. (Lamiaceae)

Year 2022, , 74 - 90, 10.03.2022
https://doi.org/10.21448/ijsm.1025295

Abstract

Salinity is an important problem all over the world. The destructive effect of salinity is observed from the seed germination stage. In this study, it was aimed to determine the effect of salinity on seed germination of the medically important Satureja thymbra L., whether pre-treatments are a factor in breaking the salinity stress, and to determine the level of salinity tolerance of this species. In the research, firstly, the seeds were exposed to two pre-treatments (80°C (5 minutes) + 10 ppm GA3 (24 hours), 80°C (5 minutes) + 100 ppm GA3 (24 hours)) and then 8 different NaCl concentrations (0.1 g/l, 1 g/l, 2.5 g/l, 5 g/l, 7.5 g/l,10 g/l, 15 g/l and 30 g/l) were tried. Germination seeds were counted every day and the effects of salinity on germination characteristics were investigated. The highest germination percentage (90%) was obtained at 0.1 g/l NaCl after 80°C (5 min.) + 100 ppm GA3 (24 h.) pre-treatment. The results showed that the effect of salinity was significant on germination parameters in p < 0.05. Obtained results showed that the highest NaCl concentration at which Satureja thymbra seed could germinate was 10 g/l.

References

  • Abd Rashed, A., Abd Rahman, A.Z., & Rathi, D.N.G. (2021). Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules (Basel, Switzerland), 26(4), 1–61. https://doi.org/10.3390/molecules26041107
  • Adilu, G.S., & Gebre, Y.G. (2021). Effect of salinity on seed germination of some tomato (Lycopersicon esculentum Mill.) varieties. Journal of Aridland Agriculture, 7(June), 76–82. https://doi.org/10.25081/jaa.2021.v7.6588
  • Adjel-Lalouani, F., Hammouchi, S., Trad, N., & Mehalaine, S. (2021). Interactive effects of salt stress and gibberellic acid (GA3) on germination and ion content of barley (Hordeum vulgare L.). South Asian Journal of Experimental Biology, 11(3), 311–320. https://doi.org/10.38150/sajeb.11(3).p311-320
  • Ahmed, K., Qadir, G., Nawaz, M.Q., Riaz, M.A., Nawaz, M.F., & Ullah, M.M.A. (2020). Combined effect of growth hormones and gypsum induces salinity tolerance in wheat under saline-sodic soil. Journal of Animal and Plant Sciences, 31(1), 121–130. https://doi.org/10.36899/JAPS.2021.1.0200
  • Akram, M., Zahid, M., Farooq, A.B.U., Nafees, M., & Rasool, A. (2020). Effects of different levels of nacl on the seed germination of Cyamopsis tetragonoloba L. Bangladesh Journal of Botany, 49(3), 625–632. https://doi.org/10.3329/bjb.v49i3.49995
  • Al-shoaibi, A.K., & Boutraa, T. (2021). Comparative study on germination , growth and gas exchanges of the tropics ’ tree Moringa oleifera and its desert relative Moringa peregrina under saline conditions. South African Journal of Botany, 139, 374–385. https://doi.org/10.1016/j.sajb.2021.03.011
  • Alharby, H.F., Rizwan, M., Iftikhar, A., Hussaini, K.M., Zia ur Rehman, M., Bamagoos, A.A., Alharbi, B.M., Asrar, M., Yasmeen, T., & Ali, S. (2021). Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 221, 112436. https://doi.org/10.1016/j.ecoenv.2021.112436
  • Ali, A.Y.A., Ibrahim, M.E.H., Zhou, G., Nimir, N.E.A., Elsiddig, A.M.I., Jiao, X., Zhu, G., Salih, E.G.I., Suliman, M.S.E.S., & Elradi, S.B.M. (2021). Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-84713-9
  • Alves, R. de C., Nicolau, M.C.M., Checchio, M.V., Sousa Junior, G. da S., de Oliveira, F. de A., Prado, R.M., & Gratão, P.L. (2020). Salt stress alleviation by seed priming with silicon in lettuce seedlings: An approach based on enhancing antioxidant responses. Bragantia, 79(1), 19–29. https://doi.org/10.1590/1678-4499.20190360
  • Asgari, F., & Diyanat, M. (2021). Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. Journal of Plant Nutrition, 44(4), 536–549. https://doi.org/10.1080/01904167.2020.1845367
  • Atta, K., Pal, A.K., & Jana, K. (2021). Effects of salinity, drought and heavy metal stress during seed germination stage in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi]. Plant Physiology Reports, 26(1), 109–115. https://doi.org/10.1007/s40502-020-00542-4
  • Azad, N., Rezayian, M., Hassanpour, H., Niknam, V., & Ebrahimzadeh, H. (2021). Physiological Mechanism of Salicylic Acid in Mentha pulegium L. under salinity and drought stress. Revista Brasileira de Botanica, 0123456789. https://doi.org/10.1007/s40415-021-00706-y
  • Aziz, T., & Pekşen, E. (2020). Seed priming with gibberellic acid rescues chickpea (Cicer arietinum L.) from chilling stress. Acta Physiologiae Plantarum, 42(8), 1–10. https://doi.org/10.1007/s11738-020-03124-x
  • Babaei, S., Niknam, V., & Behmanesh, M. (2021). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems, 155(1), 73–82. https://doi.org/10.1080/11263504.2020.1727975
  • Babalik, Z., & Göktürk Baydar, N. (2021). Asmalarda Kuraklık ve Tuz Stresi. European Journal of Science and Technology, 21, 358–368. https://doi.org/10.31590/ejosat.784997
  • Bahmani Jafarlou, M., Pilehvar, B., Modarresi, M., & Mohammadi, M. (2021). Performance of Algae Extracts Priming for Enhancing Seed Germination Indices and Salt Tolerance in Calotropis procera (Aiton) W.T. Iranian Journal of Science and Technology, Transaction A: Science, 45(2), 493–502. https://doi.org/10.1007/s40995-021-01071-x
  • Bahrabadi, E., Tavakkol Afshari, R., Mahallati, M.N., & Seyyedi, S.M. (2021). Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. Journal of Crop Improvement, 1 17. https://doi.org/10.1080/15427528.2021.1908474
  • Bensidhoum, L., & Nabti, E. (2021). Role of Cystoseira mediterranea extracts (Sauv.) in the Alleviation of salt stress adverse effect and enhancement of some Hordeum vulgare L. (barley) growth parameters. SN Applied Sciences, 3(1). https://doi.org/10.1007/s42452-020-03992-5
  • Bouriah, N., Bendif, H., Peron, G., Miara, M.D., Dall’Acqua, S., Flamini, G., & Maggi, F. (2021). Composition and profiling of essential oil, volatile and crude extract constituents of Micromeria inodora growing in western Algeria. Journal of Pharmaceutical and Biomedical Analysis, 195. https://doi.org/10.1016/j.jpba.2020.113856
  • Ceritoğlu, M., & Erman, M. (2020). Nohut Çimlenmesi Üzerine Tuzluluk Stresinin Salisilik Asit Priming ile Azaltılması. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3), 582–591. https://doi.org/10.24180/ijaws.774969
  • Cetin, H., Cilek, J.E., Oz, E., Aydin, L., Deveci, O., & Yanikoglu, A. (2010). Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and γ-terpinene against adult Hyalomma marginatum (Acari: Ixodidae). Veterinary Parasitology, 170(3–4), 287–290. https://doi.org/10.1016/j.vetpar.2010.02.031
  • Ceyhan, E., & Çakır, C. (2021). Determination of Salt Tolerance of Some Lentil (Lens culinaris Medic.) Varieties During Germination Period. Selcuk Journal of Agricultural and Food Sciences, 35(2), 170–175. https://doi.org/10.15316/sjafs.2021.245
  • Chandel, S., Datta, A., Yadav, R.K., & Dheri, G.S. (2021). Does Saline Water Irrigation Influence Soil Carbon Pools and Nutrient Distribution in Soil under Seed Spices? Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-021-00413-3
  • Chauhan, A., AbuAmarah, B.A., Kumar, A., Verma, J.S., Ghramh, H.A., Khan, K.A., & Ansari, M.J. (2019). Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences, 26(6), 1298–1304. https://doi.org/10.1016/j.sjbs.2019.04.014
  • Chorianopoulos, N.G., Giaouris, E.D., Skandamis, P.N., Haroutounian, S.A., & Nychas, G.J.E. (2008). Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. Journal of Applied Microbiology, 104(6), 1586 1596. https://doi.org/10.1111/j.13652672.2007.03694.x
  • Choulitoudi, E., Xristou, M., Tsimogiannis, D., & Oreopoulou, V. (2021). The effect of temperature on the phenolic content and oxidative stability of o/w emulsions enriched with natural extracts from Satureja thymbra. Food Chemistry, 349(September 2020). https://doi.org/10.1016/j.foodchem.2021.129206
  • Daba, A.W., Qureshi, A.S., & Nisaren, B.N. (2019). Evaluation of some rhodes grass (Chloris gayana) genotypes for their salt tolerance, biomass yield and nutrient composition. Applied Sciences (Switzerland), 9(1). https://doi.org/10.3390/app9010143
  • Dadaşoğlu, E., Ekinci, M., & Yıldırım, E. (2020). Tuz Stresinin Nohut (Cicer arietinum L.) ve Bezelyede (Pisum sativum L.) Tohum Çimlenmesi Üzerine Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(1), 53–62. https://doi.org/10.17097/ataunizfd.596530
  • Dawood, M.A.O., El Basuini, M.F., Zaineldin, A.I., Yilmaz, S., Hasan, M.T., Ahmadifar, E., El Asely, A.M., Abdel-Latif, H.M.R., Alagawany, M., Abu-Elala, N.M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens, 10(2), 1 38. https://doi.org/10.3390/pathogens10020185
  • De Rossi, S., Di Marco, G., Bruno, L., Gismondi, A., & Canini, A. (2021). Investigating the drought and salinity effect on the redox components of Sulla coronaria (L.) medik. Antioxidants, 10(7). https://doi.org/10.3390/antiox10071048
  • Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Perez, S.C., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6). https://doi.org/10.3390/agronomy10060859
  • dos Santos, L.M., de Farias, S.G.G., e Silva, R.B., Dias, B.A.S., & da Silva, L.S. (2019). Ecophysiology of germination of Parkia platycephala Benth. seeds. Floresta e Ambiente, 26(1), 1–7. https://doi.org/10.1590/2179-8087.028215
  • El Hamdaoui, A., Mechqoq, H., El Yaagoubi, M., Bouglad, A., Hallouti, A., El Mousadik, A., El Aouad, N., Ait Ben Aoumar, A., & Msanda, F. (2021). Effect of pretreatment, temperature, gibberellin (GA3), salt and water stress on germination of Lavandula mairei Humbert. Journal of Applied Research on Medicinal and Aromatic Plants, 24(May), 100314. https://doi.org/10.1016/j.jarmap.2021.100314
  • Ergin, N., Kulan, E.G., Gökükara, M.A., & Kaya, M.F. (2021). Response of Germination and Seedling Development of Cotton to Salinity under Optimal and Suboptimal Temperatures. KSU Journal of Agriculture and Nature, 4(1), 108–115.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & van Genuchten, M.T. (2021). Borage (Borago officinalis L.) response to salinity at early growth stages as influenced by seed pre-treatment. Agricultural Water Management, 253 (September 2020), 106925. https://doi.org/10.1016/j.agwat.2021.106925
  • Fos, M., Alfonso, L., Ferrer-Gallego, P.P., & Laguna, E. (2021). Effect of salinity, temperature and hypersaline conditions on the seed germination in Limonium mansanetianum an endemic and threatened Mediterranean species. Plant Biosystems, 155(1), 165–171. https://doi.org/10.1080/11263504.2020.1722276
  • Gea, F.J., Navarro, M.J., Santos, M., Diánez, F., & Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms, 9(3), 1–24. https://doi.org/10.3390/microorganisms9030585
  • Giweli, A., Džamic, A.M., Sokovic, M., Ristic, M.S., & Marin, P.D. (2012). Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in libya. Molecules, 17(5), 4836–4850. https://doi.org/10.3390/molecules17054836
  • Godoy, F., Olivos-Hernández, K., Stange, C., & Handford, M. (2021). Abiotic stress in crop species: Improving tolerance by applying plant metabolites. Plants, 10(2), 1–19. https://doi.org/10.3390/plants10020186
  • Güldüren, Ş., & Elkoca, E. (2012). Kuzey Doğu Anadolu Bölgesi ve Çoruh Vadisi’nden Toplanan Bazı Fasulye (Phaseolus vulgaris L.) Genotiplerinin Çimlenme Döneminde Tuza Toleransları [Salinity Tolerance at Germination Stage of Some Bean (Phaseolus vulgaris L.) Genotypes Collected From North East Anatolia Region and Çoruh Valley]. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(1), 29 41. https://doi.org/10.17097/zfd.25115
  • Gürdal, B., & Kültür, Ş. (2013). An ethnobotanical study of medicinal plants in Marmaris (Muǧla, Turkey). Journal of Ethnopharmacology, 146(1), 113 126. https://doi.org/10.1016/j.jep.2012.12.012
  • Jafari, F., Ghavidel, F., & Zarshenas, M.M. (2016). A Critical Overview on the Pharmacological and Clinical Aspects of Popular Satureja Species. JAMS Journal of Acupuncture and Meridian Studies, 9(3), 118 127. https://doi.org/10.1016/j.jams.2016.04.003
  • Jiang, Y., Tian, M., Wang, C., & Zhang, Y. (2021). Transcriptome sequencing and differential gene expression analysis reveal the mechanisms involved in seed germination and protocorm development of Calanthe tsoongiana. Gene, 145355. https://doi.org/10.1016/j.gene.2020.145355
  • Kang, G., Yan, D., Chen, X., Yang, L., & Zeng, R. (2021). HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Physiologia Plantarum, 171(1), 151 160. https://doi.org/10.1111/ppl.13238
  • Karabay, U., Toptas, A., Yanik, J., & Aktas, L. (2021). Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Communications in Soil Science and Plant Analysis, 00(00), 1–14. https://doi.org/10.1080/00103624.2020.1862146
  • Karle, S.B., Guru, A., Dwivedi, P., & Kumar, K. (2021). Insights into the Role of Gasotransmitters Mediating Salt Stress Responses in Plants. Journal of Plant Growth Regulation, 0123456789. https://doi.org/10.1007/s00344-020-10293-z
  • Khaldi, R. El, Latifa, D., & Houda, B. (2021). Response of Oasian and exotic pepper (Capsicum spp .) cultivars from Tunisia to salt stress at germination and early seedling stages. Journal of Horticulture and Postharvest Research, 4(1), 13 24. https://doi.org/10.22077/jhpr.2020.3200.1129
  • Khalil, N., El-Jalel, L., Yousif, M., & Gonaid, M. (2020). Altitude impact on the chemical profile and biological activities of Satureja thymbra L. essential oil. BMC Complementary Medicine and Therapies, 20(1), 186. https://doi.org/10.1186/s12906-020-02982-9
  • Khoury, M., Stien, D., Eparvier, V., Ouaini, N., & El Beyrouthy, M. (2016). Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/2547169
  • Ku-Or, Y., Leksungnoen, N., Onwimon, D., & Doomnil, P. (2020). Germination and salinity tolerance of seeds of sixteen fabaceae species in Thailand for reclamation of salt-affected lands. Biodiversitas, 21(5), 2188–2200. https://doi.org/10.13057/biodiv/d210547
  • Kumar, N., Anuragi, H., Rana, M., Priyadarshini, P., Singhal, R., Chand, S., Indu, Sood, V.K., Singh, S., & Ahmed, S. (2021). Elucidating morpho-anatomical, physio-biochemical and molecular mechanism imparting salinity tolerance in oats (Avena sativa). Plant Breeding, May, 1–16. https://doi.org/10.1111/pbr.12937
  • Kusvuran, A., Nazli, R.I., & Kusvuran, S. (2015). The Effects of Salinity on Seed Germination in Perennial Ryegrass (Lolium perenne L.) Varieties. Türk Tarım ve Doğa Bilimleri Dergisi, 2(1), 78–84.
  • Leonardi, M., Caruso, G.M., Carroccio, S.C., Boninelli, S., Curcuruto, G., Zimbone, M., Allegra, M., Torrisi, B., Ferlito, F., & Miritello, M. (2021). Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science: Nano, 8(1), 174–187. https://doi.org/10.1039/d0en00797h
  • Li, J., Wang, Y., Dong, Y., Zhang, W., Wang, D., Bai, H., Li, K., Li, H., & Shi, L. (2021). The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00490-6
  • Liu, B., Liu, X., Liu, F., Ma, H., Ma, B., & Peng, L. (2021). Stress tolerance of Xerocomus badius and its promotion effect on seed germination and seedling growth of annual ryegrass under salt and drought stresses. AMB Express, 11(1). https://doi.org/10.1186/s13568-020-01172-7
  • Luo, X., Dai, Y., Zheng, C., Yang, Y., Chen, W., Wang, Q., Chandrasekaran, U., Du, J., Liu, W., & Shu, K. (2021). The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist, 229(2), 950–962. https://doi.org/10.1111/nph.16921
  • Marium, A., Kausar, A., Ali Shah, S.M., Ashraf, M.Y., Akhtar, N., Akram, M., & Riaz, M. (2019). Assessment of Cucumber Genotypes for Salt Tolerance Based on Germination and Physiological Indices. Dose Response, 17(4), 1 8. https://doi.org/10.1177/1559325819889809
  • Melendo, M., & Giménez, E. (2019). Seed germination responses to salinity and temperature in Limonium supinum (Plumbaginaceae), an endemic halophyte from Iberian Peninsula. Plant Biosystems, 153(2), 257–263. https://doi.org/10.1080/11263504.2018.1473303
  • Moghaddam, M., Farhadi, N., Panjtandoust, M., & Ghanati, F. (2020). Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosystems, 154(6), 835 842. https://doi.org/10.1080/11263504.2019.1701122
  • Mondal, K., Ray, J., & Ali, M.Y. (2020). Effect of Nacl on Germination and Seedling Growth of Some Cotton Genotypes. Research in Agriculture Livestock and Fisheries, 7(2), 199–207. https://doi.org/10.3329/ralf.v7i2.48860
  • Mwando, E., Angessa, T.T., Han, Y., Zhou, G., & Li, C. (2021). Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy, 11(1), 103. https://doi.org/10.3390/agronomy11010103
  • Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A., & Meftah Kadmiri, I. (2021). Biostimulants Derived from Moroccan Seaweeds: Seed Germination Metabolomics and Growth Promotion of Tomato Plant. Journal of Plant Growth Regulation, 40(1), 353–370. https://doi.org/10.1007/s00344-020-10104-5
  • Nedjimi, B., Souissi, Z.E., Guit, B., & Daoud, Y. (2020). Differential effects of soluble salts on seed germination of Marrubium vulgare L. Journal of Applied Research on Medicinal and Aromatic Plants, 17, 100250. https://doi.org/10.1016/j.jarmap.2020.100250
  • Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981. https://doi.org/10.1016/j.heliyon.2021.e05981
  • Neji, I., Rajhi, I., Baccouri, B., Barhoumi, F., Amri, M., & Mhadhbi, H. (2021). Leaf photosynthetic and biomass parameters related to the tolerance of Vicia faba L. cultivars to salinity stress. Euro-Mediterranean Journal for Environmental Integration, 6(1), 1–11. https://doi.org/10.1007/s41207-020-00221-8
  • Oral, E., Altuner, F., Tunçtürk, R., & Tunçtürk, M. (2019). The impact of salt (NaCL) stress on germination characteristics of gibberellic acid pretreated wheat (Triticum durum Desf) seeds. Applied Ecology and Environmental Research, 17(5), 12057–12071. https://doi.org/10.15666/aeer/1705_1205712071
  • Oz, U. (2020). Chapter 6 Effect of Different pre-treatments on seed germination of Salvia fruticosa Mill., Satureja thymbra L. and Thymbra spicata L. In Academic Studies in Science and Mathematics-II. Gece Publishing.
  • Pinna, M. S., Bacchetta, G., Cogoni, D., & Fenu, G. (2021). Recruitment pattern in an isolated small population of the Mediterranean dwarf shrub Satureja thymbra L. and implication for conservation. Rendiconti Lincei, 32(1), 205–213. https://doi.org/10.1007/s12210-021-00978-2
  • Reis, A.C., Konig, I.F.M., Rezende, D.A. de C.S., Gonçalves, R.R.P., Lunguinho, A. da S., Ribeiro, J.C.S., Cardoso, M. das G., & Remedio, R.N. (2021). Cytotoxic effects of Satureja montana L. essential oil on oocytes of engorged Rhipicephalus microplus female ticks (Acari: Ixodidae). Microscopy Research and Technique, November 2020, 1–14. https://doi.org/10.1002/jemt.23693
  • Ren, Y., Wang, W., He, J., Zhang, L., Wei, Y., & Yang, M. (2020). Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicology and Environmental Safety, 187(September 2019), 109785. https://doi.org/10.1016/j.ecoenv.2019.109785
  • Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y., & Hasanuzzaman, M. (2021). Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1), 1–17. https://doi.org/10.3390/plants10010037
  • Roviello, V., & Roviello, G.N. (2021). Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environmental Chemistry Letters, 19(1), 699–710. https://doi.org/10.1007/s10311-020-01063-0
  • Sarıkaya, A.G., Türkmenoğlu, G., & Fakir, H. (2021). Determination to Volatile Components in Different Collection Times of Satureja cuneifolia Ten. Naturally Distributed in Akseki (Antalya). Journal of the Institute of Science and Technology, 11(1), 654–660. https://doi.org/10.21597/jist.779053
  • Scuteri, D., Hamamura, K., Sakurada, T., Watanabe, C., Sakurada, S., Morrone, L.A., Rombolà, L., Tonin, P., Bagetta, G., & Corasaniti, M. T. (2021). Efficacy of essential oils in pain: A systematic review and meta-analysis of preclinical evidence. Frontiers in Pharmacology, 12(March), 1–18. https://doi.org/10.3389/fphar.2021.640128
  • Shahid, M., Ameen, F., Maheshwari, H.S., Ahmed, B., AlNadhari, S., & Khan, M.S. (2021). Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Applied Soil Ecology, 158(November 2020), 103809. https://doi.org/10.1016/j.apsoil.2020.103809
  • Shariatinia, F., Azari, A., Rahimi, A., Panahi, B., & Madahhosseini, S. (2021). Germination, growth, and yield of rocket populations show strong ecotypic variation under NaCl stress. Scientia Horticulturae, 278 (October 2020), 109841. https://doi.org/10.1016/j.scienta.2020.109841
  • Singh, A., Singh, A., Pandey, A.K., Singh, A.K., Singh, R., Singh, A., & Yadav, R. (2020). Effect salinity on germination percentage (%) and seed vigour index of rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 9(2), 1130 1133. https://doi.org/10.22271/phyto.2020.v9.i2s.11003
  • Székely, Á., Szalóki, T., Ibadzade, M., Pauk, J., Lantos, C., & Jancsó, M. (2021). Germination dynamics of european rice varieties under salinity stress. Pakistan Journal of Agricultural Sciences, 58(1), 1–5. https://doi.org/10.21162/PAKJAS/21.464
  • Tepe, B., & Cilkiz, M. (2016). A pharmacological and phytochemical overview on Satureja. Pharmaceutical Biology, 54(3), 375–412. https://doi.org/10.3109/13880209.2015.1043560
  • Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M., & Muccifora, S. (2021). Response to salinity in legume species: An insight on the effects of salt stress during seed germination and seedling growth. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202000917
  • Tokarz, K.M., Wesołowski, W., Tokarz, B., Makowski, W., Wysocka, A., Jędrzejczyk, R.J., Chrabaszcz, K., Malek, K., & Kostecka-Gugała, A. (2021). Stem photosynthesis—a key element of grass pea (Lathyrus sativus L.) acclimatisation to salinity. International Journal of Molecular Sciences, 22(2), 1–33. https://doi.org/10.3390/ijms22020685
  • Tolay, I. (2021). The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. Plos One, 16(2), e0246493. https://doi.org/10.1371/journal.pone.0246493
  • Tonguç, M., Önder, S., & Mutlucan, M. (2021). Determination of Germination Parameters of Safflower (Carthamus tinctorius L.) Cultivars Under Salt Stress. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 155 161. https://doi.org/10.19113/sdufenbed.952889
  • Turcios, A.E., Papenbrock, J., & Tränkner, M. (2021). Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science, August 2020, 1–13. https://doi.org/10.1111/jac.12477
  • Wang, H., Zhao, K., Li, X., Chen, X., Liu, W., & Wang, J. (2020). Factors affecting seed germination and emergence of Aegilops tauschii. Weed Research, 60(3), 171–181. https://doi.org/10.1111/wre.12410
  • Yohannes, G., Kidane, L., Abraha, B., & Beyene, T. (2020). Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1), 1–19. https://doi.org/10.4314/mejs.v12i1.1
  • Younis, M.E., Rizwan, M., & Tourky, S.M.N. (2021). Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress. Acta Physiologiae Plantarum, 43(8), 1–10. https://doi.org/10.1007/s11738-021-03285-3
  • Zeng, P., Zhu, P., Qian, L., Qian, X., Mi, Y., Lin, Z., Dong, S., Aronsson, H., Zhang, H., & Cheng, J. (2021). Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC Plant Biology, 21(1), 1–14. https://doi.org/10.1186/s12870-020-02820-7
  • Zhumabekova, Z., Xu, X., Wang, Y., Song, C., Kurmangozhinov, A., & Sarsekova, D. (2020). Effects of sodium chloride and sodium sulfate on Haloxylon ammodendron seed germination. Sustainability (Switzerland), 12(12), 1 19. https://doi.org/10.3390/SU12124927

The effect of salinity stress on germination parameters in Satureja thymbra L. (Lamiaceae)

Year 2022, , 74 - 90, 10.03.2022
https://doi.org/10.21448/ijsm.1025295

Abstract

Salinity is an important problem all over the world. The destructive effect of salinity is observed from the seed germination stage. In this study, it was aimed to determine the effect of salinity on seed germination of the medically important Satureja thymbra L., whether pre-treatments are a factor in breaking the salinity stress, and to determine the level of salinity tolerance of this species. In the research, firstly, the seeds were exposed to two pre-treatments (80°C (5 minutes) + 10 ppm GA3 (24 hours), 80°C (5 minutes) + 100 ppm GA3 (24 hours)) and then 8 different NaCl concentrations (0.1 g/l, 1 g/l, 2.5 g/l, 5 g/l, 7.5 g/l,10 g/l, 15 g/l and 30 g/l) were tried. Germination seeds were counted every day and the effects of salinity on germination characteristics were investigated. The highest germination percentage (90%) was obtained at 0.1 g/l NaCl after 80°C (5 min.) + 100 ppm GA3 (24 h.) pre-treatment. The results showed that the effect of salinity was significant on germination parameters in p < 0.05. Obtained results showed that the highest NaCl concentration at which Satureja thymbra seed could germinate was 10 g/l.

References

  • Abd Rashed, A., Abd Rahman, A.Z., & Rathi, D.N.G. (2021). Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules (Basel, Switzerland), 26(4), 1–61. https://doi.org/10.3390/molecules26041107
  • Adilu, G.S., & Gebre, Y.G. (2021). Effect of salinity on seed germination of some tomato (Lycopersicon esculentum Mill.) varieties. Journal of Aridland Agriculture, 7(June), 76–82. https://doi.org/10.25081/jaa.2021.v7.6588
  • Adjel-Lalouani, F., Hammouchi, S., Trad, N., & Mehalaine, S. (2021). Interactive effects of salt stress and gibberellic acid (GA3) on germination and ion content of barley (Hordeum vulgare L.). South Asian Journal of Experimental Biology, 11(3), 311–320. https://doi.org/10.38150/sajeb.11(3).p311-320
  • Ahmed, K., Qadir, G., Nawaz, M.Q., Riaz, M.A., Nawaz, M.F., & Ullah, M.M.A. (2020). Combined effect of growth hormones and gypsum induces salinity tolerance in wheat under saline-sodic soil. Journal of Animal and Plant Sciences, 31(1), 121–130. https://doi.org/10.36899/JAPS.2021.1.0200
  • Akram, M., Zahid, M., Farooq, A.B.U., Nafees, M., & Rasool, A. (2020). Effects of different levels of nacl on the seed germination of Cyamopsis tetragonoloba L. Bangladesh Journal of Botany, 49(3), 625–632. https://doi.org/10.3329/bjb.v49i3.49995
  • Al-shoaibi, A.K., & Boutraa, T. (2021). Comparative study on germination , growth and gas exchanges of the tropics ’ tree Moringa oleifera and its desert relative Moringa peregrina under saline conditions. South African Journal of Botany, 139, 374–385. https://doi.org/10.1016/j.sajb.2021.03.011
  • Alharby, H.F., Rizwan, M., Iftikhar, A., Hussaini, K.M., Zia ur Rehman, M., Bamagoos, A.A., Alharbi, B.M., Asrar, M., Yasmeen, T., & Ali, S. (2021). Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 221, 112436. https://doi.org/10.1016/j.ecoenv.2021.112436
  • Ali, A.Y.A., Ibrahim, M.E.H., Zhou, G., Nimir, N.E.A., Elsiddig, A.M.I., Jiao, X., Zhu, G., Salih, E.G.I., Suliman, M.S.E.S., & Elradi, S.B.M. (2021). Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-84713-9
  • Alves, R. de C., Nicolau, M.C.M., Checchio, M.V., Sousa Junior, G. da S., de Oliveira, F. de A., Prado, R.M., & Gratão, P.L. (2020). Salt stress alleviation by seed priming with silicon in lettuce seedlings: An approach based on enhancing antioxidant responses. Bragantia, 79(1), 19–29. https://doi.org/10.1590/1678-4499.20190360
  • Asgari, F., & Diyanat, M. (2021). Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. Journal of Plant Nutrition, 44(4), 536–549. https://doi.org/10.1080/01904167.2020.1845367
  • Atta, K., Pal, A.K., & Jana, K. (2021). Effects of salinity, drought and heavy metal stress during seed germination stage in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi]. Plant Physiology Reports, 26(1), 109–115. https://doi.org/10.1007/s40502-020-00542-4
  • Azad, N., Rezayian, M., Hassanpour, H., Niknam, V., & Ebrahimzadeh, H. (2021). Physiological Mechanism of Salicylic Acid in Mentha pulegium L. under salinity and drought stress. Revista Brasileira de Botanica, 0123456789. https://doi.org/10.1007/s40415-021-00706-y
  • Aziz, T., & Pekşen, E. (2020). Seed priming with gibberellic acid rescues chickpea (Cicer arietinum L.) from chilling stress. Acta Physiologiae Plantarum, 42(8), 1–10. https://doi.org/10.1007/s11738-020-03124-x
  • Babaei, S., Niknam, V., & Behmanesh, M. (2021). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems, 155(1), 73–82. https://doi.org/10.1080/11263504.2020.1727975
  • Babalik, Z., & Göktürk Baydar, N. (2021). Asmalarda Kuraklık ve Tuz Stresi. European Journal of Science and Technology, 21, 358–368. https://doi.org/10.31590/ejosat.784997
  • Bahmani Jafarlou, M., Pilehvar, B., Modarresi, M., & Mohammadi, M. (2021). Performance of Algae Extracts Priming for Enhancing Seed Germination Indices and Salt Tolerance in Calotropis procera (Aiton) W.T. Iranian Journal of Science and Technology, Transaction A: Science, 45(2), 493–502. https://doi.org/10.1007/s40995-021-01071-x
  • Bahrabadi, E., Tavakkol Afshari, R., Mahallati, M.N., & Seyyedi, S.M. (2021). Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. Journal of Crop Improvement, 1 17. https://doi.org/10.1080/15427528.2021.1908474
  • Bensidhoum, L., & Nabti, E. (2021). Role of Cystoseira mediterranea extracts (Sauv.) in the Alleviation of salt stress adverse effect and enhancement of some Hordeum vulgare L. (barley) growth parameters. SN Applied Sciences, 3(1). https://doi.org/10.1007/s42452-020-03992-5
  • Bouriah, N., Bendif, H., Peron, G., Miara, M.D., Dall’Acqua, S., Flamini, G., & Maggi, F. (2021). Composition and profiling of essential oil, volatile and crude extract constituents of Micromeria inodora growing in western Algeria. Journal of Pharmaceutical and Biomedical Analysis, 195. https://doi.org/10.1016/j.jpba.2020.113856
  • Ceritoğlu, M., & Erman, M. (2020). Nohut Çimlenmesi Üzerine Tuzluluk Stresinin Salisilik Asit Priming ile Azaltılması. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3), 582–591. https://doi.org/10.24180/ijaws.774969
  • Cetin, H., Cilek, J.E., Oz, E., Aydin, L., Deveci, O., & Yanikoglu, A. (2010). Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and γ-terpinene against adult Hyalomma marginatum (Acari: Ixodidae). Veterinary Parasitology, 170(3–4), 287–290. https://doi.org/10.1016/j.vetpar.2010.02.031
  • Ceyhan, E., & Çakır, C. (2021). Determination of Salt Tolerance of Some Lentil (Lens culinaris Medic.) Varieties During Germination Period. Selcuk Journal of Agricultural and Food Sciences, 35(2), 170–175. https://doi.org/10.15316/sjafs.2021.245
  • Chandel, S., Datta, A., Yadav, R.K., & Dheri, G.S. (2021). Does Saline Water Irrigation Influence Soil Carbon Pools and Nutrient Distribution in Soil under Seed Spices? Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-021-00413-3
  • Chauhan, A., AbuAmarah, B.A., Kumar, A., Verma, J.S., Ghramh, H.A., Khan, K.A., & Ansari, M.J. (2019). Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences, 26(6), 1298–1304. https://doi.org/10.1016/j.sjbs.2019.04.014
  • Chorianopoulos, N.G., Giaouris, E.D., Skandamis, P.N., Haroutounian, S.A., & Nychas, G.J.E. (2008). Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. Journal of Applied Microbiology, 104(6), 1586 1596. https://doi.org/10.1111/j.13652672.2007.03694.x
  • Choulitoudi, E., Xristou, M., Tsimogiannis, D., & Oreopoulou, V. (2021). The effect of temperature on the phenolic content and oxidative stability of o/w emulsions enriched with natural extracts from Satureja thymbra. Food Chemistry, 349(September 2020). https://doi.org/10.1016/j.foodchem.2021.129206
  • Daba, A.W., Qureshi, A.S., & Nisaren, B.N. (2019). Evaluation of some rhodes grass (Chloris gayana) genotypes for their salt tolerance, biomass yield and nutrient composition. Applied Sciences (Switzerland), 9(1). https://doi.org/10.3390/app9010143
  • Dadaşoğlu, E., Ekinci, M., & Yıldırım, E. (2020). Tuz Stresinin Nohut (Cicer arietinum L.) ve Bezelyede (Pisum sativum L.) Tohum Çimlenmesi Üzerine Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(1), 53–62. https://doi.org/10.17097/ataunizfd.596530
  • Dawood, M.A.O., El Basuini, M.F., Zaineldin, A.I., Yilmaz, S., Hasan, M.T., Ahmadifar, E., El Asely, A.M., Abdel-Latif, H.M.R., Alagawany, M., Abu-Elala, N.M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens, 10(2), 1 38. https://doi.org/10.3390/pathogens10020185
  • De Rossi, S., Di Marco, G., Bruno, L., Gismondi, A., & Canini, A. (2021). Investigating the drought and salinity effect on the redox components of Sulla coronaria (L.) medik. Antioxidants, 10(7). https://doi.org/10.3390/antiox10071048
  • Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Perez, S.C., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6). https://doi.org/10.3390/agronomy10060859
  • dos Santos, L.M., de Farias, S.G.G., e Silva, R.B., Dias, B.A.S., & da Silva, L.S. (2019). Ecophysiology of germination of Parkia platycephala Benth. seeds. Floresta e Ambiente, 26(1), 1–7. https://doi.org/10.1590/2179-8087.028215
  • El Hamdaoui, A., Mechqoq, H., El Yaagoubi, M., Bouglad, A., Hallouti, A., El Mousadik, A., El Aouad, N., Ait Ben Aoumar, A., & Msanda, F. (2021). Effect of pretreatment, temperature, gibberellin (GA3), salt and water stress on germination of Lavandula mairei Humbert. Journal of Applied Research on Medicinal and Aromatic Plants, 24(May), 100314. https://doi.org/10.1016/j.jarmap.2021.100314
  • Ergin, N., Kulan, E.G., Gökükara, M.A., & Kaya, M.F. (2021). Response of Germination and Seedling Development of Cotton to Salinity under Optimal and Suboptimal Temperatures. KSU Journal of Agriculture and Nature, 4(1), 108–115.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & van Genuchten, M.T. (2021). Borage (Borago officinalis L.) response to salinity at early growth stages as influenced by seed pre-treatment. Agricultural Water Management, 253 (September 2020), 106925. https://doi.org/10.1016/j.agwat.2021.106925
  • Fos, M., Alfonso, L., Ferrer-Gallego, P.P., & Laguna, E. (2021). Effect of salinity, temperature and hypersaline conditions on the seed germination in Limonium mansanetianum an endemic and threatened Mediterranean species. Plant Biosystems, 155(1), 165–171. https://doi.org/10.1080/11263504.2020.1722276
  • Gea, F.J., Navarro, M.J., Santos, M., Diánez, F., & Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms, 9(3), 1–24. https://doi.org/10.3390/microorganisms9030585
  • Giweli, A., Džamic, A.M., Sokovic, M., Ristic, M.S., & Marin, P.D. (2012). Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in libya. Molecules, 17(5), 4836–4850. https://doi.org/10.3390/molecules17054836
  • Godoy, F., Olivos-Hernández, K., Stange, C., & Handford, M. (2021). Abiotic stress in crop species: Improving tolerance by applying plant metabolites. Plants, 10(2), 1–19. https://doi.org/10.3390/plants10020186
  • Güldüren, Ş., & Elkoca, E. (2012). Kuzey Doğu Anadolu Bölgesi ve Çoruh Vadisi’nden Toplanan Bazı Fasulye (Phaseolus vulgaris L.) Genotiplerinin Çimlenme Döneminde Tuza Toleransları [Salinity Tolerance at Germination Stage of Some Bean (Phaseolus vulgaris L.) Genotypes Collected From North East Anatolia Region and Çoruh Valley]. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(1), 29 41. https://doi.org/10.17097/zfd.25115
  • Gürdal, B., & Kültür, Ş. (2013). An ethnobotanical study of medicinal plants in Marmaris (Muǧla, Turkey). Journal of Ethnopharmacology, 146(1), 113 126. https://doi.org/10.1016/j.jep.2012.12.012
  • Jafari, F., Ghavidel, F., & Zarshenas, M.M. (2016). A Critical Overview on the Pharmacological and Clinical Aspects of Popular Satureja Species. JAMS Journal of Acupuncture and Meridian Studies, 9(3), 118 127. https://doi.org/10.1016/j.jams.2016.04.003
  • Jiang, Y., Tian, M., Wang, C., & Zhang, Y. (2021). Transcriptome sequencing and differential gene expression analysis reveal the mechanisms involved in seed germination and protocorm development of Calanthe tsoongiana. Gene, 145355. https://doi.org/10.1016/j.gene.2020.145355
  • Kang, G., Yan, D., Chen, X., Yang, L., & Zeng, R. (2021). HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Physiologia Plantarum, 171(1), 151 160. https://doi.org/10.1111/ppl.13238
  • Karabay, U., Toptas, A., Yanik, J., & Aktas, L. (2021). Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Communications in Soil Science and Plant Analysis, 00(00), 1–14. https://doi.org/10.1080/00103624.2020.1862146
  • Karle, S.B., Guru, A., Dwivedi, P., & Kumar, K. (2021). Insights into the Role of Gasotransmitters Mediating Salt Stress Responses in Plants. Journal of Plant Growth Regulation, 0123456789. https://doi.org/10.1007/s00344-020-10293-z
  • Khaldi, R. El, Latifa, D., & Houda, B. (2021). Response of Oasian and exotic pepper (Capsicum spp .) cultivars from Tunisia to salt stress at germination and early seedling stages. Journal of Horticulture and Postharvest Research, 4(1), 13 24. https://doi.org/10.22077/jhpr.2020.3200.1129
  • Khalil, N., El-Jalel, L., Yousif, M., & Gonaid, M. (2020). Altitude impact on the chemical profile and biological activities of Satureja thymbra L. essential oil. BMC Complementary Medicine and Therapies, 20(1), 186. https://doi.org/10.1186/s12906-020-02982-9
  • Khoury, M., Stien, D., Eparvier, V., Ouaini, N., & El Beyrouthy, M. (2016). Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/2547169
  • Ku-Or, Y., Leksungnoen, N., Onwimon, D., & Doomnil, P. (2020). Germination and salinity tolerance of seeds of sixteen fabaceae species in Thailand for reclamation of salt-affected lands. Biodiversitas, 21(5), 2188–2200. https://doi.org/10.13057/biodiv/d210547
  • Kumar, N., Anuragi, H., Rana, M., Priyadarshini, P., Singhal, R., Chand, S., Indu, Sood, V.K., Singh, S., & Ahmed, S. (2021). Elucidating morpho-anatomical, physio-biochemical and molecular mechanism imparting salinity tolerance in oats (Avena sativa). Plant Breeding, May, 1–16. https://doi.org/10.1111/pbr.12937
  • Kusvuran, A., Nazli, R.I., & Kusvuran, S. (2015). The Effects of Salinity on Seed Germination in Perennial Ryegrass (Lolium perenne L.) Varieties. Türk Tarım ve Doğa Bilimleri Dergisi, 2(1), 78–84.
  • Leonardi, M., Caruso, G.M., Carroccio, S.C., Boninelli, S., Curcuruto, G., Zimbone, M., Allegra, M., Torrisi, B., Ferlito, F., & Miritello, M. (2021). Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science: Nano, 8(1), 174–187. https://doi.org/10.1039/d0en00797h
  • Li, J., Wang, Y., Dong, Y., Zhang, W., Wang, D., Bai, H., Li, K., Li, H., & Shi, L. (2021). The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00490-6
  • Liu, B., Liu, X., Liu, F., Ma, H., Ma, B., & Peng, L. (2021). Stress tolerance of Xerocomus badius and its promotion effect on seed germination and seedling growth of annual ryegrass under salt and drought stresses. AMB Express, 11(1). https://doi.org/10.1186/s13568-020-01172-7
  • Luo, X., Dai, Y., Zheng, C., Yang, Y., Chen, W., Wang, Q., Chandrasekaran, U., Du, J., Liu, W., & Shu, K. (2021). The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist, 229(2), 950–962. https://doi.org/10.1111/nph.16921
  • Marium, A., Kausar, A., Ali Shah, S.M., Ashraf, M.Y., Akhtar, N., Akram, M., & Riaz, M. (2019). Assessment of Cucumber Genotypes for Salt Tolerance Based on Germination and Physiological Indices. Dose Response, 17(4), 1 8. https://doi.org/10.1177/1559325819889809
  • Melendo, M., & Giménez, E. (2019). Seed germination responses to salinity and temperature in Limonium supinum (Plumbaginaceae), an endemic halophyte from Iberian Peninsula. Plant Biosystems, 153(2), 257–263. https://doi.org/10.1080/11263504.2018.1473303
  • Moghaddam, M., Farhadi, N., Panjtandoust, M., & Ghanati, F. (2020). Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosystems, 154(6), 835 842. https://doi.org/10.1080/11263504.2019.1701122
  • Mondal, K., Ray, J., & Ali, M.Y. (2020). Effect of Nacl on Germination and Seedling Growth of Some Cotton Genotypes. Research in Agriculture Livestock and Fisheries, 7(2), 199–207. https://doi.org/10.3329/ralf.v7i2.48860
  • Mwando, E., Angessa, T.T., Han, Y., Zhou, G., & Li, C. (2021). Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy, 11(1), 103. https://doi.org/10.3390/agronomy11010103
  • Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A., & Meftah Kadmiri, I. (2021). Biostimulants Derived from Moroccan Seaweeds: Seed Germination Metabolomics and Growth Promotion of Tomato Plant. Journal of Plant Growth Regulation, 40(1), 353–370. https://doi.org/10.1007/s00344-020-10104-5
  • Nedjimi, B., Souissi, Z.E., Guit, B., & Daoud, Y. (2020). Differential effects of soluble salts on seed germination of Marrubium vulgare L. Journal of Applied Research on Medicinal and Aromatic Plants, 17, 100250. https://doi.org/10.1016/j.jarmap.2020.100250
  • Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981. https://doi.org/10.1016/j.heliyon.2021.e05981
  • Neji, I., Rajhi, I., Baccouri, B., Barhoumi, F., Amri, M., & Mhadhbi, H. (2021). Leaf photosynthetic and biomass parameters related to the tolerance of Vicia faba L. cultivars to salinity stress. Euro-Mediterranean Journal for Environmental Integration, 6(1), 1–11. https://doi.org/10.1007/s41207-020-00221-8
  • Oral, E., Altuner, F., Tunçtürk, R., & Tunçtürk, M. (2019). The impact of salt (NaCL) stress on germination characteristics of gibberellic acid pretreated wheat (Triticum durum Desf) seeds. Applied Ecology and Environmental Research, 17(5), 12057–12071. https://doi.org/10.15666/aeer/1705_1205712071
  • Oz, U. (2020). Chapter 6 Effect of Different pre-treatments on seed germination of Salvia fruticosa Mill., Satureja thymbra L. and Thymbra spicata L. In Academic Studies in Science and Mathematics-II. Gece Publishing.
  • Pinna, M. S., Bacchetta, G., Cogoni, D., & Fenu, G. (2021). Recruitment pattern in an isolated small population of the Mediterranean dwarf shrub Satureja thymbra L. and implication for conservation. Rendiconti Lincei, 32(1), 205–213. https://doi.org/10.1007/s12210-021-00978-2
  • Reis, A.C., Konig, I.F.M., Rezende, D.A. de C.S., Gonçalves, R.R.P., Lunguinho, A. da S., Ribeiro, J.C.S., Cardoso, M. das G., & Remedio, R.N. (2021). Cytotoxic effects of Satureja montana L. essential oil on oocytes of engorged Rhipicephalus microplus female ticks (Acari: Ixodidae). Microscopy Research and Technique, November 2020, 1–14. https://doi.org/10.1002/jemt.23693
  • Ren, Y., Wang, W., He, J., Zhang, L., Wei, Y., & Yang, M. (2020). Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicology and Environmental Safety, 187(September 2019), 109785. https://doi.org/10.1016/j.ecoenv.2019.109785
  • Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y., & Hasanuzzaman, M. (2021). Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1), 1–17. https://doi.org/10.3390/plants10010037
  • Roviello, V., & Roviello, G.N. (2021). Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environmental Chemistry Letters, 19(1), 699–710. https://doi.org/10.1007/s10311-020-01063-0
  • Sarıkaya, A.G., Türkmenoğlu, G., & Fakir, H. (2021). Determination to Volatile Components in Different Collection Times of Satureja cuneifolia Ten. Naturally Distributed in Akseki (Antalya). Journal of the Institute of Science and Technology, 11(1), 654–660. https://doi.org/10.21597/jist.779053
  • Scuteri, D., Hamamura, K., Sakurada, T., Watanabe, C., Sakurada, S., Morrone, L.A., Rombolà, L., Tonin, P., Bagetta, G., & Corasaniti, M. T. (2021). Efficacy of essential oils in pain: A systematic review and meta-analysis of preclinical evidence. Frontiers in Pharmacology, 12(March), 1–18. https://doi.org/10.3389/fphar.2021.640128
  • Shahid, M., Ameen, F., Maheshwari, H.S., Ahmed, B., AlNadhari, S., & Khan, M.S. (2021). Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Applied Soil Ecology, 158(November 2020), 103809. https://doi.org/10.1016/j.apsoil.2020.103809
  • Shariatinia, F., Azari, A., Rahimi, A., Panahi, B., & Madahhosseini, S. (2021). Germination, growth, and yield of rocket populations show strong ecotypic variation under NaCl stress. Scientia Horticulturae, 278 (October 2020), 109841. https://doi.org/10.1016/j.scienta.2020.109841
  • Singh, A., Singh, A., Pandey, A.K., Singh, A.K., Singh, R., Singh, A., & Yadav, R. (2020). Effect salinity on germination percentage (%) and seed vigour index of rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 9(2), 1130 1133. https://doi.org/10.22271/phyto.2020.v9.i2s.11003
  • Székely, Á., Szalóki, T., Ibadzade, M., Pauk, J., Lantos, C., & Jancsó, M. (2021). Germination dynamics of european rice varieties under salinity stress. Pakistan Journal of Agricultural Sciences, 58(1), 1–5. https://doi.org/10.21162/PAKJAS/21.464
  • Tepe, B., & Cilkiz, M. (2016). A pharmacological and phytochemical overview on Satureja. Pharmaceutical Biology, 54(3), 375–412. https://doi.org/10.3109/13880209.2015.1043560
  • Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M., & Muccifora, S. (2021). Response to salinity in legume species: An insight on the effects of salt stress during seed germination and seedling growth. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202000917
  • Tokarz, K.M., Wesołowski, W., Tokarz, B., Makowski, W., Wysocka, A., Jędrzejczyk, R.J., Chrabaszcz, K., Malek, K., & Kostecka-Gugała, A. (2021). Stem photosynthesis—a key element of grass pea (Lathyrus sativus L.) acclimatisation to salinity. International Journal of Molecular Sciences, 22(2), 1–33. https://doi.org/10.3390/ijms22020685
  • Tolay, I. (2021). The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. Plos One, 16(2), e0246493. https://doi.org/10.1371/journal.pone.0246493
  • Tonguç, M., Önder, S., & Mutlucan, M. (2021). Determination of Germination Parameters of Safflower (Carthamus tinctorius L.) Cultivars Under Salt Stress. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 155 161. https://doi.org/10.19113/sdufenbed.952889
  • Turcios, A.E., Papenbrock, J., & Tränkner, M. (2021). Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science, August 2020, 1–13. https://doi.org/10.1111/jac.12477
  • Wang, H., Zhao, K., Li, X., Chen, X., Liu, W., & Wang, J. (2020). Factors affecting seed germination and emergence of Aegilops tauschii. Weed Research, 60(3), 171–181. https://doi.org/10.1111/wre.12410
  • Yohannes, G., Kidane, L., Abraha, B., & Beyene, T. (2020). Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1), 1–19. https://doi.org/10.4314/mejs.v12i1.1
  • Younis, M.E., Rizwan, M., & Tourky, S.M.N. (2021). Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress. Acta Physiologiae Plantarum, 43(8), 1–10. https://doi.org/10.1007/s11738-021-03285-3
  • Zeng, P., Zhu, P., Qian, L., Qian, X., Mi, Y., Lin, Z., Dong, S., Aronsson, H., Zhang, H., & Cheng, J. (2021). Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC Plant Biology, 21(1), 1–14. https://doi.org/10.1186/s12870-020-02820-7
  • Zhumabekova, Z., Xu, X., Wang, Y., Song, C., Kurmangozhinov, A., & Sarsekova, D. (2020). Effects of sodium chloride and sodium sulfate on Haloxylon ammodendron seed germination. Sustainability (Switzerland), 12(12), 1 19. https://doi.org/10.3390/SU12124927
There are 89 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Ummahan Öz 0000-0002-0281-1048

Publication Date March 10, 2022
Submission Date November 18, 2021
Published in Issue Year 2022

Cite

APA Öz, U. (2022). The effect of salinity stress on germination parameters in Satureja thymbra L. (Lamiaceae). International Journal of Secondary Metabolite, 9(1), 74-90. https://doi.org/10.21448/ijsm.1025295
International Journal of Secondary Metabolite

e-ISSN: 2148-6905