Research Article
BibTex RIS Cite

GC-MS profiling of anticancer and antimicrobial phytochemicals in the vegetative leaf, root, and stem of Withania somnifera (L.) Dunal

Year 2024, , 63 - 77, 05.02.2024
https://doi.org/10.21448/ijsm.1256932

Abstract

Withania somnifera has been used for a long time in traditional medicine. Its crude extract, dried powder, and purified metabolites from mature plants have shown promising therapeutic potential. To further investigate its potential, the detection of phytochemicals with anticancer and antimicrobial properties in the vegetative stage is essential. Hence, this study was done to identify phytochemical constituents using GC-MS analysis for anticancer and antimicrobial activities in the vegetative stage from methanolic extracts of stem, leaf, and root in W. somnifera. The air-dried plant parts were extracted with methanol at low pressure to concentrate using a rotary evaporator at 40°C. To identify phytochemicals, Shimadzu GCMSQP2010, Japan, was used with the NIST107.LIB database. The GC-MS identified 35 unique phytochemical peaks at the vegetative stage in W. somnifera. In leaves, the antibacterial phytochemicals included cyclotrisiloxane, hexamethyl, with a high abundance, and cyclohexasiloxane, dodecamethyl, with the least abundance. In roots, the phytochemicals 2,2-dimethoxybutane, with high abundance, and cathinone, with least abundance, were found to have antibacterial properties, whereas trans-2,3-epoxyoctane, with high abundance, and 2,2-dimethoxybutane, with least abundance, were found to have anticancer properties. In stem, the antibacterial phytoconstituents octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl, and benzenemethanol, alpha.-(1-aminoethyl), were found to be the most abundant and least abundant, respectively, while arabinitol and pentaacetate had both anticancer and antibacterial activities. At the vegetative stage, GC-MS studies of stem, leaf, and root parts revealed the occurrence of potential phytochemicals for antibacterial and anticancer activities in W. somnifera.

References

  • Afewerky, H., Ayodeji, A., Tiamiyu, B., Orege, J., Okeke, E., Oyejobi, A., Bate, P., & Adeyemi. (2021). Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. Bulletin of the National Research Centre, 45(1), 176. https://doi.org/10.1186/s42269-021-00635-6
  • Akter, R., Khan, S., Kabir, M., & Halder, S. (2022). GC-MS-employed phytochemical characterization, synergistic antioxidant, and cytotoxic potential of Triphala methanol extract at non-equivalent ratios of its constituents. Saudi Journal of Biological Sciences, 29(6), 103287. https://doi.org/10.1016/j.sjbs.2022.103287
  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel), 6(4), 42. https://doi.org/10.3390/plants6040042
  • Amrati, F., Bourhia,M., Saghrouchni, H., Slighoua, M., Grafov, A., Ullah, R., Ezzeldin, E., Mostafa, G., Bari, A., Ibenmoussa, S., & Bousta, D. (2021). Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules, 26(3), 636. https://doi.org/10.3390/molecules26030636
  • Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S.F., & Nabavi, S.M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44 68. https://doi.org/10.1016/j.micres.2016.12.003
  • Bisht, P., & Rawat, V., (2014). Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. Ayu, 35(3), 330-332. https://doi.org/10.4103/0974-8520.153757
  • Bratty, M., Makeen, H., Alhazmi, H., Syame, S., Abdalla, A., Homeida, H., Sultana, S., Ahsan, W., Khalid, A., (2020). Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. Journal of Chemistry, 2020(4), 521951. https://doi.org/10.1155/2020/4521951
  • Chao, S.-Y P. Lin,Y.. Lin K.-H., et al., (2014). Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients, 6(5), 2115–2130. https://doi.org/10.3390/nu6052115
  • Chirumamilla, P., Dharavath, S., and Taduri, S. (2022). GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. Bulletin of the National Research Centre, 46(1), 127. https://doi.org/10.1186/s42269-022-00818-9
  • Ciprofloxacin Hydrochloride. The American Society of Health-System Pharmacists (ASHP). Archived from the original on 23 September 2015. Retrieved on 17 July 2023.
  • Dahpour, A., Rahdari, P., & Sobati, Z., (2012). Chemical composition of essential oil, antibacterial activity and brine shrimp lethality of ethanol extracts from Sedum pallidum. Academic Journals, 6(16), 3105-3109. https://doi.org/10.5897/JMPR11.1270
  • Diale, M., Kayitesi, E., and Serepa-Dlamini, M. (2021). Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Frontiers in Genetics, 12(2021), 672149. https://doi.org/10.3389/fgene.2021.672149
  • Dutta, R., Khalil, R., Green, R., & Mohapatra, S. ((2019). Withania somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. International Journal of Molecular Sciences, 20(21), 5310. https://doi.org/10.25081/cb.2021.v12.6867
  • EL-Zawawy, N., & Mona, M. (2021). Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Scientifi Reports, 11(2021), 24317. https://doi.org/10.1038/s41598-021-03664-3
  • Fagbemi, K., Aina, D., & Olajuyigbe, O. (2021). Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Hindawi, 2021(5961586), 1- 8. https://doi.org/10.1155/2021/5961586
  • Falowo, A., Muchenje, V., Hugo, A., Aiyegoro, O., & Fayemi, P. (2017). Antioxidant activities of Moringa oleifera L. and Bidens pilosa L. leaf extracts and their effects on oxidative stability of ground raw beef during refrigeration storage. CyTA - Journal of Food, 15(2), 249 – 256. https://doi.org/10.1080/19476337.2016.1243587
  • Haghighi, S., Yazdinezhad, A., Bagheri, K., & Sharafi, A. (2022). Volatile Constituents and Toxicity of Essential Oils Extracted From Aerial Parts of Plantago Lanceolata and Plantago Major Growing in Iran. Pharmaceutical and Biomedical Research, 8(3), 205-224 https://doi.org/10.1515/znc-2006-7-801
  • Hajjar, D., Kremb, S., Sioud, S., Emwas, A., Voolstra, C., & Ravasi, T. (2017). Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One, 12(6), e0177316. https://doi.org/10.1371/journal.pone.0177316
  • Hassan, S. (2016). Antibacterial, Anticoagulant and Anti-inflammatory Activities of Marine Bacillus cereus S1. Journal of Pure and Applied Microbiology, 10(4), 2593–2606. https://doi.org/10.21608/ejabf.2020.86046
  • Kaur, A., Singh, B., Ohri, P., Wang, J., Wadhwa, R., Kaul, C., Pati, K. (2018). Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PloS One, 13(4), e0194314. https://doi.org/10.1371/journal.pone.0194314
  • Kaviya, M., Balasubramanian, B., Bharathi, K., Malaisamy, A., Al-Dhabi, N., Mariadhas, V., Anand, A., Liu, W. (2021). Evaluation of Nutritional Substances and Investigation of Antioxidant and Antimicrobial Potentials of Boerhavia diffusa with in silico Molecular Docking. Molecules, 27(4), 1280. https://doi.org/10.3390/molecules27041280
  • Keskin, D., Guvensen, N., & Dbeys, A. (2012). Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. Journal of Food Agriculture and Environment, 10(2), 99-102.
  • Khan, S., Shahid, S., Ayaz, A., Alkahtani, J., Elshikh, S., Riaz, T. (2021). Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities. International Journal of Nanomedicine, 16, 1757-1773. https://doi.org/10.2147/IJN.S294012
  • Kuppusamy P., Yusoff M. M., Parine N. R., and Govindan N. (2015). Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents. Saudi Journal of Biological Sciences, 22(3), 293–301. https://doi.org/10.1016/j.sjbs.2014.09.016
  • Lingfa, L., & Ankanagari, S. (2023). GC-MS Profiling of reproductive stage Withania somnifera for antimicrobial and anticancer phytochemicals. Biomedical and Pharmacology, 13(1), 71-78. https://dx.doi.org/10.13005/bpj/1862
  • Lingfa, L., Gugulothu, B., Jagtap, S., & Ankanagari, S. (2022). HPTLC fingerprinting reveals leaf and roots phytochemical variability in developmental stages of Withania somnifera. Journal of Pharmacognosy and Phytochemistry, 11(4), 283 294. https://doi.org/10.22271/phyto.2022.v11.i4d.14473
  • Majumder, R., Dhara, M., Adhikari, L., Ghosh, G., & Pattnaik, S. (2019). Evaluation of in vitro Antibacterial and Antioxidant Activity of Aqueous Extracts of Olax psittacorum. Indian Journal of Pharmaceutical Sciences, 81(1), 99-109. https://doi.org/10.4172/pharmaceutical-sciences.1000484
  • Manikandan, M., Gowdaman, V., Duraimurugan, K., Prabagaran, R. (2019). Taxonomic characterization and antimicrobial compound production from Streptomyces chumphonensis BDK01 isolated from marine sediment. 3 Biotech., 9(5), 167. https://doi.org/10.1007%2Fs13205-019-1687-7
  • Moustafa, M., Alamri, S., Taha, T., & Alrumman, S. (2013). In vitro antifungal activity of Argemone ochroleuca Sweet latex against some pathogenic fungi. African Journal of Biotechnology, 12(10), 1132-1137. https://doi.org/10.5897/AJB12.2649.
  • Mukesi, M., Iweriebor, B., Obi, L., Nwodo, U., Moyo., S.x & Okoh, A. (2019). The activity of commercial antimicrobials, and essential oils and ethanolic extracts of Olea europaea on Streptococcus agalactiae isolated from pregnant women. BMC Complementary Medicine and Therapies, 19(1), 34. https://doi.org/10.1186/s12906-019-2445-4
  • Musher, M., Saenz, C., & Griffith, P. (2021). Unravelling the bioprospects of mycoendophytes residing in Withania somnifera for productive pharmaceutical applications. Biocatalysis and Agricultural Biotechnology, 37, 102172. https://doi.org/10.1016/j.bcab.2021.102172
  • Piddock, J., Garvey, I., Rahman, M., Gibbons, S (2010). Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother, 65, 1215–1223. https://doi.org/10.1093/jac/dkq079
  • Prasathkumara., M, Raja., K, Vasanth., K, Khusro., A, Sadhasivam., S, Sahibzada., M, Gawwad., M, Farraj., D., & Elshikhg., M. (2021). Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arabian Journal of Chemistry, 14(9), 103345. https://doi.org/10.1016/j.arabjc.2021.103345
  • Rahman, A., Hannan, A., Dash, R., Rahman, H., Islam, R., Uddin, J., Sohag, M., Rhim, H. (2021). Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy - Apoptosis Pathway. Front Pharmacol, 12, 1-20. https://doi.org/10.3389/fphar.2021.639628
  • Ruiz-Ruiz J.C., Matus-Basto A.J., Acereto-Escoffié P., and Segura-Campos M.R. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424 1437. https://doi.org/10.1080/09540105.2017.1347148
  • Saidulu, C., Venkateshwar, C., Rao, S., & Vardhan., T. (2014). In-vitro Antimicrobial Activity of Withania somnifera Leaf and Root Extracts grown in Heavy Metal toxic soils. International Journal of Advances in Pharmacy, Biology and Chemistry, 3(4), 872-879.
  • Salemm, S., Muhammad, G., Hussain, M., & Bukhari, S. (2020). Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iranian Journal of Basic Medical Sciences, 23(12), 1501-1526. https://doi.org/10.22038/IJBMS.2020.44254.10378
  • Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus, 11(12), e6466. https://doi.org/10.7759/cureus.6466
  • Sanabria-Ríos, S., Morales-Guzmán, C., Mooney, J., Medina, S., Pereles-De-León., T, Rivera-Román, A., Ocasio-Malavé, C., Díaz, D., Chorna, N. & Carballeira, N. (2020). Antibacterial activity of hexadecynoic acid isomers towards clinical isolates of multidrug-resistant Staphylococcus aureus. Lipids, 55(2), 101–116. https://doi.org/10.1002/lipd.12213
  • Singariya, P., Kumar, P., & Mourya, K.K. (2011). In-vitro Bio-efficacy of Stem extracts of Ashwagandha against Some Pathogens. Journal of Current Pharmaceutical Research, 8(1), 25-30.
  • Soliman, Y., & Hermine, T. (2016). Antifouling and Antibacterial Activities of Marine Bioactive Compounds Extracted from some Red Sea Cucumber. International Journal of Contemporary Applied Sciences, 3(9), 83-103. https://doi.org/10.1186/s10152-020-0536-8
  • Trust, J., Bartlett, H. (1975). Antibacterial activity of tropilidine and tropone. Antimicrob Agents Chemother, 8, 381–383. https://doi.org/10.1128/aac.8.3.381
  • Yadav, B., Bajaj, A., Saxena, M., Saxena K. (2010). In Vitro Anticancer Activity of the Root, Stem and Leaves of Withania somnifera against Various Human Cancer Cell Lines. Indian J Pharm Sci., 72(5), 659-63. https://doi.org/10.4103%2F0250-474X.78543
  • Yunnikova, L., Akenteva, T., Aleksandrova, G., Mikhailova, L., & Eliseev, S. (2014). Synthesis and Antimicrobial Activity of Anilines with 1,3,5-Cycloheptatriene and 5H-Dibenzo[a,d]Annulene Fragments. Pharmaceutical Chemistry Journal, 48(1), 26-29. https://doi.org/10.1007/s11094-014-1038-2
  • Zielińska-Błajet., M & Feder-Kubis., J. (2020). Monoterpenes and Their Derivatives-Recent Development in Biological and Medical Applications. International Journal of Molecular Sciences, 21(19), 7078. https://doi.org/10.3390/ijms21197078

GC-MS profiling of anticancer and antimicrobial phytochemicals in the vegetative leaf, root, and stem of Withania somnifera (L.) Dunal

Year 2024, , 63 - 77, 05.02.2024
https://doi.org/10.21448/ijsm.1256932

Abstract

Withania somnifera has been used for a long time in traditional medicine. Its crude extract, dried powder, and purified metabolites from mature plants have shown promising therapeutic potential. To further investigate its potential, the detection of phytochemicals with anticancer and antimicrobial properties in the vegetative stage is essential. Hence, this study was done to identify phytochemical constituents using GC-MS analysis for anticancer and antimicrobial activities in the vegetative stage from methanolic extracts of stem, leaf, and root in W. somnifera. The air-dried plant parts were extracted with methanol at low pressure to concentrate using a rotary evaporator at 40°C. To identify phytochemicals, Shimadzu GCMSQP2010, Japan, was used with the NIST107.LIB database. The GC-MS identified 35 unique phytochemical peaks at the vegetative stage in W. somnifera. In leaves, the antibacterial phytochemicals included cyclotrisiloxane, hexamethyl, with a high abundance, and cyclohexasiloxane, dodecamethyl, with the least abundance. In roots, the phytochemicals 2,2-dimethoxybutane, with high abundance, and cathinone, with least abundance, were found to have antibacterial properties, whereas trans-2,3-epoxyoctane, with high abundance, and 2,2-dimethoxybutane, with least abundance, were found to have anticancer properties. In stem, the antibacterial phytoconstituents octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl, and benzenemethanol, alpha.-(1-aminoethyl), were found to be the most abundant and least abundant, respectively, while arabinitol and pentaacetate had both anticancer and antibacterial activities. At the vegetative stage, GC-MS studies of stem, leaf, and root parts revealed the occurrence of potential phytochemicals for antibacterial and anticancer activities in W. somnifera.

References

  • Afewerky, H., Ayodeji, A., Tiamiyu, B., Orege, J., Okeke, E., Oyejobi, A., Bate, P., & Adeyemi. (2021). Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. Bulletin of the National Research Centre, 45(1), 176. https://doi.org/10.1186/s42269-021-00635-6
  • Akter, R., Khan, S., Kabir, M., & Halder, S. (2022). GC-MS-employed phytochemical characterization, synergistic antioxidant, and cytotoxic potential of Triphala methanol extract at non-equivalent ratios of its constituents. Saudi Journal of Biological Sciences, 29(6), 103287. https://doi.org/10.1016/j.sjbs.2022.103287
  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel), 6(4), 42. https://doi.org/10.3390/plants6040042
  • Amrati, F., Bourhia,M., Saghrouchni, H., Slighoua, M., Grafov, A., Ullah, R., Ezzeldin, E., Mostafa, G., Bari, A., Ibenmoussa, S., & Bousta, D. (2021). Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules, 26(3), 636. https://doi.org/10.3390/molecules26030636
  • Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S.F., & Nabavi, S.M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44 68. https://doi.org/10.1016/j.micres.2016.12.003
  • Bisht, P., & Rawat, V., (2014). Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. Ayu, 35(3), 330-332. https://doi.org/10.4103/0974-8520.153757
  • Bratty, M., Makeen, H., Alhazmi, H., Syame, S., Abdalla, A., Homeida, H., Sultana, S., Ahsan, W., Khalid, A., (2020). Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. Journal of Chemistry, 2020(4), 521951. https://doi.org/10.1155/2020/4521951
  • Chao, S.-Y P. Lin,Y.. Lin K.-H., et al., (2014). Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients, 6(5), 2115–2130. https://doi.org/10.3390/nu6052115
  • Chirumamilla, P., Dharavath, S., and Taduri, S. (2022). GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. Bulletin of the National Research Centre, 46(1), 127. https://doi.org/10.1186/s42269-022-00818-9
  • Ciprofloxacin Hydrochloride. The American Society of Health-System Pharmacists (ASHP). Archived from the original on 23 September 2015. Retrieved on 17 July 2023.
  • Dahpour, A., Rahdari, P., & Sobati, Z., (2012). Chemical composition of essential oil, antibacterial activity and brine shrimp lethality of ethanol extracts from Sedum pallidum. Academic Journals, 6(16), 3105-3109. https://doi.org/10.5897/JMPR11.1270
  • Diale, M., Kayitesi, E., and Serepa-Dlamini, M. (2021). Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Frontiers in Genetics, 12(2021), 672149. https://doi.org/10.3389/fgene.2021.672149
  • Dutta, R., Khalil, R., Green, R., & Mohapatra, S. ((2019). Withania somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. International Journal of Molecular Sciences, 20(21), 5310. https://doi.org/10.25081/cb.2021.v12.6867
  • EL-Zawawy, N., & Mona, M. (2021). Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Scientifi Reports, 11(2021), 24317. https://doi.org/10.1038/s41598-021-03664-3
  • Fagbemi, K., Aina, D., & Olajuyigbe, O. (2021). Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Hindawi, 2021(5961586), 1- 8. https://doi.org/10.1155/2021/5961586
  • Falowo, A., Muchenje, V., Hugo, A., Aiyegoro, O., & Fayemi, P. (2017). Antioxidant activities of Moringa oleifera L. and Bidens pilosa L. leaf extracts and their effects on oxidative stability of ground raw beef during refrigeration storage. CyTA - Journal of Food, 15(2), 249 – 256. https://doi.org/10.1080/19476337.2016.1243587
  • Haghighi, S., Yazdinezhad, A., Bagheri, K., & Sharafi, A. (2022). Volatile Constituents and Toxicity of Essential Oils Extracted From Aerial Parts of Plantago Lanceolata and Plantago Major Growing in Iran. Pharmaceutical and Biomedical Research, 8(3), 205-224 https://doi.org/10.1515/znc-2006-7-801
  • Hajjar, D., Kremb, S., Sioud, S., Emwas, A., Voolstra, C., & Ravasi, T. (2017). Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One, 12(6), e0177316. https://doi.org/10.1371/journal.pone.0177316
  • Hassan, S. (2016). Antibacterial, Anticoagulant and Anti-inflammatory Activities of Marine Bacillus cereus S1. Journal of Pure and Applied Microbiology, 10(4), 2593–2606. https://doi.org/10.21608/ejabf.2020.86046
  • Kaur, A., Singh, B., Ohri, P., Wang, J., Wadhwa, R., Kaul, C., Pati, K. (2018). Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PloS One, 13(4), e0194314. https://doi.org/10.1371/journal.pone.0194314
  • Kaviya, M., Balasubramanian, B., Bharathi, K., Malaisamy, A., Al-Dhabi, N., Mariadhas, V., Anand, A., Liu, W. (2021). Evaluation of Nutritional Substances and Investigation of Antioxidant and Antimicrobial Potentials of Boerhavia diffusa with in silico Molecular Docking. Molecules, 27(4), 1280. https://doi.org/10.3390/molecules27041280
  • Keskin, D., Guvensen, N., & Dbeys, A. (2012). Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. Journal of Food Agriculture and Environment, 10(2), 99-102.
  • Khan, S., Shahid, S., Ayaz, A., Alkahtani, J., Elshikh, S., Riaz, T. (2021). Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities. International Journal of Nanomedicine, 16, 1757-1773. https://doi.org/10.2147/IJN.S294012
  • Kuppusamy P., Yusoff M. M., Parine N. R., and Govindan N. (2015). Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents. Saudi Journal of Biological Sciences, 22(3), 293–301. https://doi.org/10.1016/j.sjbs.2014.09.016
  • Lingfa, L., & Ankanagari, S. (2023). GC-MS Profiling of reproductive stage Withania somnifera for antimicrobial and anticancer phytochemicals. Biomedical and Pharmacology, 13(1), 71-78. https://dx.doi.org/10.13005/bpj/1862
  • Lingfa, L., Gugulothu, B., Jagtap, S., & Ankanagari, S. (2022). HPTLC fingerprinting reveals leaf and roots phytochemical variability in developmental stages of Withania somnifera. Journal of Pharmacognosy and Phytochemistry, 11(4), 283 294. https://doi.org/10.22271/phyto.2022.v11.i4d.14473
  • Majumder, R., Dhara, M., Adhikari, L., Ghosh, G., & Pattnaik, S. (2019). Evaluation of in vitro Antibacterial and Antioxidant Activity of Aqueous Extracts of Olax psittacorum. Indian Journal of Pharmaceutical Sciences, 81(1), 99-109. https://doi.org/10.4172/pharmaceutical-sciences.1000484
  • Manikandan, M., Gowdaman, V., Duraimurugan, K., Prabagaran, R. (2019). Taxonomic characterization and antimicrobial compound production from Streptomyces chumphonensis BDK01 isolated from marine sediment. 3 Biotech., 9(5), 167. https://doi.org/10.1007%2Fs13205-019-1687-7
  • Moustafa, M., Alamri, S., Taha, T., & Alrumman, S. (2013). In vitro antifungal activity of Argemone ochroleuca Sweet latex against some pathogenic fungi. African Journal of Biotechnology, 12(10), 1132-1137. https://doi.org/10.5897/AJB12.2649.
  • Mukesi, M., Iweriebor, B., Obi, L., Nwodo, U., Moyo., S.x & Okoh, A. (2019). The activity of commercial antimicrobials, and essential oils and ethanolic extracts of Olea europaea on Streptococcus agalactiae isolated from pregnant women. BMC Complementary Medicine and Therapies, 19(1), 34. https://doi.org/10.1186/s12906-019-2445-4
  • Musher, M., Saenz, C., & Griffith, P. (2021). Unravelling the bioprospects of mycoendophytes residing in Withania somnifera for productive pharmaceutical applications. Biocatalysis and Agricultural Biotechnology, 37, 102172. https://doi.org/10.1016/j.bcab.2021.102172
  • Piddock, J., Garvey, I., Rahman, M., Gibbons, S (2010). Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother, 65, 1215–1223. https://doi.org/10.1093/jac/dkq079
  • Prasathkumara., M, Raja., K, Vasanth., K, Khusro., A, Sadhasivam., S, Sahibzada., M, Gawwad., M, Farraj., D., & Elshikhg., M. (2021). Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arabian Journal of Chemistry, 14(9), 103345. https://doi.org/10.1016/j.arabjc.2021.103345
  • Rahman, A., Hannan, A., Dash, R., Rahman, H., Islam, R., Uddin, J., Sohag, M., Rhim, H. (2021). Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy - Apoptosis Pathway. Front Pharmacol, 12, 1-20. https://doi.org/10.3389/fphar.2021.639628
  • Ruiz-Ruiz J.C., Matus-Basto A.J., Acereto-Escoffié P., and Segura-Campos M.R. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424 1437. https://doi.org/10.1080/09540105.2017.1347148
  • Saidulu, C., Venkateshwar, C., Rao, S., & Vardhan., T. (2014). In-vitro Antimicrobial Activity of Withania somnifera Leaf and Root Extracts grown in Heavy Metal toxic soils. International Journal of Advances in Pharmacy, Biology and Chemistry, 3(4), 872-879.
  • Salemm, S., Muhammad, G., Hussain, M., & Bukhari, S. (2020). Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iranian Journal of Basic Medical Sciences, 23(12), 1501-1526. https://doi.org/10.22038/IJBMS.2020.44254.10378
  • Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus, 11(12), e6466. https://doi.org/10.7759/cureus.6466
  • Sanabria-Ríos, S., Morales-Guzmán, C., Mooney, J., Medina, S., Pereles-De-León., T, Rivera-Román, A., Ocasio-Malavé, C., Díaz, D., Chorna, N. & Carballeira, N. (2020). Antibacterial activity of hexadecynoic acid isomers towards clinical isolates of multidrug-resistant Staphylococcus aureus. Lipids, 55(2), 101–116. https://doi.org/10.1002/lipd.12213
  • Singariya, P., Kumar, P., & Mourya, K.K. (2011). In-vitro Bio-efficacy of Stem extracts of Ashwagandha against Some Pathogens. Journal of Current Pharmaceutical Research, 8(1), 25-30.
  • Soliman, Y., & Hermine, T. (2016). Antifouling and Antibacterial Activities of Marine Bioactive Compounds Extracted from some Red Sea Cucumber. International Journal of Contemporary Applied Sciences, 3(9), 83-103. https://doi.org/10.1186/s10152-020-0536-8
  • Trust, J., Bartlett, H. (1975). Antibacterial activity of tropilidine and tropone. Antimicrob Agents Chemother, 8, 381–383. https://doi.org/10.1128/aac.8.3.381
  • Yadav, B., Bajaj, A., Saxena, M., Saxena K. (2010). In Vitro Anticancer Activity of the Root, Stem and Leaves of Withania somnifera against Various Human Cancer Cell Lines. Indian J Pharm Sci., 72(5), 659-63. https://doi.org/10.4103%2F0250-474X.78543
  • Yunnikova, L., Akenteva, T., Aleksandrova, G., Mikhailova, L., & Eliseev, S. (2014). Synthesis and Antimicrobial Activity of Anilines with 1,3,5-Cycloheptatriene and 5H-Dibenzo[a,d]Annulene Fragments. Pharmaceutical Chemistry Journal, 48(1), 26-29. https://doi.org/10.1007/s11094-014-1038-2
  • Zielińska-Błajet., M & Feder-Kubis., J. (2020). Monoterpenes and Their Derivatives-Recent Development in Biological and Medical Applications. International Journal of Molecular Sciences, 21(19), 7078. https://doi.org/10.3390/ijms21197078
There are 45 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Articles
Authors

Lali Lingfa This is me 0000-0002-3060-1603

Aravinda Tirumala This is me 0009-0001-0839-6690

Srinivas Ankanagari 0000-0001-7631-6536

Publication Date February 5, 2024
Submission Date February 27, 2023
Published in Issue Year 2024

Cite

APA Lingfa, L., Tirumala, A., & Ankanagari, S. (2024). GC-MS profiling of anticancer and antimicrobial phytochemicals in the vegetative leaf, root, and stem of Withania somnifera (L.) Dunal. International Journal of Secondary Metabolite, 11(1), 63-77. https://doi.org/10.21448/ijsm.1256932

Cited By







International Journal of Secondary Metabolite

e-ISSN: 2148-6905