Review
BibTex RIS Cite

Current review of biodegradation and detoxification strategies for zearalenone contaminated food and feed

Year 2024, , 157 - 168, 05.02.2024
https://doi.org/10.21448/ijsm.1271127

Abstract

Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is an estrogenic mycotoxin produced by Fusarium species that leads to huge economic losses in the food industry and livestock husbandry. Contamination of food and feed with zearalenone has reproductive problems, carcinogenicity, immunotoxicity, and other cytotoxic effects. At present, microorganisms and enzymes derived from microbial strains have been widely used for the degradation of zearalenone in food and feed. Researchers have developed biodegradation of zearalenone by the use of microbial and their enzyme derivatives, which offers harmless products and is environmentally friendly. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation and detoxification strategies of zearalenone using microorganisms and enzyme derivatives to nontoxic products.

References

  • Adunphatcharaphon, S., Petchkongkaew, A., & Visessanguan, W. (2021). In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins, 13, 286. https://doi.org/10.3390/toxins13040286
  • Ahn, J.Y., Kim, J., Cheong, D.H., Hong, H., Jeong, J.Y., & Kim, B.G. (2022). An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals, 12(3), 333. https://doi.org/10.3390/ani12030333
  • Arroyo-Manzanares, N., Campillo, N., López-García, I., Hernández-Córdoba, M., & Viñas, P. (2021). High-Resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchemical Journal, 166, 106197. https://doi.org/10.1016/j.microc.2021.106197
  • Azam, M.S., Yu, D., Liu, N., & Wu, A. (2019). Degrading ochratoxin A and zearalenone mycotoxins using a multifunctional recombinant enzyme. Toxins, 11(5), 301. https://doi.org/10.3390/toxins11050301
  • Bergman, A., Wenning, L., Siewers, V., & Nielsen, J. (2018). Investigation of putative regulatory acetylation sites in Fas2p of Saccharomyces cerevisiae. bioRxiv, 430918. https://doi.org/10.1101/430918
  • Bi, K, Zhang, W., Xiao, Z., & Zhang. D. (2018). Characterization, expression and application of a zearalenone degrading enzyme from Neurospora crassa. AMB Express, 8, 194. https://doi.org/10.1186/s13568-018-0723-z
  • Bin, Y.S., Zheng, H.C., Xu, J.Y., Zhao, X.Y., Shu, W.J., Li, X.M., Song, H., & Ma, Y.H. (2021). New biotransformation mode of zearalenone identifed in Bacillus subtilis Y816 revealing a novel ZEN conjugate. Journal of Agricultural and Food Chemistry, 69(26), 7409–7419. https://doi.org/10.1021/acs.jafc.1c01817
  • Bouajila, A., Lamine, M., Hamdi, Z., Ghorbel, A., & Gangashetty, P. (2022). A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN). Agronomy, 12(4), 916. https://doi.org/10.3390/agronomy12040916
  • Chang, X., Liu, H., Sun, J., Wang, J., Zhao, C., Zhang, W., Zhang, J., & Sun, C. (2020). Zearalenone removal from corn oil by an enzymatic strategy. Toxins (basel), 12, 1–14. https://doi.org/10.3390/toxins12020117
  • Chen, S., Pan, L., Liu, S., Pan, L., Li, X., & Wang, B. (2021). Recombinant expression and surface display of a zearalenone lactonohydrolase from Trichoderma aggressivum in Escherichia coli. Protein Expression and Purification, 187, 105933. https://doi.org/10.1016/j.pep.2021.105933
  • Chen, S.W., Hsu, J.T., Y.-A. Chou, Y.A., & Wang, H.T. (2018). The application of digestive tract lactic acid bacteria with high esterase activity for zearalenone detoxification. Journal of the Science of Food and Agriculture, 98(10), 3870 3879. https://doi.org/10.1002/jsfa.8904
  • Cheng, B., Shi, W., Luo, J., Peng, F., Wan, C., & Wei, H. (2010). Cloning of zearalenone-degraded enzyme gene (ZEN-jjm) and its expression and activity analysis. Journal of Agricultural Biotechnology, 18(2), 225 230. https://doi.org/10.3969/j.issn.1674 7968.2010.02.004
  • Cho, K.J., Kang, J.S., Cho, W.T., Lee, C.H., Ha, J.K., & Song, K.B. (2010). In vitro degradation of zearalenone by Bacillus subtilis. Biotechnology Letters, 32(12), 1921-1924. https://doi.org/10.1007/s10529-010-0373-y
  • Deng, T., Yuan, Q.S., Zhou, T., Guo, L.P., Jiang, W.K., Zhou, S.H., Yang, C.G., & Kang, C.Z. (2021). Screening of zearalenone-degrading bacteria and analysis of degradation conditions. China Journal of Chinese Materia Medica, 46(20), 5240 5246. https://doi.org/10.19540/j.cnki.cjcmm.20210716.101
  • Feng, Y., Huang, Y., Zhan, H., Bhatt, P., & Chen, S. (2020). An overview of strobilurin fungicide degradation: current status and future perspective. Frontiers in Microbiology, 11, 389. https://doi.org/10.3389/fmicb.2020.00389
  • Fu, G., Ma, J., Wang, L., Yang, X., Liu, J., & Zhao, X. (2016). Effect of degradation of zearalenone-contaminated feed by Bacillus licheniformis CK1 on postweaning female piglets. Toxins, 8(10), 300. https://doi.org/10.3390/toxins8100300
  • Gajęcka, M., Majewski, M.S., Zielonka, Ł., Grzegorzewski, W., Onyszek, E., Lisieska-Żołnierczyk, S., Juśkiewicz, J., Babuchowski, A., & Gajęcki, M.T. (2021). Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins, 13(6), 396. https://doi.org/10.3390/toxins13060396
  • Gao, D., Cao, X., Ren, H., Wu, L., Yan, Y., Hua, R., Xing, W., Lei, M., & Liu, J. (2022). Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicology Letters, 357, 33-42. https://doi.org/10.1016/j.toxlet.2021.12.017
  • Garcia, S.O., Feltrin, A.C.P., & Garda-Buffon, J. (2018). Zearalenone reduction by commercial peroxidase enzyme and peroxidases from soybean bran and rice bran. Food Additives & Contaminants: Part A, 35(9), 1819 1831. https://doi.org/10.1080/19440049.2018.1486044
  • Greeff-Laubscher, M.R., Beukes, I., Marais, G.J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105 117. https://doi.org/10.1080/21501203.2019.1604575
  • Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, W., & Kuca, K. (2021). Aflatoxin detoxification using microorganisms and enzymes. Toxins, 13(1), 46. https://doi.org/10.3390/toxins13010046
  • Guo, Y., Qin, X., Tang, Y., Ma, Q., Zhang, J., & Zhao, L. (2020). CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi aflatoxin Q1. Food Chemistry, 325, 126877. https://doi.org/10.1016/j.foodchem.2020.126877
  • Harčárová, M., Čonková, E., Naď, P., & Proškovcová, M. (2022). Zearalenone Biodegradation by the Spp. and Spp. Folia Veterinaria, 66(1), 70-74. https://doi.org/10.2478/fv-2022-0008
  • Harkai, P., Szabó, I., Cserháti, M., Krifaton, C., Risa, A., Radó, J., Balázs, A., Berta, K., & Kriszt, B. (2016). Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp. collection. International Biodeterioration & Biodegradation, 108, 48 56. https://doi.org/10.1016/j.ibiod.2015.12.007
  • Hathout, A.S., & Aly, S.E. (2014). Biological detoxification of mycotoxins: A review. Annals of microbiology, 64(3), 905-919. https://doi.org/10.1007/s13213-014-0899-7
  • Hsu, T.C., Yi, P.J., Lee, T.Y., & Liu, J.R. (2018). Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PloS One, 13(4), e0194866. https://doi.org/10.1371/journal.pone.0194866
  • Hui, R., Hu, X., Liu, W., Liu, W., Zheng, Y., Chen, Y., Guo, R.-T., Jin, J., & Chen, C.-C. (2017). Characterization and crystal structure of a novel zearalenone hydrolase fromCladophialophora bantiana. Acta Crystallographica Section F Structural Biology Communications, 73(9), 515–519. https://doi.org/10.1107/s2053230x17011840
  • Jia, S., Ren, C., Yang, P., & Qi, D. (2022). Effects of Intestinal Microorganisms on Metabolism and Toxicity Mitigation of Zearalenone in Broilers. Animals, 12(15), 1962. https://doi.org/10.3390/ani12151962
  • Ju, J., Tinyiro, S.E., Yao, W., Yu, H., Guo, Y., Qian, H., & Xie, Y. (2019). The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. Journal of Food Processing and Preservation, 43(10), e14122. https://doi.org/10.1111/jfpp.14122
  • Juodeikiene, G., Bartkiene, E., Cernauskas, D., Cizeikiene, D., Zadeike, D., Lele, V., & Bartkevics, V. (2018). Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT, 89, 307–314. https://doi.org/10.1016/j.lwt.2017.10.061.
  • Kabak, B., Dobson, A.D., & Var, I.I.L. (2006). Strategies to prevent mycotoxin contamination of food and animal feed: a review. Critical reviews in food science and nutrition, 46(8), 593-619. https://doi.org/10.1080/10408390500436185
  • Keller, L., Abrunhosa, L., Keller, K., Rosa, C.A., Cavaglieri, L., & Venâncio, A. (2015). Zearalenone and its derivatives α-zearalenol and β-zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage. Toxins, 7(8), 3297-3308. https://doi.org/10.3390/toxins7083297
  • Li, S.J., Zhang, G., Xue, B., Ding, Q., Han, L., Huang, J.C., Wu, F., Li, C., & Yang, C. (2022). Toxicity and detoxification of T-2 toxin in poultry. Food and Chemical Toxicology, 113392. https://doi.org/10.1016/j.fct.2022.113392
  • Liu, C., Chang, J., Wang, P., Yin, Q., Huang, W., Dang, X., Lu, F., & Gao, T. (2019). Zearalenone biodegradation by the combination of probiotics with cell-free extracts of Aspergillus oryzae and its mycotoxin-alleviating effect on pig production performance. Toxins, 11(10), 552. https://doi.org/10.3390/toxins11100552
  • Liu, L., Xie, M., & Wei, D. (2022). Biological Detoxification of Mycotoxins: Current Status and Future Advances. International Journal of Molecular Sciences, 23(3), 1064. https://doi.org/10.3390/ijms23031064
  • Loi, M., Fanelli, F., Liuzzi, V.C., Logrieco, A.F., & Mulè, G. (2017). Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins, 9(4), 111. https://doi.org/10.3390/toxins9040111
  • Luo, Y., Liu, X., Yuan, L., & Li, J. (2020). Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends in Food Science & Technology, 96, 127-134. https://doi.org/10.1016/j.tifs.2019.12.012
  • Møller, C.O. de A., Freire, L., Rosim, R.E., Margalho, L.P., Balthazar, C.F., Franco, L.T., Sant’Ana, A. de S., Corassin, C.H., Rattray, F.P., & Oliveira, C.A.F. de. (2021). Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B1, Ochratoxin A, and Zearalenone in vitro. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.655386
  • Nahle, S., El Khoury, A., Savvaidis, I., Chokr, A., Louka, N., & Atoui, A. (2022). Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. International Journal of Food Contamination, 9(1), 1-14. https://doi.org/10.1186/s40550-022-00089-2
  • Navale, V.D., & Vamkudoth, K. (2022). Toxicity and preventive approaches of Fusarium derived mycotoxins using lactic acid bacteria: state of the art. Biotechnology Letters, 1-16. https://doi.org/10.1007/s10529-022-03293-4
  • Pan, Y., Liu, C., Yang, J., & Tang, Y. (2022). Conversion of zearalenone to β-zearalenol and zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330. Food Control, 131, 108429. https://doi.org/10.1016/j.foodcont.2021.108429
  • Qin, X., Xin, Y., Su, X., Wang, X., Wang, Y., Zhang, J., Tu, T., Yao, B., Luo, H., & Huang, H. (2021). Efficient degradation of zearalenone by dyedecolorizing peroxidase from streptomyces thermocarboxydus combining catalytic properties of manganese peroxidase and laccase. Toxins (Basel) 13, 602. https://doi.org/10.3390/toxins13090602
  • Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D’Ascanio, V., Landoulsi, A., & Avantaggiato, G. (2021). Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins, 13(3), 185. https://doi.org/10.3390/toxins13030185
  • Rogowska, A., Pomastowski, P., Sagandykova, G., & Buszewski, B. (2019). Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 162, 46-56. https://doi.org/10.1016/j.toxicon.2019.03.004
  • Ropejko, K., & Twarużek, M. (2021). Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035
  • Singh, K., & Kumari, A. (2022). Traditional Mycotoxins and Their Health Implications. Mycotoxins and Mycotoxicoses, 27-64. https://doi.org/10.1007/978-981-19-2370-8_3
  • Song, Y., Wang, Y., Guo, Y., Qiao, Y., Ma, Q., Ji, C., & Zhao, L. (2021). Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon, 201, 1-8. https://doi.org/10.1016/j.toxicon.2021.08.003
  • Średnicka, P., Juszczuk-Kubiak, E., Wójcicki, M., Akimowicz, M., & Roszko, M. (2021). Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology, 153, 112306. https://doi.org/10.1016/j.fct.2021.112306
  • Tang, Y., Liu, C., Yang, J., & Peng, X. (2022). A novel enzyme synthesized by Acinetobacter sp. SM04 is responsible for zearalenone biodegradation. Bioscience, Biotechnology, and Biochemistry, 86, 209–216. https://doi.org/10.1093/bbb/zbab204
  • Tang, Y., Xiao, J., Chen, Y., Yu, Y., Xiao, X., Yu, Y., & Wu, H. (2013). Secretory expression and characterization of a novel peroxiredoxin for zearalenone detoxification in Saccharomyces cerevisiae. Microbiological Research, 168(1), 6 11. https://doi.org/10.1016/j.micres.2012.08.002
  • Vega, M.F., Dieguez, S.N., Riccio, B., Aranguren, S., Giordano, A., Denzoin, L., Soraci, A.L., Tapia, M.O., Ross, R., Apás, A., & González, S.N. (2017). Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. Brazilian Journal of Microbiology, 48, 715-723. https://doi.org/10.1016/j.bjm.2017.05.001
  • Wang, G., Yu, M., Dong, F., Shi, J., & Xu, J. (2017). Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control, 77, 57-64. https://doi.org/10.1016/j.foodcont.2017.01.021
  • Wang, J., & Xie, Y. (2020). Review on microbial degradation of zearalenone and aflatoxins. Grain & Oil Science and Technology, 3(3), 117 125. http://dx.doi.org/10.1016/j.gaost.2020.05.002
  • Wang, J.Q., Yang, F., Yang, P.L., Liu, J., & Lv, Z.H. (2018). Microbial reduction of zearalenone by a new isolated Lysinibacillus sp. ZJ-2016-1. World Mycotoxin Journal, 11(4), 571-578. https://doi.org/10.3920/WMJ2017.2264
  • Wang, M., Yin, L., Hu, H., Selvaraj, J.N., Zhou, Y., & Zhang, G. (2018). Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme. International Journal of Biological Macromolecules, 118, 1284 1292. https://doi.org/10.1016/j.ijbiomac.2018.06.111
  • Wang, N., Wu, W., Pan, J., & Long, M. (2019). Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms, 7(7), 208. https://doi.org/10.3390/microorganisms7070208
  • Wang, Y., Wang, G., Dai, Y., Wang, Y., Lee, Y.W., Shi, J., & Xu, J. (2020). Biodegradation of deoxynivalenol by a novel microbial consortium. Frontiers in Microbiology, 10, 2964. https://doi.org/10.3389/fmicb.2019.02964
  • Wang, Y., Zhang, J., Wang, Y., Wang, K., Wei, H., & Shen, L. (2018). Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon, 155, 9 20. https://doi.org/10.1016/j.toxicon.2018.09.005
  • Wu, N., Ou, W., Zhang, Z., Wang, Y., Xu, Q., & Huang, H. (2021). Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chinese Journal of Chemical Engineering, 30, 168-177. https://doi.org/10.1016/j.cjche.2020.11.011
  • Xia, Y., Wu, Z., He, R., Gao, Y., Qiu, Y., Cheng, Q., Ma, X., & Wang, Z. (2021). Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00395-1
  • Xiang, L., Wang, Q., Zhou, Y., Yin, L., Zhang, G., & Ma, Y. (2016). High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris. Microbiological Research, 193, 48–56. https://doi.org/10.1016/j.micres.2016.09.004
  • Xu, H., Wang, L., Sun, J., Wang, L., Guo, H., Ye, Y., & Sun, X. (2022). Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 62(18), 4951-4969. https://doi.org/10.1080/10408398.2021.1879730
  • Xu, J., Wang, H., Zhu, Z., Ji, F., Yin, X., Hong, Q., & Shi, J. (2016). Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of Zearalenone by Bacillus spp. Food Control, 68, 244 250. https://doi.org/10.1016/j.foodcont.2016.03.030
  • Xu, L., Sun, X., Wan, X., Li, H., Yan, F., Han, R., Li, H., Li, Z., Tian, Y., Liu, X., & Kang, X. (2020). Identification of a Bacillus amyloliquefaciens H6 thioesterase involved in zearalenone detoxification by transcriptomic analysis. Journal of Agricultural and Food Chemistry, 68(37), 10071-10080. https://doi.org/10.1021/acs.jafc.0c03954
  • Yadav, R., Yadav, P., Singh, G., Kumar, S., Dutt, R., & Pandey, A.K., (2021). Non-infectious Causes of Abortion in Livestock Animals-A. International Journal of Livestock Research, 11(2), 1-13. https://doi.org/10.5455/ijlr.20201031015650
  • Yang, S.B., Zheng, H.C., Xu, J.Y., Zhao, X.Y., Shu, W.J., Li, X.M., Song, H., & Ma, Y.H. (2021). New biotransformation mode of zearalenone identified in Bacillus subtilis Y816 revealing a novel ZEN conjugate. Journal of Agricultural and Food Chemistry, 69(26), 7409-7419. https://doi.org/10.1021/acs.jafc.1c01817
  • Yang, W.C., Hsu, T.C., Cheng, K.C., & Liu, J.R. (2017). Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microbial Cell Factories, 16(1), 1-11. https://doi.org/10.1186/s12934-017-0687-8
  • Yli-Mattila, T., Yörü, E., Abbas, A., & Teker, T. (2022). Overview on Major Mycotoxins Accumulated on Food and Feed. Fungal Biotechnology Prospects and Avenues, 310–343. https://doi.org/10.1201/9781003248316-16
  • Yu, Y., Wu, H., Tang, Y., & Qiu, L. (2012). Cloning, expression of a peroxiredoxin gene from Acinetobacter sp. SM04 and characterization of its recombinant protein for zearalenone detoxification. Microbiological Research, 167(3), 121 126. https://doi.org/10.1016/j.micres.2011.07.004
  • Zhou, J., Zhu, L., Chen, J., Wang, W., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2020). Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of the Total Environment, 709, 135897. https://doi.org/10.1016/J.SCITOTENV.2019.135897
  • Zhu, Y., Drouin, P., Lepp, D., Li, X.Z., Zhu, H., Castex, M., & Zhou, T. (2021). A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins, 13(5), 294. https://doi.org/10.3390/toxins13050294

Current review of biodegradation and detoxification strategies for zearalenone contaminated food and feed

Year 2024, , 157 - 168, 05.02.2024
https://doi.org/10.21448/ijsm.1271127

Abstract

Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is an estrogenic mycotoxin produced by Fusarium species that leads to huge economic losses in the food industry and livestock husbandry. Contamination of food and feed with zearalenone has reproductive problems, carcinogenicity, immunotoxicity, and other cytotoxic effects. At present, microorganisms and enzymes derived from microbial strains have been widely used for the degradation of zearalenone in food and feed. Researchers have developed biodegradation of zearalenone by the use of microbial and their enzyme derivatives, which offers harmless products and is environmentally friendly. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation and detoxification strategies of zearalenone using microorganisms and enzyme derivatives to nontoxic products.

References

  • Adunphatcharaphon, S., Petchkongkaew, A., & Visessanguan, W. (2021). In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins, 13, 286. https://doi.org/10.3390/toxins13040286
  • Ahn, J.Y., Kim, J., Cheong, D.H., Hong, H., Jeong, J.Y., & Kim, B.G. (2022). An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals, 12(3), 333. https://doi.org/10.3390/ani12030333
  • Arroyo-Manzanares, N., Campillo, N., López-García, I., Hernández-Córdoba, M., & Viñas, P. (2021). High-Resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchemical Journal, 166, 106197. https://doi.org/10.1016/j.microc.2021.106197
  • Azam, M.S., Yu, D., Liu, N., & Wu, A. (2019). Degrading ochratoxin A and zearalenone mycotoxins using a multifunctional recombinant enzyme. Toxins, 11(5), 301. https://doi.org/10.3390/toxins11050301
  • Bergman, A., Wenning, L., Siewers, V., & Nielsen, J. (2018). Investigation of putative regulatory acetylation sites in Fas2p of Saccharomyces cerevisiae. bioRxiv, 430918. https://doi.org/10.1101/430918
  • Bi, K, Zhang, W., Xiao, Z., & Zhang. D. (2018). Characterization, expression and application of a zearalenone degrading enzyme from Neurospora crassa. AMB Express, 8, 194. https://doi.org/10.1186/s13568-018-0723-z
  • Bin, Y.S., Zheng, H.C., Xu, J.Y., Zhao, X.Y., Shu, W.J., Li, X.M., Song, H., & Ma, Y.H. (2021). New biotransformation mode of zearalenone identifed in Bacillus subtilis Y816 revealing a novel ZEN conjugate. Journal of Agricultural and Food Chemistry, 69(26), 7409–7419. https://doi.org/10.1021/acs.jafc.1c01817
  • Bouajila, A., Lamine, M., Hamdi, Z., Ghorbel, A., & Gangashetty, P. (2022). A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN). Agronomy, 12(4), 916. https://doi.org/10.3390/agronomy12040916
  • Chang, X., Liu, H., Sun, J., Wang, J., Zhao, C., Zhang, W., Zhang, J., & Sun, C. (2020). Zearalenone removal from corn oil by an enzymatic strategy. Toxins (basel), 12, 1–14. https://doi.org/10.3390/toxins12020117
  • Chen, S., Pan, L., Liu, S., Pan, L., Li, X., & Wang, B. (2021). Recombinant expression and surface display of a zearalenone lactonohydrolase from Trichoderma aggressivum in Escherichia coli. Protein Expression and Purification, 187, 105933. https://doi.org/10.1016/j.pep.2021.105933
  • Chen, S.W., Hsu, J.T., Y.-A. Chou, Y.A., & Wang, H.T. (2018). The application of digestive tract lactic acid bacteria with high esterase activity for zearalenone detoxification. Journal of the Science of Food and Agriculture, 98(10), 3870 3879. https://doi.org/10.1002/jsfa.8904
  • Cheng, B., Shi, W., Luo, J., Peng, F., Wan, C., & Wei, H. (2010). Cloning of zearalenone-degraded enzyme gene (ZEN-jjm) and its expression and activity analysis. Journal of Agricultural Biotechnology, 18(2), 225 230. https://doi.org/10.3969/j.issn.1674 7968.2010.02.004
  • Cho, K.J., Kang, J.S., Cho, W.T., Lee, C.H., Ha, J.K., & Song, K.B. (2010). In vitro degradation of zearalenone by Bacillus subtilis. Biotechnology Letters, 32(12), 1921-1924. https://doi.org/10.1007/s10529-010-0373-y
  • Deng, T., Yuan, Q.S., Zhou, T., Guo, L.P., Jiang, W.K., Zhou, S.H., Yang, C.G., & Kang, C.Z. (2021). Screening of zearalenone-degrading bacteria and analysis of degradation conditions. China Journal of Chinese Materia Medica, 46(20), 5240 5246. https://doi.org/10.19540/j.cnki.cjcmm.20210716.101
  • Feng, Y., Huang, Y., Zhan, H., Bhatt, P., & Chen, S. (2020). An overview of strobilurin fungicide degradation: current status and future perspective. Frontiers in Microbiology, 11, 389. https://doi.org/10.3389/fmicb.2020.00389
  • Fu, G., Ma, J., Wang, L., Yang, X., Liu, J., & Zhao, X. (2016). Effect of degradation of zearalenone-contaminated feed by Bacillus licheniformis CK1 on postweaning female piglets. Toxins, 8(10), 300. https://doi.org/10.3390/toxins8100300
  • Gajęcka, M., Majewski, M.S., Zielonka, Ł., Grzegorzewski, W., Onyszek, E., Lisieska-Żołnierczyk, S., Juśkiewicz, J., Babuchowski, A., & Gajęcki, M.T. (2021). Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins, 13(6), 396. https://doi.org/10.3390/toxins13060396
  • Gao, D., Cao, X., Ren, H., Wu, L., Yan, Y., Hua, R., Xing, W., Lei, M., & Liu, J. (2022). Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicology Letters, 357, 33-42. https://doi.org/10.1016/j.toxlet.2021.12.017
  • Garcia, S.O., Feltrin, A.C.P., & Garda-Buffon, J. (2018). Zearalenone reduction by commercial peroxidase enzyme and peroxidases from soybean bran and rice bran. Food Additives & Contaminants: Part A, 35(9), 1819 1831. https://doi.org/10.1080/19440049.2018.1486044
  • Greeff-Laubscher, M.R., Beukes, I., Marais, G.J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105 117. https://doi.org/10.1080/21501203.2019.1604575
  • Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, W., & Kuca, K. (2021). Aflatoxin detoxification using microorganisms and enzymes. Toxins, 13(1), 46. https://doi.org/10.3390/toxins13010046
  • Guo, Y., Qin, X., Tang, Y., Ma, Q., Zhang, J., & Zhao, L. (2020). CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi aflatoxin Q1. Food Chemistry, 325, 126877. https://doi.org/10.1016/j.foodchem.2020.126877
  • Harčárová, M., Čonková, E., Naď, P., & Proškovcová, M. (2022). Zearalenone Biodegradation by the Spp. and Spp. Folia Veterinaria, 66(1), 70-74. https://doi.org/10.2478/fv-2022-0008
  • Harkai, P., Szabó, I., Cserháti, M., Krifaton, C., Risa, A., Radó, J., Balázs, A., Berta, K., & Kriszt, B. (2016). Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp. collection. International Biodeterioration & Biodegradation, 108, 48 56. https://doi.org/10.1016/j.ibiod.2015.12.007
  • Hathout, A.S., & Aly, S.E. (2014). Biological detoxification of mycotoxins: A review. Annals of microbiology, 64(3), 905-919. https://doi.org/10.1007/s13213-014-0899-7
  • Hsu, T.C., Yi, P.J., Lee, T.Y., & Liu, J.R. (2018). Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PloS One, 13(4), e0194866. https://doi.org/10.1371/journal.pone.0194866
  • Hui, R., Hu, X., Liu, W., Liu, W., Zheng, Y., Chen, Y., Guo, R.-T., Jin, J., & Chen, C.-C. (2017). Characterization and crystal structure of a novel zearalenone hydrolase fromCladophialophora bantiana. Acta Crystallographica Section F Structural Biology Communications, 73(9), 515–519. https://doi.org/10.1107/s2053230x17011840
  • Jia, S., Ren, C., Yang, P., & Qi, D. (2022). Effects of Intestinal Microorganisms on Metabolism and Toxicity Mitigation of Zearalenone in Broilers. Animals, 12(15), 1962. https://doi.org/10.3390/ani12151962
  • Ju, J., Tinyiro, S.E., Yao, W., Yu, H., Guo, Y., Qian, H., & Xie, Y. (2019). The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. Journal of Food Processing and Preservation, 43(10), e14122. https://doi.org/10.1111/jfpp.14122
  • Juodeikiene, G., Bartkiene, E., Cernauskas, D., Cizeikiene, D., Zadeike, D., Lele, V., & Bartkevics, V. (2018). Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT, 89, 307–314. https://doi.org/10.1016/j.lwt.2017.10.061.
  • Kabak, B., Dobson, A.D., & Var, I.I.L. (2006). Strategies to prevent mycotoxin contamination of food and animal feed: a review. Critical reviews in food science and nutrition, 46(8), 593-619. https://doi.org/10.1080/10408390500436185
  • Keller, L., Abrunhosa, L., Keller, K., Rosa, C.A., Cavaglieri, L., & Venâncio, A. (2015). Zearalenone and its derivatives α-zearalenol and β-zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage. Toxins, 7(8), 3297-3308. https://doi.org/10.3390/toxins7083297
  • Li, S.J., Zhang, G., Xue, B., Ding, Q., Han, L., Huang, J.C., Wu, F., Li, C., & Yang, C. (2022). Toxicity and detoxification of T-2 toxin in poultry. Food and Chemical Toxicology, 113392. https://doi.org/10.1016/j.fct.2022.113392
  • Liu, C., Chang, J., Wang, P., Yin, Q., Huang, W., Dang, X., Lu, F., & Gao, T. (2019). Zearalenone biodegradation by the combination of probiotics with cell-free extracts of Aspergillus oryzae and its mycotoxin-alleviating effect on pig production performance. Toxins, 11(10), 552. https://doi.org/10.3390/toxins11100552
  • Liu, L., Xie, M., & Wei, D. (2022). Biological Detoxification of Mycotoxins: Current Status and Future Advances. International Journal of Molecular Sciences, 23(3), 1064. https://doi.org/10.3390/ijms23031064
  • Loi, M., Fanelli, F., Liuzzi, V.C., Logrieco, A.F., & Mulè, G. (2017). Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins, 9(4), 111. https://doi.org/10.3390/toxins9040111
  • Luo, Y., Liu, X., Yuan, L., & Li, J. (2020). Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends in Food Science & Technology, 96, 127-134. https://doi.org/10.1016/j.tifs.2019.12.012
  • Møller, C.O. de A., Freire, L., Rosim, R.E., Margalho, L.P., Balthazar, C.F., Franco, L.T., Sant’Ana, A. de S., Corassin, C.H., Rattray, F.P., & Oliveira, C.A.F. de. (2021). Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B1, Ochratoxin A, and Zearalenone in vitro. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.655386
  • Nahle, S., El Khoury, A., Savvaidis, I., Chokr, A., Louka, N., & Atoui, A. (2022). Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. International Journal of Food Contamination, 9(1), 1-14. https://doi.org/10.1186/s40550-022-00089-2
  • Navale, V.D., & Vamkudoth, K. (2022). Toxicity and preventive approaches of Fusarium derived mycotoxins using lactic acid bacteria: state of the art. Biotechnology Letters, 1-16. https://doi.org/10.1007/s10529-022-03293-4
  • Pan, Y., Liu, C., Yang, J., & Tang, Y. (2022). Conversion of zearalenone to β-zearalenol and zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330. Food Control, 131, 108429. https://doi.org/10.1016/j.foodcont.2021.108429
  • Qin, X., Xin, Y., Su, X., Wang, X., Wang, Y., Zhang, J., Tu, T., Yao, B., Luo, H., & Huang, H. (2021). Efficient degradation of zearalenone by dyedecolorizing peroxidase from streptomyces thermocarboxydus combining catalytic properties of manganese peroxidase and laccase. Toxins (Basel) 13, 602. https://doi.org/10.3390/toxins13090602
  • Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D’Ascanio, V., Landoulsi, A., & Avantaggiato, G. (2021). Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins, 13(3), 185. https://doi.org/10.3390/toxins13030185
  • Rogowska, A., Pomastowski, P., Sagandykova, G., & Buszewski, B. (2019). Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 162, 46-56. https://doi.org/10.1016/j.toxicon.2019.03.004
  • Ropejko, K., & Twarużek, M. (2021). Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035
  • Singh, K., & Kumari, A. (2022). Traditional Mycotoxins and Their Health Implications. Mycotoxins and Mycotoxicoses, 27-64. https://doi.org/10.1007/978-981-19-2370-8_3
  • Song, Y., Wang, Y., Guo, Y., Qiao, Y., Ma, Q., Ji, C., & Zhao, L. (2021). Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon, 201, 1-8. https://doi.org/10.1016/j.toxicon.2021.08.003
  • Średnicka, P., Juszczuk-Kubiak, E., Wójcicki, M., Akimowicz, M., & Roszko, M. (2021). Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology, 153, 112306. https://doi.org/10.1016/j.fct.2021.112306
  • Tang, Y., Liu, C., Yang, J., & Peng, X. (2022). A novel enzyme synthesized by Acinetobacter sp. SM04 is responsible for zearalenone biodegradation. Bioscience, Biotechnology, and Biochemistry, 86, 209–216. https://doi.org/10.1093/bbb/zbab204
  • Tang, Y., Xiao, J., Chen, Y., Yu, Y., Xiao, X., Yu, Y., & Wu, H. (2013). Secretory expression and characterization of a novel peroxiredoxin for zearalenone detoxification in Saccharomyces cerevisiae. Microbiological Research, 168(1), 6 11. https://doi.org/10.1016/j.micres.2012.08.002
  • Vega, M.F., Dieguez, S.N., Riccio, B., Aranguren, S., Giordano, A., Denzoin, L., Soraci, A.L., Tapia, M.O., Ross, R., Apás, A., & González, S.N. (2017). Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. Brazilian Journal of Microbiology, 48, 715-723. https://doi.org/10.1016/j.bjm.2017.05.001
  • Wang, G., Yu, M., Dong, F., Shi, J., & Xu, J. (2017). Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control, 77, 57-64. https://doi.org/10.1016/j.foodcont.2017.01.021
  • Wang, J., & Xie, Y. (2020). Review on microbial degradation of zearalenone and aflatoxins. Grain & Oil Science and Technology, 3(3), 117 125. http://dx.doi.org/10.1016/j.gaost.2020.05.002
  • Wang, J.Q., Yang, F., Yang, P.L., Liu, J., & Lv, Z.H. (2018). Microbial reduction of zearalenone by a new isolated Lysinibacillus sp. ZJ-2016-1. World Mycotoxin Journal, 11(4), 571-578. https://doi.org/10.3920/WMJ2017.2264
  • Wang, M., Yin, L., Hu, H., Selvaraj, J.N., Zhou, Y., & Zhang, G. (2018). Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme. International Journal of Biological Macromolecules, 118, 1284 1292. https://doi.org/10.1016/j.ijbiomac.2018.06.111
  • Wang, N., Wu, W., Pan, J., & Long, M. (2019). Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms, 7(7), 208. https://doi.org/10.3390/microorganisms7070208
  • Wang, Y., Wang, G., Dai, Y., Wang, Y., Lee, Y.W., Shi, J., & Xu, J. (2020). Biodegradation of deoxynivalenol by a novel microbial consortium. Frontiers in Microbiology, 10, 2964. https://doi.org/10.3389/fmicb.2019.02964
  • Wang, Y., Zhang, J., Wang, Y., Wang, K., Wei, H., & Shen, L. (2018). Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon, 155, 9 20. https://doi.org/10.1016/j.toxicon.2018.09.005
  • Wu, N., Ou, W., Zhang, Z., Wang, Y., Xu, Q., & Huang, H. (2021). Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chinese Journal of Chemical Engineering, 30, 168-177. https://doi.org/10.1016/j.cjche.2020.11.011
  • Xia, Y., Wu, Z., He, R., Gao, Y., Qiu, Y., Cheng, Q., Ma, X., & Wang, Z. (2021). Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00395-1
  • Xiang, L., Wang, Q., Zhou, Y., Yin, L., Zhang, G., & Ma, Y. (2016). High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris. Microbiological Research, 193, 48–56. https://doi.org/10.1016/j.micres.2016.09.004
  • Xu, H., Wang, L., Sun, J., Wang, L., Guo, H., Ye, Y., & Sun, X. (2022). Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 62(18), 4951-4969. https://doi.org/10.1080/10408398.2021.1879730
  • Xu, J., Wang, H., Zhu, Z., Ji, F., Yin, X., Hong, Q., & Shi, J. (2016). Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of Zearalenone by Bacillus spp. Food Control, 68, 244 250. https://doi.org/10.1016/j.foodcont.2016.03.030
  • Xu, L., Sun, X., Wan, X., Li, H., Yan, F., Han, R., Li, H., Li, Z., Tian, Y., Liu, X., & Kang, X. (2020). Identification of a Bacillus amyloliquefaciens H6 thioesterase involved in zearalenone detoxification by transcriptomic analysis. Journal of Agricultural and Food Chemistry, 68(37), 10071-10080. https://doi.org/10.1021/acs.jafc.0c03954
  • Yadav, R., Yadav, P., Singh, G., Kumar, S., Dutt, R., & Pandey, A.K., (2021). Non-infectious Causes of Abortion in Livestock Animals-A. International Journal of Livestock Research, 11(2), 1-13. https://doi.org/10.5455/ijlr.20201031015650
  • Yang, S.B., Zheng, H.C., Xu, J.Y., Zhao, X.Y., Shu, W.J., Li, X.M., Song, H., & Ma, Y.H. (2021). New biotransformation mode of zearalenone identified in Bacillus subtilis Y816 revealing a novel ZEN conjugate. Journal of Agricultural and Food Chemistry, 69(26), 7409-7419. https://doi.org/10.1021/acs.jafc.1c01817
  • Yang, W.C., Hsu, T.C., Cheng, K.C., & Liu, J.R. (2017). Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microbial Cell Factories, 16(1), 1-11. https://doi.org/10.1186/s12934-017-0687-8
  • Yli-Mattila, T., Yörü, E., Abbas, A., & Teker, T. (2022). Overview on Major Mycotoxins Accumulated on Food and Feed. Fungal Biotechnology Prospects and Avenues, 310–343. https://doi.org/10.1201/9781003248316-16
  • Yu, Y., Wu, H., Tang, Y., & Qiu, L. (2012). Cloning, expression of a peroxiredoxin gene from Acinetobacter sp. SM04 and characterization of its recombinant protein for zearalenone detoxification. Microbiological Research, 167(3), 121 126. https://doi.org/10.1016/j.micres.2011.07.004
  • Zhou, J., Zhu, L., Chen, J., Wang, W., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2020). Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of the Total Environment, 709, 135897. https://doi.org/10.1016/J.SCITOTENV.2019.135897
  • Zhu, Y., Drouin, P., Lepp, D., Li, X.Z., Zhu, H., Castex, M., & Zhou, T. (2021). A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins, 13(5), 294. https://doi.org/10.3390/toxins13050294
There are 71 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Jiregna Garı 0000-0001-5363-1023

Publication Date February 5, 2024
Submission Date March 26, 2023
Published in Issue Year 2024

Cite

APA Garı, J. (2024). Current review of biodegradation and detoxification strategies for zearalenone contaminated food and feed. International Journal of Secondary Metabolite, 11(1), 157-168. https://doi.org/10.21448/ijsm.1271127
International Journal of Secondary Metabolite

e-ISSN: 2148-6905