Research Article
BibTex RIS Cite

Metabolite fingerprinting and profiling of two locally cultivated edible plants by using nuclear magnetic resonance

Year 2024, , 48 - 62, 05.02.2024
https://doi.org/10.21448/ijsm.1305100

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a sensitive technique used to analyse the structure elucidation, dynamics, reaction state, and chemical environment of molecules. Abelmoschus esculentus and Lagenaria siceraria are edible plants used traditionally to treat jaundice, diabetes, weight loss, ulcer, hypertension, heart failure, skin diseases and reduced cholesterol. Therefore, based on the medicinal uses the study was designed to analyze fingerprinting of metabolites of the seeds of the selected plants. The dry seeds were powdered and the metabolites were extracted by socking method with a mixture of methanol/chloroform. The extracted metabolites from seeds were subjected to proton NMR using the noesygpprld pulse sequence. A total 18 peaks were obtained from each spectrum. Among the peaks, three peaks with the highest intensities were analyzed by utilizing NMR. The peak metabolites were determined with the correlation with the correct peak using in built Biological Magnetic Resonance Data Bank (BMRB). The results showed that the obtained data varied from known plant metabolites due to the contamination and interaction between the metabolites. In addition, variants in the metabolites from sample to sample may have been the result of errors or limitations in the study. The data generated from this experiment will be used to help to conduct the advanced research in the near future on the selected edible plant species which will be valuable for many different areas of the scientific community. Plant metabolomics has the potential benefit in the medical field, agricultural industry, and many other areas of our economy.

Project Number

NA

References

  • Adedapo, A., Adewuyi, T., & Sofidiya, M. (2013). Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals. Revista de Biologia Tropical, 61(1), 281-290.
  • András, C.D. et al. (2005). Supercritical carbon dioxide extraction of okra (Hibiscus esculentus L) seeds. Journal of the Science of Food and Agriculture, 85(8), 1415-1419.
  • Arapitsas, P. (2008). Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chemistry, 110(4), 1041-1045.
  • Benchasri, S. (2012). Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Journal on Field and Vegetable Crops Research, 49(1), 105-112.
  • Berg, J.M., Tymoczko J.L., Stryer, L. (2002) Biochemistry. 5th edition. New York: W.H. Freeman. Section 4.5, three-dimensional protein structure can be determined by NMR spectroscopy and X-ray crystallography. https://www.ncbi.nlm.nih.gov/books/NBK22393/
  • Biological Magnetic Resonance Data Bank. (n.d.). 1-(4-acetoxy-3,5-dimethoxyphenyl)-1,3-diacetoxy 2 [4 (1 acetoxyethyl) 2,6 dimethoxyphenoxy]propane. https://bmrb.io/metabolomics/mol_summary/index.php?id=bmse010259&whichTab=0
  • Biological Magnetic Resonance Data Bank. (2018, July 10). H-b-S-OH (c18 H22 o6). https://bmrb.io/metabolomics/mol_summary/show_data.php?id=bmse010442
  • Biological Magnetic Resonance Data Bank. (2018, July 10). S-a-S-b-S (c33 H40 O12). https://bmrb.io/metabolomics/mol_summary/show_data.php?id=bmse010176&;whichTab=1
  • Bligny, R., & Douce, R. (2001). NMR and plant metabolism. Current Opinion in Plant Biology, 4(3), 191-196.
  • Boparai, A., Niazi, J., Bajwa, N., & Singh, P.A. (2017). Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access Journal of Translational Medicine and Research, 1(2), 53-59.
  • Cheriti, A., Saad, A., Belboukhari, N., & Ghezali, S. (2006). Chemical composition of the essential oil of Launaea arboresens from algerian sahara. Chemistry of Natural Compounds, 42(3), 360-361.
  • Clish C.B. (2015). Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harbor Molecular Case Studies, 1(1), a000588 https://doi.org/10.1101/mcs.a000588
  • Dhande, G.A., Patil, V.M., Raut, R.V., Rajput, J.C., & Ingle, A.G. (2012). Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system. African Journal of Biotechnology, 11(86), 15226-15230.
  • Dhanjai, Sinha, A., et al. (2018). Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends in Analytical Chemistry, 98, 174 189. https://doi.org/10.1016/j.trac.2017.11.010
  • Emwas, A-H., Saccenti, E., Gao, X., McKay, R.T., dos Santos VAPM, et al. (2018) Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics, 14, 31 (2018). https://doi.org/10.1007/s11306-018-1321-4
  • Fulda S. (2008). Betulinic acid for cancer treatment and prevention. International Journal of Molecular Sciences, 9(6), 1096–1107.
  • Gemede, H.F., Ratta, N., Haki, G.D., Woldegiorgis, A.Z., & Beyene, F. (2015). Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. Journal of Food Processing and Technology, 6(6), 1000458. https://doi.org/10.4172/2157-7110.1000458
  • Ganeshpurkar, A., & Saluja A.K. (2017). The Pharmacological potential of rutin. Saudi Pharmacological Journal, 25(2), 149-164.
  • Heredia-Guerrero, J.A., Benítez, J.J., Cataldi, P., et al. (2017). All-natural sustainable packaging materials inspired by plant cuticles. Advanced Sustainable Systems, 1(1-2), February 2017, 1600024. https://doi.org/10.1002/adsu.201600024
  • Hordyjewska, A., Ostapiuk, A., Horecka, A., et al. (2019). Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochemistry Reviews, 18, 929–951.
  • Huang, H., Gerlt, J.A., Almo, S.C., Patscovsky, Y., Al-Obaidi, N., Vetting, M.W., & Carter, M.S. (2015). A general strategy for the discovery of metabolic pathways: d-threitol, l-threitol and erythritol utilization in Mycobacterium smegmatis. Journal of the American Chemical Society. http://doi.org/10.1021/jacs.5b08968.s001
  • Jenkins, T.A., Nguyen, J.C., Polglaze, K.E., & Bertrand, P.P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1), 56.
  • Katare, C., Saxena, S., Agrawal, S., & Prasad, G.B.K.S. (2013). Alleviation of diabetes induced dyslipidemia by Lagenaria siceraria fruit extract in human type 2 diabetes. Journal of Herbal Medicine, 3(1), 1-8.
  • Kochhar, S.L. (1986). Okra (lady’s finger) In: Tropical crops, a textbook of economic botany. Kochhar SL, 263-264.
  • Kumar, A., Partap, S., Sharma, N.K., & Jha, K.K. (2012). Phytochemical, ethnobotanical and pharmacological profile of Lagenaria siceraria: A review. Journal of Pharmacognosy and Phytochemistry, 1(3), 24-31.
  • Kumar, A., Kumar, P., & Nadendla, R. (2013). A review on: Abelmoschus esculentus (Okra). International Research Journal of Pharmaceutical and Applied Sciences, 3(4), 129-132.
  • Kumar, R. (2016). Health effects of morpholine based coating for fruits and vegetables. International Journal of Medical Research and Health Sciences, 5(9), 32-38.
  • Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19(2), 335.
  • Minocha, S. (2015). An overview on Lagenaria siceraria (bottle gourd). Journal of Biomedical and Pharmaceutical Research, 4(3), 4-10.
  • Nasser, M.I., Zhu, S., Chen, C., Zhao, M., Huang, H., & Zhu, P. (2020). A comprehensive review on schisandrin b and its biological properties. Oxidative Medicine and Cellular Longevity, 2020, 1-13.
  • National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 10790, Aleuritic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Aleuritic-acid
  • Persson, H.L., Svensson, A.I., & Brunk, U.T. (2001). Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis. Redox Report: Communications in Free Radical Research, 6(5), 327–334.
  • Prabhakara, P., Koland, M., Vijaynarayana, K., Harish, N.M., Shankar, G., Ahmed, M.G., et al. (2010). Preparation and evaluation of transdermal patches of papaverine hydrochloride. International Journal of Research in Pharmaceutical Sciences, 1(3), 259-266.
  • Rahman, A.H. (2003). Bottle gourd (Lagenaria siceraria) a vegetable for good health. Natural Product Radiance, 2(5), 249-250.
  • Ralph, S.A., Ralph, J., Landucci, L., & Landucci, L. (2004). NMR database of lignin and cell wall model compounds. United States Forest Products Laboratory, Madison, WI, http://ars.usda.gov/Services/docs
  • Roessner, U., & Bowne, J. (2009). What is metabolomics all about? Biotechniques, 46(5), 363-365.
  • Roopan, S.M., Rajeswari, V.D., Kalpana, V.N., & Elango, G. (2016) Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Applied Microbiology and Biotechnology, 100(3), 1153-1162.
  • Sarkar, S.K. (2008). NMR spectroscopy and its application to biomedical research. In NMR spectroscopy and its application to biomedical research (pp. 159-185). Amsterdam etc.: Elsevier.
  • Satvir, S., Gill, N.S., & Arora, R. (2012). Study the antioxidant activity of Lagenaria siceraria seeds. International Journal of Natural Product Sciences, 1, 224.
  • Shirsat SD, Kadam AS (2015). Analysis of tissue specific digestive and antioxidant enzymes from Cucurbita pepo and Lagenaria siceraria (molina) standl. International Journal of Applied Biology and Pharmaceutical Technology, 6, 58–67.
  • Sotgiu, S., Arru, G., Fois, M. L., Sanna, A., Musumeci, M., Rosati, G., & Musumeci, S. (2006). Immunomodulation of fucosyl-lactose and lacto-N-fucopentaose on mononuclear cells from multiple sclerosis and healthy subjects. International Journal of Biomedical Science, 2(2), 114–120.
  • Stryeck, S., Horvath, A., Leber, B., Stadlbauer, V., & Madl, T. (2018). NMR spectroscopy enables simultaneous quantification of carbohydrates for diagnosis of intestinal and gastric permeability. Scientific Reports, 8(1), 14650. https://doi.org/10.1038/s41598-018-33104-8
  • Thakkar, J.H. (2013). Evaluation of invitro antimutagenic potential of Lagenaria siceraria using Ame’s test. American Journal of Cancer Biology, 1(2), 57-61.
  • Thiemann, T. (2021). Isolation of Phthalates and Terephthalates from Plant Material–Natural Products or Contaminants. Open Chemistry Journal, 8(1), 1 36. https://doi.org/10.2174/1874842202108010001
  • Tongjaroenbuangam, W., Ruksee, N., Chantiratikul, P., Pakdeenarong, N., Kongbuntad, W., & Govitrapong, P. (2011). Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice. Neurochemistry International, 59(5), 677-685.
  • Wong, X., Ma, Y., Dong, Z., Wang, G., Lan, X., Liao, Z., & Chen, M. (2021). Dehydrodiconiferyl alcohol, a lignan from Herpetospermum pedunculosum, alleviates cholestasis by activating pathways associated with the farnesoid X receptor. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 80, 153378.
  • Woodward, A.W., & Bartel, B. (2005). Auxin: regulation, action, and interaction. Annals of Botany, 95(5), 707-735.
  • Wu, H., Southam, A.D., Hines, A., & Viant, M.R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372(2), 204-212.
  • Yu, S., Liu, J.J., Yun, E.J. et al., (2018). Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 17, 101.
  • Zdzisiñska, B., Rzeski, W., Paduch, R., Szuster-Ciesielska, A., Kaczor, J., Wejksza, K., & Kandefer-Szerszeñ, M. (2003). Differential effect of betulin and betulinic acid on cytokine production in human whole blood cell cultures. Polish Journal of Pharmacology, 55(2), 235-238.
  • Zhang, M., Xu, Y.J., Mengi, S.A., Arneja, A.S., & Dhalla, N.S. (2004). Therapeutic potentials of pentoxifylline for treatment of cardiovascular diseases. Experimental and Clinical Cardiology, 9(2), 103–111.

Metabolite fingerprinting and profiling of two locally cultivated edible plants by using nuclear magnetic resonance

Year 2024, , 48 - 62, 05.02.2024
https://doi.org/10.21448/ijsm.1305100

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a sensitive technique used to analyse the structure elucidation, dynamics, reaction state, and chemical environment of molecules. Abelmoschus esculentus and Lagenaria siceraria are edible plants used traditionally to treat jaundice, diabetes, weight loss, ulcer, hypertension, heart failure, skin diseases and reduced cholesterol. Therefore, based on the medicinal uses the study was designed to analyze fingerprinting of metabolites of the seeds of the selected plants. The dry seeds were powdered and the metabolites were extracted by socking method with a mixture of methanol/chloroform. The extracted metabolites from seeds were subjected to proton NMR using the noesygpprld pulse sequence. A total 18 peaks were obtained from each spectrum. Among the peaks, three peaks with the highest intensities were analyzed by utilizing NMR. The peak metabolites were determined with the correlation with the correct peak using in built Biological Magnetic Resonance Data Bank (BMRB). The results showed that the obtained data varied from known plant metabolites due to the contamination and interaction between the metabolites. In addition, variants in the metabolites from sample to sample may have been the result of errors or limitations in the study. The data generated from this experiment will be used to help to conduct the advanced research in the near future on the selected edible plant species which will be valuable for many different areas of the scientific community. Plant metabolomics has the potential benefit in the medical field, agricultural industry, and many other areas of our economy.

Supporting Institution

NA

Project Number

NA

References

  • Adedapo, A., Adewuyi, T., & Sofidiya, M. (2013). Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals. Revista de Biologia Tropical, 61(1), 281-290.
  • András, C.D. et al. (2005). Supercritical carbon dioxide extraction of okra (Hibiscus esculentus L) seeds. Journal of the Science of Food and Agriculture, 85(8), 1415-1419.
  • Arapitsas, P. (2008). Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chemistry, 110(4), 1041-1045.
  • Benchasri, S. (2012). Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Journal on Field and Vegetable Crops Research, 49(1), 105-112.
  • Berg, J.M., Tymoczko J.L., Stryer, L. (2002) Biochemistry. 5th edition. New York: W.H. Freeman. Section 4.5, three-dimensional protein structure can be determined by NMR spectroscopy and X-ray crystallography. https://www.ncbi.nlm.nih.gov/books/NBK22393/
  • Biological Magnetic Resonance Data Bank. (n.d.). 1-(4-acetoxy-3,5-dimethoxyphenyl)-1,3-diacetoxy 2 [4 (1 acetoxyethyl) 2,6 dimethoxyphenoxy]propane. https://bmrb.io/metabolomics/mol_summary/index.php?id=bmse010259&whichTab=0
  • Biological Magnetic Resonance Data Bank. (2018, July 10). H-b-S-OH (c18 H22 o6). https://bmrb.io/metabolomics/mol_summary/show_data.php?id=bmse010442
  • Biological Magnetic Resonance Data Bank. (2018, July 10). S-a-S-b-S (c33 H40 O12). https://bmrb.io/metabolomics/mol_summary/show_data.php?id=bmse010176&;whichTab=1
  • Bligny, R., & Douce, R. (2001). NMR and plant metabolism. Current Opinion in Plant Biology, 4(3), 191-196.
  • Boparai, A., Niazi, J., Bajwa, N., & Singh, P.A. (2017). Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access Journal of Translational Medicine and Research, 1(2), 53-59.
  • Cheriti, A., Saad, A., Belboukhari, N., & Ghezali, S. (2006). Chemical composition of the essential oil of Launaea arboresens from algerian sahara. Chemistry of Natural Compounds, 42(3), 360-361.
  • Clish C.B. (2015). Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harbor Molecular Case Studies, 1(1), a000588 https://doi.org/10.1101/mcs.a000588
  • Dhande, G.A., Patil, V.M., Raut, R.V., Rajput, J.C., & Ingle, A.G. (2012). Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system. African Journal of Biotechnology, 11(86), 15226-15230.
  • Dhanjai, Sinha, A., et al. (2018). Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends in Analytical Chemistry, 98, 174 189. https://doi.org/10.1016/j.trac.2017.11.010
  • Emwas, A-H., Saccenti, E., Gao, X., McKay, R.T., dos Santos VAPM, et al. (2018) Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics, 14, 31 (2018). https://doi.org/10.1007/s11306-018-1321-4
  • Fulda S. (2008). Betulinic acid for cancer treatment and prevention. International Journal of Molecular Sciences, 9(6), 1096–1107.
  • Gemede, H.F., Ratta, N., Haki, G.D., Woldegiorgis, A.Z., & Beyene, F. (2015). Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. Journal of Food Processing and Technology, 6(6), 1000458. https://doi.org/10.4172/2157-7110.1000458
  • Ganeshpurkar, A., & Saluja A.K. (2017). The Pharmacological potential of rutin. Saudi Pharmacological Journal, 25(2), 149-164.
  • Heredia-Guerrero, J.A., Benítez, J.J., Cataldi, P., et al. (2017). All-natural sustainable packaging materials inspired by plant cuticles. Advanced Sustainable Systems, 1(1-2), February 2017, 1600024. https://doi.org/10.1002/adsu.201600024
  • Hordyjewska, A., Ostapiuk, A., Horecka, A., et al. (2019). Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochemistry Reviews, 18, 929–951.
  • Huang, H., Gerlt, J.A., Almo, S.C., Patscovsky, Y., Al-Obaidi, N., Vetting, M.W., & Carter, M.S. (2015). A general strategy for the discovery of metabolic pathways: d-threitol, l-threitol and erythritol utilization in Mycobacterium smegmatis. Journal of the American Chemical Society. http://doi.org/10.1021/jacs.5b08968.s001
  • Jenkins, T.A., Nguyen, J.C., Polglaze, K.E., & Bertrand, P.P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1), 56.
  • Katare, C., Saxena, S., Agrawal, S., & Prasad, G.B.K.S. (2013). Alleviation of diabetes induced dyslipidemia by Lagenaria siceraria fruit extract in human type 2 diabetes. Journal of Herbal Medicine, 3(1), 1-8.
  • Kochhar, S.L. (1986). Okra (lady’s finger) In: Tropical crops, a textbook of economic botany. Kochhar SL, 263-264.
  • Kumar, A., Partap, S., Sharma, N.K., & Jha, K.K. (2012). Phytochemical, ethnobotanical and pharmacological profile of Lagenaria siceraria: A review. Journal of Pharmacognosy and Phytochemistry, 1(3), 24-31.
  • Kumar, A., Kumar, P., & Nadendla, R. (2013). A review on: Abelmoschus esculentus (Okra). International Research Journal of Pharmaceutical and Applied Sciences, 3(4), 129-132.
  • Kumar, R. (2016). Health effects of morpholine based coating for fruits and vegetables. International Journal of Medical Research and Health Sciences, 5(9), 32-38.
  • Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19(2), 335.
  • Minocha, S. (2015). An overview on Lagenaria siceraria (bottle gourd). Journal of Biomedical and Pharmaceutical Research, 4(3), 4-10.
  • Nasser, M.I., Zhu, S., Chen, C., Zhao, M., Huang, H., & Zhu, P. (2020). A comprehensive review on schisandrin b and its biological properties. Oxidative Medicine and Cellular Longevity, 2020, 1-13.
  • National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 10790, Aleuritic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Aleuritic-acid
  • Persson, H.L., Svensson, A.I., & Brunk, U.T. (2001). Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis. Redox Report: Communications in Free Radical Research, 6(5), 327–334.
  • Prabhakara, P., Koland, M., Vijaynarayana, K., Harish, N.M., Shankar, G., Ahmed, M.G., et al. (2010). Preparation and evaluation of transdermal patches of papaverine hydrochloride. International Journal of Research in Pharmaceutical Sciences, 1(3), 259-266.
  • Rahman, A.H. (2003). Bottle gourd (Lagenaria siceraria) a vegetable for good health. Natural Product Radiance, 2(5), 249-250.
  • Ralph, S.A., Ralph, J., Landucci, L., & Landucci, L. (2004). NMR database of lignin and cell wall model compounds. United States Forest Products Laboratory, Madison, WI, http://ars.usda.gov/Services/docs
  • Roessner, U., & Bowne, J. (2009). What is metabolomics all about? Biotechniques, 46(5), 363-365.
  • Roopan, S.M., Rajeswari, V.D., Kalpana, V.N., & Elango, G. (2016) Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Applied Microbiology and Biotechnology, 100(3), 1153-1162.
  • Sarkar, S.K. (2008). NMR spectroscopy and its application to biomedical research. In NMR spectroscopy and its application to biomedical research (pp. 159-185). Amsterdam etc.: Elsevier.
  • Satvir, S., Gill, N.S., & Arora, R. (2012). Study the antioxidant activity of Lagenaria siceraria seeds. International Journal of Natural Product Sciences, 1, 224.
  • Shirsat SD, Kadam AS (2015). Analysis of tissue specific digestive and antioxidant enzymes from Cucurbita pepo and Lagenaria siceraria (molina) standl. International Journal of Applied Biology and Pharmaceutical Technology, 6, 58–67.
  • Sotgiu, S., Arru, G., Fois, M. L., Sanna, A., Musumeci, M., Rosati, G., & Musumeci, S. (2006). Immunomodulation of fucosyl-lactose and lacto-N-fucopentaose on mononuclear cells from multiple sclerosis and healthy subjects. International Journal of Biomedical Science, 2(2), 114–120.
  • Stryeck, S., Horvath, A., Leber, B., Stadlbauer, V., & Madl, T. (2018). NMR spectroscopy enables simultaneous quantification of carbohydrates for diagnosis of intestinal and gastric permeability. Scientific Reports, 8(1), 14650. https://doi.org/10.1038/s41598-018-33104-8
  • Thakkar, J.H. (2013). Evaluation of invitro antimutagenic potential of Lagenaria siceraria using Ame’s test. American Journal of Cancer Biology, 1(2), 57-61.
  • Thiemann, T. (2021). Isolation of Phthalates and Terephthalates from Plant Material–Natural Products or Contaminants. Open Chemistry Journal, 8(1), 1 36. https://doi.org/10.2174/1874842202108010001
  • Tongjaroenbuangam, W., Ruksee, N., Chantiratikul, P., Pakdeenarong, N., Kongbuntad, W., & Govitrapong, P. (2011). Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice. Neurochemistry International, 59(5), 677-685.
  • Wong, X., Ma, Y., Dong, Z., Wang, G., Lan, X., Liao, Z., & Chen, M. (2021). Dehydrodiconiferyl alcohol, a lignan from Herpetospermum pedunculosum, alleviates cholestasis by activating pathways associated with the farnesoid X receptor. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 80, 153378.
  • Woodward, A.W., & Bartel, B. (2005). Auxin: regulation, action, and interaction. Annals of Botany, 95(5), 707-735.
  • Wu, H., Southam, A.D., Hines, A., & Viant, M.R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372(2), 204-212.
  • Yu, S., Liu, J.J., Yun, E.J. et al., (2018). Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 17, 101.
  • Zdzisiñska, B., Rzeski, W., Paduch, R., Szuster-Ciesielska, A., Kaczor, J., Wejksza, K., & Kandefer-Szerszeñ, M. (2003). Differential effect of betulin and betulinic acid on cytokine production in human whole blood cell cultures. Polish Journal of Pharmacology, 55(2), 235-238.
  • Zhang, M., Xu, Y.J., Mengi, S.A., Arneja, A.S., & Dhalla, N.S. (2004). Therapeutic potentials of pentoxifylline for treatment of cardiovascular diseases. Experimental and Clinical Cardiology, 9(2), 103–111.
There are 51 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Megan Huerta This is me 0009-0004-7656-1952

Jyoti Tamang This is me 0009-0004-4850-3587

Mohammad Amzad Hossain 0000-0002-8970-0702

Gen Kaneko This is me 0000-0003-4295-5123

Hashimul Ehsan This is me 0000-0002-4464-6765

Project Number NA
Publication Date February 5, 2024
Submission Date May 29, 2023
Published in Issue Year 2024

Cite

APA Huerta, M., Tamang, J., Hossain, M. A., Kaneko, G., et al. (2024). Metabolite fingerprinting and profiling of two locally cultivated edible plants by using nuclear magnetic resonance. International Journal of Secondary Metabolite, 11(1), 48-62. https://doi.org/10.21448/ijsm.1305100
International Journal of Secondary Metabolite

e-ISSN: 2148-6905