Antioxidant activity, phytochemical screening and GC-MS profile of Abies marocana Trab.
Year 2024,
, 121 - 133, 05.02.2024
Malak Zırarı
,
Marouane Aoujı
,
Meryem Zouarhi
Ahmed Dermaj
Hamid Erramli
Driss Hmouni
Nouredine El Mejdoub
Abstract
The aim of this research was to explore the chemical composition and antioxidant activities of etheric extracts of Abies marocana. A Soxhlet apparatus was used to extract bioactive molecules from the various parts of the plant. Furthermore, the levels of antioxidant compounds were quantified, while the Gas chromatography was utilized to determine the chemical constituents of the extracted molecules. The extracts were evaluated for their antioxidant properties using the DPPH radical scavenging method and the total antioxidant capacity test. The levels of polyphenols varied across different parts of the plant, ranging from 2.474 ± 0.029 mg.g-1 DM in needles to 4.207 ± 0.008 mg.g-1 DM in twigs. Flavonoids were most abundant in needles 0.140 ± 0.001 mg.g-1 DM and least abundant in cones 0.069 ± 0.007 mg.g-1 DM. Tannins had the highest concentration in twigs 2.608 ± 0.114 mg.g-1 DM, followed by cones 1.948 ± 0.037 mg.g-1 DM and needles 1.512 ± 0.09 mg.g-1 DM. A chromatographic analysis revealed that 56 components were in the samples, with terpene compounds being the most abundant in the different organs. In terms of antioxidant activity, the extract derived from twigs exhibited the strongest antioxidant capacity 49.377 ± 0.371 mg EAA.g-1 DM, followed by cones 35.129 ± 0.084 mg EAA.g-1 DM and needles 13.663 ± 0.084 mg EAA.g-1 DM. Alternatively, the IC50 values for the three organs were found to be in the range of 3844 to 5047.67 µg.mL-1. The results highlight the potential phytopharmaceutical value of A. marocana due to the presence of diverse phyto-components.
References
- Angeli, L., Imperiale, S., Ding, Y., Scampicchio, M., & Morozova, K. (2021). A Novel Stoichio- Kinetic Model for the DPPH Assay: The Importance of the Side Reaction and Application to Complex Mixtures. Antioxidants, 10(07), 1019 1031. https://doi.org/10.3390/antiox10071019
- Aouji, M., Imtara, H., Rkhaila, A., Bouhaddioui, B., Alahdab, A., Parvez, M. K., Saleh Alzahrani, M., Aicha Lrhorfi, L., & Bengueddour, R. (2023). Nutritional Composition, Fatty Acids Profile, Mineral Content, Antioxidant Activity and Acute Toxicity of the Flesh of Helix aspersa Müller. Molecules, 28(17), 6323. https://doi.org/10.3390/molecules28176323
- Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content, and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8, 96-107. https://doi.org/10.3390/plants8040096
- Banjare, J., Salunke, M., Indapurkar, K., Ghate, U., & Bhalerao, S. (2017). Estimation of serum malondialdehyde as a marker of lipid peroxidation in medical students undergoing examination-induced psychological stress. Journal of the Scientific Society, 44, 137-139. https://www.jscisociety.com/text.asp?2017/44/3/137/225497
- Barrero, F.A., Sanchez, F.J., Alvarez-Manzaneda, J.E., Muñoz, M., & Haïdour, A. (1992). Diterpenoids and cyclolanostanolides from Abies marocana. Phytochemistry, 31(2), 615-620. https://doi.org/10.1016/0031-9422(92)90046-S
- Batool, R., Khan, M.R., Sajid, M., Ali, S., & Zahra, Z. (2019). Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl) R. Br. BMC Chem., 13, 32-46. https://doi.org/10.1186/s13065-019-0549-z
- Baydar, S.N. (2006). Encyclopedia of Medicinal Plants, Palme Publishing, Istanbul, Turkey.
- Bazdi, B., Oller-López, J.L., Cuerva, J.M., Oltra, J.E., & Mansour, A.I. (2006). Composition of the Essential Oil from the Seeds of Abies marocana. Journal of Essential Oil Research, 18(2), 160-161. https://doi.org/10.1080/10412905.2006.9699053
- Benabid, A. (1983). Études biogéographique et dynamique des peuplements forestiers du Rif (Maroc).
- Bhattacharya, T., Dutta, S., Akter, R., Rahman, M.H., Karthika, C., Nagaswarupa, H.P., Murthy, H.C.A., Fratila, O., Brata, R., & Bungau, S. (2021). Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules, 11, 1176. https://doi.org/10.3390/biom11081176
- BNS EN ISO 734-1:2020. Oilseed meals - Determination of oil content - Part 1: Extraction method with hexane (or light petroleum) (ISO 734-1:2020).
- Boadi, N.O., Badu, M., Kortei, N.K., Saah, S.A., Annor, B., Mensah, M.B., Okyere, H., & Fiebor, A. (2021). Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 12, e00801. https://doi.org/10.1016/j.sciaf.2021.e00801
- Bouzid, W., Yahia, M., Abdeddaim, M., Aberkane, M.C., & Ayachi, A. (2010). Evaluation of the antioxidant and antimicrobial activity of extracts from hawthorn monogyne. Lebanese Science Journal, 12(1), 59-69.
- Bukhanko, N., Attard, T., Arshadi, M., Eriksson, D., Budarin, V., Hunt, A.J., Geladi, P., Bergsten, U., & Clark, J. (2020). Extraction of cones, branches, needles and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and Soxhlet extractions techniques. Industrial Crops and Products, 145, 112096. https://doi.org/10.1016/j.indcrop.2020.112096
- Cheok, C., Chin, N., Yusof, Y., Talib, R., & Law, C. (2013). Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Industrial crops and Products, 50, 1-7. https://doi.org/10.1016/j.indcrop.2013.07.024
- Chukwuma, F.I., Nkwocha, C.C., Ezeanyika, L.U.S., & Ogugua, V.N. (2020). Phytochemical Investigation and In vitro Antioxidant Potency of Root Bark of Brenania brieyi Fractions. Tropical Journal of Natural Product Research, 4(11), 970 975. https://doi.org/10.26538/tjnpr/v4i11.21
- El Hazzat, N., Iraqi, R., & Bouseta, A. (2015). GC-MS and GCFID-O identification of volatile compounds in green olives of the Moroccan variety & Picholine" effect of geographical origin. International Journal of Biological and Chemical Sciences, 9(4), 2219-2233. https://doi.org/10.4314/ijbcs. v9i4.40
- Farjon, A., & Rushforth, K.D. (1989). A classification of Abies Miller (Pinaceae). Notes from the Royal Botanic Garden, Edinburgh., 46(1), 59-79.
- Gehin, A., Guyon, C., & Nicod, L. Glyphosate induced antioxydant imbalance in HacaT: The protective effect of vitamin C and E. Environmental Toxicology and Pharmacology, 22, 27-34. https://doi.org/10.1016/j.etap.2005.11.003
- Gorinstein, S., Yamamoto, K., Katrich, E., Leontowicz, H., Lojek, A., Leontowicz, M., Ciz, M., Goshev, I., Shalev, U., & Trakhtenberg S. (2003). Antioxidative properties of Jaffa sweeties and grapefruit and their influence on lipid metabolism and plasma antioxidative potential in rats. Bioscience Biotechnology Biochemical, 67, 907 910. https://doi.org/10.1271/bbb.67.907
- Gupta, D., & Kumar, M. (2017). Evaluation of in vitro antimicrobial potential and GC–MS analysis of Camellia sinensis and Terminalia arjuna. Biotechnology Reports, 13, 19-25. https://doi.org/10.1016/j.btre.2016.11.002
- Hagerma, A.E. (2002). Tannin Handbook. 2éme edition. Miami University. Oxford, USA, 116.
- Hatami, T., Emami, S.A., Miraghaee, S.S., & Mojarrab, M. (2014). Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iranian Journal of Pharmaceutical Research, 13(2), 551. https://doi.org/10.22037/ijpr.2014.1518
- Herode, S.S., Hadolin, M., Škerget, M., & Knez, Z. (2003). Solvent extraction study of antioxidants from balm (Melissa officinalis I.) leaves. Food Chemistry, 80, 275-282. https://doi.org/10.1016/S0308-8146(02)00382-5
- Hmamouchi, M. (1999). Les plantes médicinales et aromatiques marocaines: utilisation, biologie, écologie, chimie, pharmacologie, toxicologie, lexiques. Bibliographie du patrimoine culturel immatériel.
- Ishola, I.O, Ikuomola, B.O., & Adeyemi, O.O. (2018). Protective role of Spondias mombin leaf and Cola acuminata seed extracts against scopolamine-induced cognitive dysfunction. Alexandria J Med., 54, 27-39. https://doi.org/10.1016/j.ajme.2016.08.001
- Khan, R.A., Khan, M.R., & Sahreen, S. (2012). Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Central J., 6, 43.
- Kuluvar., G., Mahmood, R., Mohamed, R., Ahamed, K., Babu, P., & Venkatarangaiah, K. (2009). Wound healing activity of Clerodendrum infortunatum Linn. Root extracts, Int J of Biom and Pharm Sci., 3(1), 21-25.
- Lamaison, J.L., & Carnat, A. (1990). Teneur en principaux flavonoides des fleurs et des feuilles de Crataegus monogyna Jacq. et de Crataegus laevigata (Poiret) DC. (Rosacea). Pharmaceutica Acta Helvetia, 65(11), 315-320.
- Lavoie, S., Gauthier, C., Legault, J., Mercier, S., Mshvildadze, V., & Pichette, A. (2013). Lanostane- and Cycloartane-Type Triterpenoids from Abies balsamea Oleoresin. Beilstein J. Org. Chem., 9, 1333-1339. https://doi.org/10.3762/bjoc.9.150
- Li, Y.L., Gao, Y.X., Jin, H.Z., Shan, L., Chang, W.L., Yang, X.W., Zeng, H.W., Wang, N., Steinmetz, A., & Zhang, W.D. (2015). Chemical Constituents of Abies fabri. Phytochemistry, 117, 135-143. https://doi.org/10.1016/j.phytochem.2015.06.012
- McCune, L.M., & Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by indigenous peoples of North American boreal forest. J. Ethnopharmacology, 82, 197-205. https://doi.org/10.1016/s0378-8741(02)00180-0
- Merouane, A., Noui, A., Medjahed, H., Nedjari Benhadj Ali, K., & Saadi, A. (2014). Antioxidant activity of phenolic compounds in olive oil extracted by traditional method. Int. J. Biol. Chem. Sci., 8(4), 1865-1870. https://doi.org/10.4314/ijbcs. V8i4.45
- Mokaddem-Daroui, H., Mostefa, M.B., Aydogmus-Ozturk, F., Erol, E., Ozturk, M., Ertaş, A., Emin Duru, M., Kabouche, A., & Kabouche Z. (2021). Antioxidant, Anticholinesterase Activities and Polyphenolic Constituents of Cones of Algerian Fir (Abies Numidica) By Lc-Esi Ms/Ms with Chemometric Approach. J. Res. Pharm, 25(3), 230 237. http://dx.doi.org/10.29228/jrp.13
- Negro, C., Tommasi, L., & Miceli, A. (2003). Phenolic compounds and antioxidant activity from red grape marc extract. Bioresource Technology., 87, 41 4. https://doi.org/10.1016/S0960-8524(02)00202-X
- Nunes, P.X., Silva, S.F., Guedes, R.J., & Almeida, S. (2011). Biological oxidations and antioxidant activity of natural products, Phytochemicals as nutraceuticals - Global Approaches to Their Role in Nutrition and Health. London: InTech. https://doi.org/10.5772/26956
- Oueslati, S., Ksouri, R., Falleh, H., Pichette, A., Abdelly, C., & Legault, J. (2012). Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticose Forssk. Food Chemistry, 132(2), 15, 943 947. https://doi.org/10.1016/j.foodchem.2011.11.072
- Rajalakshmi, P., Vadivel, V., Ravichandran, N., Sudha, V., & Brindha, P. (2016). Pharmacognostic Evaluation of Abies webbiana Leaf: A Siddha Herbal Ingredient. Asian Journal of Pharmaceutical and Clinical Research., 9(4), 1-7.
- Raldugin, V.A., & Shevtsov, S.A. (1990). Triterpenoids of Plant of the Genus Abies Hill. Chemistry of Natural Compounds, 26, 373-382. https://doi.org/10.1007/BF00598986
- Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R.R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246, 591 598. https://doi.org/10.1007/s00217-020-03432-z
- Sharififar, F., Dehghn-Nudeh, G., & Mirtajaldini, M. (2009). Major flavonoids with antioxidant activity from Teucrium polium L. Food Chemistry, 112, 885-888.
- Subhashini, N., Nagarajan, G., & Kavimani, S. (2011). In Vitro Antioxidant and Anticholinesterase Activities of Garcinia Cambogia. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 129-132.
- Sun, C., Zhao, C., Guven, E.C., Paoli, P., Simal-Gandara, J., Ramkumar, K.M., Wang, S., Buleu, F., Pah, A., Turi, V., Damian, G., Dragan, S., Tomas, M., Khan, W., Wang, M., Delmas, D., Portillo, M.P., Dar, P., Chen, L., & Xiao, J. (2020). Dietary polyphenols as anti-diabetic agents: Advances and opportunities. Food Frontiers, 1, 18 44. https://doi.org/10.1002/fft2.15
- The Editorial Board of Flora of China. (1978). Flora of China. Beijing: Science Press, 7, 59-94 (in Chinese).
- Tiwari, K.P, Minocha, P.K., & Chalcone, A. (1980). Glycoside from Abies pindrow. Phytochemistry, 19(11), 2501-2503. https://doi.org/10.1016/S0031-9422(00)91072-0
- Trease, G.E., & Evans, W.C. (1989). Textbook of Pharmacology. 13th Ed. Macmillan Publishers Limited, London, 343-383.
- Uçar, G., & Uçar, M.B. (2014). Geographical Variation in the Composition of Abies bornmuelleriana Mattf, Needle Oils. Records of Natural Products, 8(1), 56-60.
- Ugoeze, K.C., Oluigbo, K.E., & Chinko, B.C. (2020). Phytomedicinal and Nutraceutical Benefits of the GC-FID Quantified Phytocomponents of the Aqueous Extract of Azadirachta indica leaves. Journal of Pharmacy and Pharmacology Research, 4, 149 163. https://doi.org/10.26502/fjppr.039
- Wajs-Bonikowska, A., Sienkiewicz, M., Stobiecka, A., Maciąg, A., Szoka, Ł., & Karna, E. (2015). Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem Biodivers, 12(3), 407-18. https://doi.org/10.1002/cbdv.201400167
- Xia, J.H., Zhang, SD, Li, Y.L., Wu, L., Zhu, Z.J., Yang, X.W., Zeng, H.W., Li, H.L., Wang, N., Steinmetz, A., & Zhang, W.D. (2012). Sesquiterpenoids and Triterpenoids from Abies holophylla and Their Bioactivities. Phytochemistry, 74, 178 184. https://doi.org/10.1016/j.phytochem.2011.11.011
- Yang, X.W., Li, S.M., Shen, Y.H., & Zhang, W.D. (2008). Phytochemical and Biological Studies of Abies species. Chemistry & Biodiversity, 5(1), 56 81. https://doi.org/10.1002/cbdv.200890015
- Zeppetzauer, F., Nadányi, R., Kamm, B., Putz, R., Lisý, A., & Šurina, I. (2021). Investigation of Selective Extraction of Phenolic Compounds and of Saccharides from Picea Abies Bark Using Organosolv Solvents. Preprints, 2021100095. https://doi.org/10.20944/preprints202110.0095.v1
- Zheng, W.J., & Fu, L.G. (1978). Flora reipublicae popularis sinicae. Gymnospermae; Science Press: Beijing, China, 7, 55.
Antioxidant activity, phytochemical screening and GC-MS profile of Abies marocana Trab.
Year 2024,
, 121 - 133, 05.02.2024
Malak Zırarı
,
Marouane Aoujı
,
Meryem Zouarhi
Ahmed Dermaj
Hamid Erramli
Driss Hmouni
Nouredine El Mejdoub
Abstract
The aim of this research was to explore the chemical composition and antioxidant activities of etheric extracts of Abies marocana. A Soxhlet apparatus was used to extract bioactive molecules from the various parts of the plant. Furthermore, the levels of antioxidant compounds were quantified, while the Gas chromatography was utilized to determine the chemical constituents of the extracted molecules. The extracts were evaluated for their antioxidant properties using the DPPH radical scavenging method and the total antioxidant capacity test. The levels of polyphenols varied across different parts of the plant, ranging from 2.474 ± 0.029 mg.g-1 DM in needles to 4.207 ± 0.008 mg.g-1 DM in twigs. Flavonoids were most abundant in needles 0.140 ± 0.001 mg.g-1 DM and least abundant in cones 0.069 ± 0.007 mg.g-1 DM. Tannins had the highest concentration in twigs 2.608 ± 0.114 mg.g-1 DM, followed by cones 1.948 ± 0.037 mg.g-1 DM and needles 1.512 ± 0.09 mg.g-1 DM. A chromatographic analysis revealed that 56 components were in the samples, with terpene compounds being the most abundant in the different organs. In terms of antioxidant activity, the extract derived from twigs exhibited the strongest antioxidant capacity 49.377 ± 0.371 mg EAA.g-1 DM, followed by cones 35.129 ± 0.084 mg EAA.g-1 DM and needles 13.663 ± 0.084 mg EAA.g-1 DM. Alternatively, the IC50 values for the three organs were found to be in the range of 3844 to 5047.67 µg.mL-1. The results highlight the potential phytopharmaceutical value of A. marocana due to the presence of diverse phyto-components.
References
- Angeli, L., Imperiale, S., Ding, Y., Scampicchio, M., & Morozova, K. (2021). A Novel Stoichio- Kinetic Model for the DPPH Assay: The Importance of the Side Reaction and Application to Complex Mixtures. Antioxidants, 10(07), 1019 1031. https://doi.org/10.3390/antiox10071019
- Aouji, M., Imtara, H., Rkhaila, A., Bouhaddioui, B., Alahdab, A., Parvez, M. K., Saleh Alzahrani, M., Aicha Lrhorfi, L., & Bengueddour, R. (2023). Nutritional Composition, Fatty Acids Profile, Mineral Content, Antioxidant Activity and Acute Toxicity of the Flesh of Helix aspersa Müller. Molecules, 28(17), 6323. https://doi.org/10.3390/molecules28176323
- Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content, and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8, 96-107. https://doi.org/10.3390/plants8040096
- Banjare, J., Salunke, M., Indapurkar, K., Ghate, U., & Bhalerao, S. (2017). Estimation of serum malondialdehyde as a marker of lipid peroxidation in medical students undergoing examination-induced psychological stress. Journal of the Scientific Society, 44, 137-139. https://www.jscisociety.com/text.asp?2017/44/3/137/225497
- Barrero, F.A., Sanchez, F.J., Alvarez-Manzaneda, J.E., Muñoz, M., & Haïdour, A. (1992). Diterpenoids and cyclolanostanolides from Abies marocana. Phytochemistry, 31(2), 615-620. https://doi.org/10.1016/0031-9422(92)90046-S
- Batool, R., Khan, M.R., Sajid, M., Ali, S., & Zahra, Z. (2019). Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl) R. Br. BMC Chem., 13, 32-46. https://doi.org/10.1186/s13065-019-0549-z
- Baydar, S.N. (2006). Encyclopedia of Medicinal Plants, Palme Publishing, Istanbul, Turkey.
- Bazdi, B., Oller-López, J.L., Cuerva, J.M., Oltra, J.E., & Mansour, A.I. (2006). Composition of the Essential Oil from the Seeds of Abies marocana. Journal of Essential Oil Research, 18(2), 160-161. https://doi.org/10.1080/10412905.2006.9699053
- Benabid, A. (1983). Études biogéographique et dynamique des peuplements forestiers du Rif (Maroc).
- Bhattacharya, T., Dutta, S., Akter, R., Rahman, M.H., Karthika, C., Nagaswarupa, H.P., Murthy, H.C.A., Fratila, O., Brata, R., & Bungau, S. (2021). Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules, 11, 1176. https://doi.org/10.3390/biom11081176
- BNS EN ISO 734-1:2020. Oilseed meals - Determination of oil content - Part 1: Extraction method with hexane (or light petroleum) (ISO 734-1:2020).
- Boadi, N.O., Badu, M., Kortei, N.K., Saah, S.A., Annor, B., Mensah, M.B., Okyere, H., & Fiebor, A. (2021). Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 12, e00801. https://doi.org/10.1016/j.sciaf.2021.e00801
- Bouzid, W., Yahia, M., Abdeddaim, M., Aberkane, M.C., & Ayachi, A. (2010). Evaluation of the antioxidant and antimicrobial activity of extracts from hawthorn monogyne. Lebanese Science Journal, 12(1), 59-69.
- Bukhanko, N., Attard, T., Arshadi, M., Eriksson, D., Budarin, V., Hunt, A.J., Geladi, P., Bergsten, U., & Clark, J. (2020). Extraction of cones, branches, needles and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and Soxhlet extractions techniques. Industrial Crops and Products, 145, 112096. https://doi.org/10.1016/j.indcrop.2020.112096
- Cheok, C., Chin, N., Yusof, Y., Talib, R., & Law, C. (2013). Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Industrial crops and Products, 50, 1-7. https://doi.org/10.1016/j.indcrop.2013.07.024
- Chukwuma, F.I., Nkwocha, C.C., Ezeanyika, L.U.S., & Ogugua, V.N. (2020). Phytochemical Investigation and In vitro Antioxidant Potency of Root Bark of Brenania brieyi Fractions. Tropical Journal of Natural Product Research, 4(11), 970 975. https://doi.org/10.26538/tjnpr/v4i11.21
- El Hazzat, N., Iraqi, R., & Bouseta, A. (2015). GC-MS and GCFID-O identification of volatile compounds in green olives of the Moroccan variety & Picholine" effect of geographical origin. International Journal of Biological and Chemical Sciences, 9(4), 2219-2233. https://doi.org/10.4314/ijbcs. v9i4.40
- Farjon, A., & Rushforth, K.D. (1989). A classification of Abies Miller (Pinaceae). Notes from the Royal Botanic Garden, Edinburgh., 46(1), 59-79.
- Gehin, A., Guyon, C., & Nicod, L. Glyphosate induced antioxydant imbalance in HacaT: The protective effect of vitamin C and E. Environmental Toxicology and Pharmacology, 22, 27-34. https://doi.org/10.1016/j.etap.2005.11.003
- Gorinstein, S., Yamamoto, K., Katrich, E., Leontowicz, H., Lojek, A., Leontowicz, M., Ciz, M., Goshev, I., Shalev, U., & Trakhtenberg S. (2003). Antioxidative properties of Jaffa sweeties and grapefruit and their influence on lipid metabolism and plasma antioxidative potential in rats. Bioscience Biotechnology Biochemical, 67, 907 910. https://doi.org/10.1271/bbb.67.907
- Gupta, D., & Kumar, M. (2017). Evaluation of in vitro antimicrobial potential and GC–MS analysis of Camellia sinensis and Terminalia arjuna. Biotechnology Reports, 13, 19-25. https://doi.org/10.1016/j.btre.2016.11.002
- Hagerma, A.E. (2002). Tannin Handbook. 2éme edition. Miami University. Oxford, USA, 116.
- Hatami, T., Emami, S.A., Miraghaee, S.S., & Mojarrab, M. (2014). Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iranian Journal of Pharmaceutical Research, 13(2), 551. https://doi.org/10.22037/ijpr.2014.1518
- Herode, S.S., Hadolin, M., Škerget, M., & Knez, Z. (2003). Solvent extraction study of antioxidants from balm (Melissa officinalis I.) leaves. Food Chemistry, 80, 275-282. https://doi.org/10.1016/S0308-8146(02)00382-5
- Hmamouchi, M. (1999). Les plantes médicinales et aromatiques marocaines: utilisation, biologie, écologie, chimie, pharmacologie, toxicologie, lexiques. Bibliographie du patrimoine culturel immatériel.
- Ishola, I.O, Ikuomola, B.O., & Adeyemi, O.O. (2018). Protective role of Spondias mombin leaf and Cola acuminata seed extracts against scopolamine-induced cognitive dysfunction. Alexandria J Med., 54, 27-39. https://doi.org/10.1016/j.ajme.2016.08.001
- Khan, R.A., Khan, M.R., & Sahreen, S. (2012). Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Central J., 6, 43.
- Kuluvar., G., Mahmood, R., Mohamed, R., Ahamed, K., Babu, P., & Venkatarangaiah, K. (2009). Wound healing activity of Clerodendrum infortunatum Linn. Root extracts, Int J of Biom and Pharm Sci., 3(1), 21-25.
- Lamaison, J.L., & Carnat, A. (1990). Teneur en principaux flavonoides des fleurs et des feuilles de Crataegus monogyna Jacq. et de Crataegus laevigata (Poiret) DC. (Rosacea). Pharmaceutica Acta Helvetia, 65(11), 315-320.
- Lavoie, S., Gauthier, C., Legault, J., Mercier, S., Mshvildadze, V., & Pichette, A. (2013). Lanostane- and Cycloartane-Type Triterpenoids from Abies balsamea Oleoresin. Beilstein J. Org. Chem., 9, 1333-1339. https://doi.org/10.3762/bjoc.9.150
- Li, Y.L., Gao, Y.X., Jin, H.Z., Shan, L., Chang, W.L., Yang, X.W., Zeng, H.W., Wang, N., Steinmetz, A., & Zhang, W.D. (2015). Chemical Constituents of Abies fabri. Phytochemistry, 117, 135-143. https://doi.org/10.1016/j.phytochem.2015.06.012
- McCune, L.M., & Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by indigenous peoples of North American boreal forest. J. Ethnopharmacology, 82, 197-205. https://doi.org/10.1016/s0378-8741(02)00180-0
- Merouane, A., Noui, A., Medjahed, H., Nedjari Benhadj Ali, K., & Saadi, A. (2014). Antioxidant activity of phenolic compounds in olive oil extracted by traditional method. Int. J. Biol. Chem. Sci., 8(4), 1865-1870. https://doi.org/10.4314/ijbcs. V8i4.45
- Mokaddem-Daroui, H., Mostefa, M.B., Aydogmus-Ozturk, F., Erol, E., Ozturk, M., Ertaş, A., Emin Duru, M., Kabouche, A., & Kabouche Z. (2021). Antioxidant, Anticholinesterase Activities and Polyphenolic Constituents of Cones of Algerian Fir (Abies Numidica) By Lc-Esi Ms/Ms with Chemometric Approach. J. Res. Pharm, 25(3), 230 237. http://dx.doi.org/10.29228/jrp.13
- Negro, C., Tommasi, L., & Miceli, A. (2003). Phenolic compounds and antioxidant activity from red grape marc extract. Bioresource Technology., 87, 41 4. https://doi.org/10.1016/S0960-8524(02)00202-X
- Nunes, P.X., Silva, S.F., Guedes, R.J., & Almeida, S. (2011). Biological oxidations and antioxidant activity of natural products, Phytochemicals as nutraceuticals - Global Approaches to Their Role in Nutrition and Health. London: InTech. https://doi.org/10.5772/26956
- Oueslati, S., Ksouri, R., Falleh, H., Pichette, A., Abdelly, C., & Legault, J. (2012). Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticose Forssk. Food Chemistry, 132(2), 15, 943 947. https://doi.org/10.1016/j.foodchem.2011.11.072
- Rajalakshmi, P., Vadivel, V., Ravichandran, N., Sudha, V., & Brindha, P. (2016). Pharmacognostic Evaluation of Abies webbiana Leaf: A Siddha Herbal Ingredient. Asian Journal of Pharmaceutical and Clinical Research., 9(4), 1-7.
- Raldugin, V.A., & Shevtsov, S.A. (1990). Triterpenoids of Plant of the Genus Abies Hill. Chemistry of Natural Compounds, 26, 373-382. https://doi.org/10.1007/BF00598986
- Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R.R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246, 591 598. https://doi.org/10.1007/s00217-020-03432-z
- Sharififar, F., Dehghn-Nudeh, G., & Mirtajaldini, M. (2009). Major flavonoids with antioxidant activity from Teucrium polium L. Food Chemistry, 112, 885-888.
- Subhashini, N., Nagarajan, G., & Kavimani, S. (2011). In Vitro Antioxidant and Anticholinesterase Activities of Garcinia Cambogia. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 129-132.
- Sun, C., Zhao, C., Guven, E.C., Paoli, P., Simal-Gandara, J., Ramkumar, K.M., Wang, S., Buleu, F., Pah, A., Turi, V., Damian, G., Dragan, S., Tomas, M., Khan, W., Wang, M., Delmas, D., Portillo, M.P., Dar, P., Chen, L., & Xiao, J. (2020). Dietary polyphenols as anti-diabetic agents: Advances and opportunities. Food Frontiers, 1, 18 44. https://doi.org/10.1002/fft2.15
- The Editorial Board of Flora of China. (1978). Flora of China. Beijing: Science Press, 7, 59-94 (in Chinese).
- Tiwari, K.P, Minocha, P.K., & Chalcone, A. (1980). Glycoside from Abies pindrow. Phytochemistry, 19(11), 2501-2503. https://doi.org/10.1016/S0031-9422(00)91072-0
- Trease, G.E., & Evans, W.C. (1989). Textbook of Pharmacology. 13th Ed. Macmillan Publishers Limited, London, 343-383.
- Uçar, G., & Uçar, M.B. (2014). Geographical Variation in the Composition of Abies bornmuelleriana Mattf, Needle Oils. Records of Natural Products, 8(1), 56-60.
- Ugoeze, K.C., Oluigbo, K.E., & Chinko, B.C. (2020). Phytomedicinal and Nutraceutical Benefits of the GC-FID Quantified Phytocomponents of the Aqueous Extract of Azadirachta indica leaves. Journal of Pharmacy and Pharmacology Research, 4, 149 163. https://doi.org/10.26502/fjppr.039
- Wajs-Bonikowska, A., Sienkiewicz, M., Stobiecka, A., Maciąg, A., Szoka, Ł., & Karna, E. (2015). Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem Biodivers, 12(3), 407-18. https://doi.org/10.1002/cbdv.201400167
- Xia, J.H., Zhang, SD, Li, Y.L., Wu, L., Zhu, Z.J., Yang, X.W., Zeng, H.W., Li, H.L., Wang, N., Steinmetz, A., & Zhang, W.D. (2012). Sesquiterpenoids and Triterpenoids from Abies holophylla and Their Bioactivities. Phytochemistry, 74, 178 184. https://doi.org/10.1016/j.phytochem.2011.11.011
- Yang, X.W., Li, S.M., Shen, Y.H., & Zhang, W.D. (2008). Phytochemical and Biological Studies of Abies species. Chemistry & Biodiversity, 5(1), 56 81. https://doi.org/10.1002/cbdv.200890015
- Zeppetzauer, F., Nadányi, R., Kamm, B., Putz, R., Lisý, A., & Šurina, I. (2021). Investigation of Selective Extraction of Phenolic Compounds and of Saccharides from Picea Abies Bark Using Organosolv Solvents. Preprints, 2021100095. https://doi.org/10.20944/preprints202110.0095.v1
- Zheng, W.J., & Fu, L.G. (1978). Flora reipublicae popularis sinicae. Gymnospermae; Science Press: Beijing, China, 7, 55.