Research Article
BibTex RIS Cite

In-Vitro Bioactivity Evaluation of Hydrangenol Extracted from Hydrangea macrophylla (Thunb.) Ser. Leaves

Year 2024, , 78 - 92, 05.02.2024
https://doi.org/10.21448/ijsm.1390183

Abstract

Hydrangea macrophylla plant, native to Japan and Korea, has been attracting scientific attention due to its potential applications in both food science and health-related research. In this investigation, dry Hydrangea leaves were utilized as the source material. Subsequent to comminution and thermal treatment at 70 °C for an 18-hour duration, followed by a 30-minute ultrasonic bath extraction and a 5-minute centrifugation at 5000 rpm, hydrangenol was isolated through preparative HPLC. The investigation involved assessing the antioxidant capacity of hydrangenol, its impact on the activity of α-amylase and α-glucosidase enzymes, and its ability to prevent enzymatic browning. Quantification of antioxidant capacity, determined through TEAC (Trolox Equivalent Antioxidant Capacity), showed values from 1.8 to 3.2 mmol TE/mmol. Likewise, the ORAC (Oxygen Radical Absorbance Capacity) values were in the range of 16.5-27.0 mmol TE/mmol. Total phenolics content (Folin-Ciocalteu test) yielded a range of 7.1-11.2 g GAE (Gallic Acid Equivalents) per 100 g. Examining α-amylase inhibition, hydrangenol demonstrated a 52% inhibition (IC50: 3.6 mg/mL), whereas acarbose (positive control) displayed a higher inhibition of 99 % (IC50: 0.51 mg/mL). Regarding α-glucosidase inhibition, hydrangenol exhibited a 51% inhibition (IC50: 0.97 mg/mL), while acarbose displayed a 46% inhibition (IC50: 2.1 mg/mL). Additionally, the activity of PPO was suppressed by 61% at hydrangenol concentrations of 1 mg/mL and 2 mg/mL, and by 46% at a concentration of 4 mg/mL.

References

  • Abbas, M., Saeed, F., & Anjum, F.M. (2017). Natural polyphenols: An overview. Int. J. Food Prop., 20, 1689-99. http://dx.doi.org/10.1080/10942912.2016.1220393
  • Adams, T.B., Greer, D.B., Doull, J., Munro, I.C., Newberne, P., Portoghese, P.S., Smith, R.L., Wagner, B.M., Weil, C.S., Woods, L.A., & Ford, R.A. (1998). The FEMA GRAS assessment oflactones uses as flavour ingredients. Food and Chemical Toxicology, 36, 249-278. https://doi.org/10.1016/s0278-6915(97)00163-4
  • Al-Yafeai, A., Bellstedt, P., & Böhm, V. (2018). Bioactive compounds and antioxidant of Rosa rugosa depending on degree of ripeness. Antioxidants,. 7, 134. https://doi.org/10.3390/antiox7100134
  • Bhandari, M.R., Jong-Anurakkun, N., Hong, G., & Kawabata, J. (2008). α-Glucosidase and α-amylase inhibitory effects of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem., 106, 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
  • Bobo, G., Arroqui, & Virseda. P. (2022). Natural plant extracts as inhibitors of potato polyphenol oxidase: The green tea case study. LWT - Food Science and Technology, 153, 112467. https://doi.org/10.1016/j.lwt.2021.112467
  • Briganti, S., Camera, E., & Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research, 16(2), 101 110. http://dx.doi.org/10.1034/j.1600-0749.2003.00029.x
  • Ch'ng, L.Z., Barakatun-Nisak, M.Y., Zukiman, W.Z.H.W., Abas, F., & Wahab, N.A. (2019). Nutritional strategies in managing postmeal glucose for type 2 diabetes: A narrative review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews., 13, 2339 2345. https://doi.org/10.1016/j.dsx.2019.05.026
  • Das, V., Kaishap, P.P., Duarah, G., Chikkaputtaiah, C., Deka Boruah, H.P., & Pal, M. (2021). Cytotoxic and apoptosis-inducing effects of novel 8-amido isocoumarin derivatives against breast cancer cells. Naunyn-Schmiedeb. Naunyn-Schmiedeberg's Arch. Pharmacol., 394, 1437-1449. https://doi.org/10.1007/s00210-021-02063-9
  • Di Stefano, E., Oliviero, T., & Udenigwe, C.C. (2018). Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20, 7-12. https://doi.org/10.1016/j.cofs.2018.02.008
  • Dona, A.C., Pages, G., Gilbert, R.G., & Kuchel, P.W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release. Carbohydrate Polymers, 80, 599-617. https://doi.org/10.1016/j.carbpol.2010.01.002
  • Ernawita, Thieme, C., Westphal, A., Malarski, A., & Böhm, V. (2019). Polyphenols, vitamin C, in vitro antioxidant capacity, α-amylase and COX-2 inhibitory activities of citrus samples from Aceh, Indonesia. Int. J. Vitam. Nutr. Res., 89, 337-347. https://doi.org/10.1024/0300-9831/a000481
  • Ernawita, Wahyuono, R.A., Hesse, J., Hipler, U.-C.; Elsner, P., & Böhm, V. (2016). Carotenoids of indigenous citrus species from Aceh and its in vitro antioxidant, antidiabetic and antibacterial activities, European Food Research and Technology, 242, 1869-1881. https://doi.org/10.1007/s00217-016-2686-0
  • Gianmaria, F., Ivana, A., Aniello, I., Armando, Z., Gabriele, P., & Antonino, P. (2011). Plant polyphenols and their anti cariogenic properties, Molecules, 16, 1486 1507. https://doi.org/10.3390/molecules16021486
  • Hengst, C., Werner, S., Müller, L., Fröhlich, K., & Böhm, V. (2009). Determination of the antioxidant capacity: Influence of the sample concentration on the measured values. European Food Research and Technology, 230, 249–254. https://doi.org/10.1007/s00217-009-1166-1
  • Hic, P., & Balik, J. (2012). Effect of sample dilution on estimated values of antioxidant capacity by photochemiluminiscence method. Acta Univ. Agric.Silvic. Mendel. Brun., 8, 67-72. https://doi.org/10.11118/actaun201260080067
  • Hurrel, R.F.and Finot, P.A. (1984). Nutritional consequences of the reactions between proteins and oxidised polyphenolic acids. Adv. Exp. Med. Biol., 177, 423-35.
  • Kim, J.H., Kim, H.Y., & Jin, C.H. (2009). Mechanistic investigation of anthocyanidin derivatives as alpha-glucosidase inhibitors. Bioorganic Chemistry, 87, 803-809. https://doi.org/10.1016/j.bioorg.2019.01.033
  • Kim, M.J., Lee, S.B., Lee, H.S., Lee, S.Y., Baek, J.S., Kim, D., Moon, T.W., Robyt, J.F., & Park, K.H. (1999). Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosineglucose. Archives of Biochemistry and Biophysics, 371, 277 283. https://doi.org/10.1006/abbi.1999.1423
  • Krohn, K., Flörke, U., Rao, M.S., Steingröver, K., Aust, H.J., Draeger, S., & Schulz, B. (2001). Metabolites from fungi 15. New isocoumarins from an endophytic fungus isolated from the Canadian thistle Cirsium arvense. Natural Product Letters, 15, 353 361. https://doi.org/10.1080/10575630108041303
  • Kschonsek, J., Wiegand, C., Hipler, U.-C., & Böhm, V. (2019). Influence of polyphenolic content on the in vitro allergenicity of old and new apple cultivars: A pilot study. Nutrition, 58, 30-35. https://doi.org/10.1016/j.nut.2018.07.001
  • Li, K., Fan, H., Yin, P.P., Yang, L.G., Xue, Q., Li, X.; Sun, L.W., & Liu, Y.J. (2018). Structure activity relationship of eight primary flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arabian Journal of Chemistry, 11, 159 170. https://doi.org/10.1016/j.arabjc.2017.08.002
  • Li, K., Yao, F., Xue, Q., Fan, H., Yang, L., Li, X., Sun, L., & Li, Y. (2018). Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign score method. Chemistry Central Journal, 12, 82. https://doi.org/10.1186/s13065-018-0445-y
  • Li, Y.Q., Zhou, F.C., & Gao, F.(2009). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α glucosidase. J. Agric. Food Chem. 57(24), 11463 11468. https://doi.org/10.1021/jf903083h
  • Loizzo, M.R., Tundis, R., & Menichini, F. (2012). Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Sci. Food Saf., 11, 378-398. http://dx.doi.org/10.1111/j.1541-4337.2012.00191.x
  • Maleśev, D., & Kunti, V.(2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 72, 921-939. https://doi.org/10.2298/JSC0710921M
  • Malunga, L.N., Thandapilly, S.J., & Ames, N. (2018). Cereal-derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. Journal of Food Biochemistry, 42, e12635. https://doi.org/10.1111/jfbc.12635
  • Matsuno, T., Kunikate, T., Tanigawa, T., Suyama, T., & Yamada, A. (2008). Establishment of cultivation system based on flowering characteristics in Hydrangea serrata (Thunb.) Ser. Hortic. Res., 7, 189-195. https://doi.org/10.2503/hrj.7.189
  • Mayer, A.M. (2006). Polyphenol oxidases in plants and fungi: going places? Phytochemistry, 67, 2318-31. https://doi.org/10.1016/j.phytochem.2006.08.006
  • Moll, M.D., Kahlert, L., Gross, E., Schwarze, E.-C., Blings, M., Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2022). VIS-NIR modeling of hydrangenol and phyllodulcin contents in tea-hortensia (Hydrangea macrophylla subsp. serrata), Hortic., 8, 264. https://doi.org/10.3390/horticulturae8030264
  • Moll, M.D., Tränkner, C., Blings, M., Schwarze, E.-C., Gross, E., Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2022). Proposing a chemometric normalized difference phyllodulcin index (cNDPI) for phyllodulcin synthesis estimation, J. JARMAP, 30, 100398. https://doi.org/10.1016/j.jarmap.2022.100398
  • Moll, M.D., Vieregge, A.S., Wiesbaum, C., Blings, M., Vana, F.,Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2021). Dihydroisocoumarin content and phenotyping of Hydrangea macrophylla subsp. serrata cultivars under different shading regimes. Agronomy, 11, 1743. https://doi.org/10.3390/agronomy11091743
  • Moon, K.M., Kwon, E.B., Lee, B., & Kim, C.Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25, 2754. https://doi.org/10.3390/molecules25122754
  • Nelson, D., & Cox, M. (2005). Enzyme kinetics as an approach to understanding mechanism. In Lehninger Principles of Biochemistry, 4th ed.; Freeman, W.H., Ed.; Macmillan: New York, NY, USA.
  • Procházková, D., Bousová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82, 513-523. https://doi.org/10.1016/j.fitote.2011.01.018
  • Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity, 5, 357-367. https://doi.org/10.2147/DMSO.S28340
  • Sae-leaw, T., & Benjakul, S. (2019). Prevention of melanosis in crustaceans by plant polyphenols: A review. Trends in Food Science & Technology, 85, 1 9. https://doi.org/10.1016/j.tifs.2018.12.003
  • Sharma, R. (2012). Enzyme inhibition and bioapplications; IntechOpen: Rijeka, Croatia, https://doi.org/10.5772/1963
  • Singh, P., & Goyal, G.K. (2008). Dietary lycopene: Its properties and anticarcinogenic effects. Compr. Rev. Food Sci. Food Saf., 7, 255 270. https://doi.org/10.1111/j.1541 4337.2008.00044.x
  • Suzuki, H., Ikeda, T., Matsumoto, T., & Noguchi, M. (1978). Polyphenol components in cultured cells of amacha (Hydrangea macrophylla Seringe var.thunbergii Makino). J-STAGE, 42, 1133-1137. https://doi.org/10.1080/00021369.1978.10863124
  • Şöhretoğlu, D., Sari, S., Barut, B., & Özel, A. (2018). Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chemistry, 79, 257 264. https://doi.org/10.1016/j.bioorg.2018.05.010
  • Tianpanich, K., Prachya, S., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P.J. (2011). Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J. Nat. Prod., 74, 79 81. https://doi.org/10.1021/np1003752
  • Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D.D., & Wingender, W. (2010). Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angewandte Chemie International Edition in English, 20, 744-761
  • Vocadlo, D.J., & Davies, G.J. (2008) Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol., 12, 539-555. https://doi.org/10.1016/j.cbpa.2008.05.010
  • Yasuda, T., Kayaba, S., Takahashi, K., Nakazawa, T., & Ohsawa, K. (2004). Metabolic fate of orally administered phyllodulcin in rats. J. Nat. Prod., 67, 1604 1607. https://doi.org/10.1021/np0400353

In-Vitro Bioactivity Evaluation of Hydrangenol Extracted from Hydrangea macrophylla (Thunb.) Ser. Leaves

Year 2024, , 78 - 92, 05.02.2024
https://doi.org/10.21448/ijsm.1390183

Abstract

Hydrangea macrophylla plant, native to Japan and Korea, has been attracting scientific attention due to its potential applications in both food science and health-related research. In this investigation, dry Hydrangea leaves were utilized as the source material. Subsequent to comminution and thermal treatment at 70 °C for an 18-hour duration, followed by a 30-minute ultrasonic bath extraction and a 5-minute centrifugation at 5000 rpm, hydrangenol was isolated through preparative HPLC. The investigation involved assessing the antioxidant capacity of hydrangenol, its impact on the activity of α-amylase and α-glucosidase enzymes, and its ability to prevent enzymatic browning. Quantification of antioxidant capacity, determined through TEAC (Trolox Equivalent Antioxidant Capacity), showed values from 1.8 to 3.2 mmol TE/mmol. Likewise, the ORAC (Oxygen Radical Absorbance Capacity) values were in the range of 16.5-27.0 mmol TE/mmol. Total phenolics content (Folin-Ciocalteu test) yielded a range of 7.1-11.2 g GAE (Gallic Acid Equivalents) per 100 g. Examining α-amylase inhibition, hydrangenol demonstrated a 52% inhibition (IC50: 3.6 mg/mL), whereas acarbose (positive control) displayed a higher inhibition of 99 % (IC50: 0.51 mg/mL). Regarding α-glucosidase inhibition, hydrangenol exhibited a 51% inhibition (IC50: 0.97 mg/mL), while acarbose displayed a 46% inhibition (IC50: 2.1 mg/mL). Additionally, the activity of PPO was suppressed by 61% at hydrangenol concentrations of 1 mg/mL and 2 mg/mL, and by 46% at a concentration of 4 mg/mL.

Thanks

Authors gratefully acknowledge the Friedrich Schiller University Jena for the 603 scholarship (Scholarships for female postdoctoral researchers) funding of Ahlam Al-Yafeai.

References

  • Abbas, M., Saeed, F., & Anjum, F.M. (2017). Natural polyphenols: An overview. Int. J. Food Prop., 20, 1689-99. http://dx.doi.org/10.1080/10942912.2016.1220393
  • Adams, T.B., Greer, D.B., Doull, J., Munro, I.C., Newberne, P., Portoghese, P.S., Smith, R.L., Wagner, B.M., Weil, C.S., Woods, L.A., & Ford, R.A. (1998). The FEMA GRAS assessment oflactones uses as flavour ingredients. Food and Chemical Toxicology, 36, 249-278. https://doi.org/10.1016/s0278-6915(97)00163-4
  • Al-Yafeai, A., Bellstedt, P., & Böhm, V. (2018). Bioactive compounds and antioxidant of Rosa rugosa depending on degree of ripeness. Antioxidants,. 7, 134. https://doi.org/10.3390/antiox7100134
  • Bhandari, M.R., Jong-Anurakkun, N., Hong, G., & Kawabata, J. (2008). α-Glucosidase and α-amylase inhibitory effects of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem., 106, 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
  • Bobo, G., Arroqui, & Virseda. P. (2022). Natural plant extracts as inhibitors of potato polyphenol oxidase: The green tea case study. LWT - Food Science and Technology, 153, 112467. https://doi.org/10.1016/j.lwt.2021.112467
  • Briganti, S., Camera, E., & Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research, 16(2), 101 110. http://dx.doi.org/10.1034/j.1600-0749.2003.00029.x
  • Ch'ng, L.Z., Barakatun-Nisak, M.Y., Zukiman, W.Z.H.W., Abas, F., & Wahab, N.A. (2019). Nutritional strategies in managing postmeal glucose for type 2 diabetes: A narrative review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews., 13, 2339 2345. https://doi.org/10.1016/j.dsx.2019.05.026
  • Das, V., Kaishap, P.P., Duarah, G., Chikkaputtaiah, C., Deka Boruah, H.P., & Pal, M. (2021). Cytotoxic and apoptosis-inducing effects of novel 8-amido isocoumarin derivatives against breast cancer cells. Naunyn-Schmiedeb. Naunyn-Schmiedeberg's Arch. Pharmacol., 394, 1437-1449. https://doi.org/10.1007/s00210-021-02063-9
  • Di Stefano, E., Oliviero, T., & Udenigwe, C.C. (2018). Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20, 7-12. https://doi.org/10.1016/j.cofs.2018.02.008
  • Dona, A.C., Pages, G., Gilbert, R.G., & Kuchel, P.W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release. Carbohydrate Polymers, 80, 599-617. https://doi.org/10.1016/j.carbpol.2010.01.002
  • Ernawita, Thieme, C., Westphal, A., Malarski, A., & Böhm, V. (2019). Polyphenols, vitamin C, in vitro antioxidant capacity, α-amylase and COX-2 inhibitory activities of citrus samples from Aceh, Indonesia. Int. J. Vitam. Nutr. Res., 89, 337-347. https://doi.org/10.1024/0300-9831/a000481
  • Ernawita, Wahyuono, R.A., Hesse, J., Hipler, U.-C.; Elsner, P., & Böhm, V. (2016). Carotenoids of indigenous citrus species from Aceh and its in vitro antioxidant, antidiabetic and antibacterial activities, European Food Research and Technology, 242, 1869-1881. https://doi.org/10.1007/s00217-016-2686-0
  • Gianmaria, F., Ivana, A., Aniello, I., Armando, Z., Gabriele, P., & Antonino, P. (2011). Plant polyphenols and their anti cariogenic properties, Molecules, 16, 1486 1507. https://doi.org/10.3390/molecules16021486
  • Hengst, C., Werner, S., Müller, L., Fröhlich, K., & Böhm, V. (2009). Determination of the antioxidant capacity: Influence of the sample concentration on the measured values. European Food Research and Technology, 230, 249–254. https://doi.org/10.1007/s00217-009-1166-1
  • Hic, P., & Balik, J. (2012). Effect of sample dilution on estimated values of antioxidant capacity by photochemiluminiscence method. Acta Univ. Agric.Silvic. Mendel. Brun., 8, 67-72. https://doi.org/10.11118/actaun201260080067
  • Hurrel, R.F.and Finot, P.A. (1984). Nutritional consequences of the reactions between proteins and oxidised polyphenolic acids. Adv. Exp. Med. Biol., 177, 423-35.
  • Kim, J.H., Kim, H.Y., & Jin, C.H. (2009). Mechanistic investigation of anthocyanidin derivatives as alpha-glucosidase inhibitors. Bioorganic Chemistry, 87, 803-809. https://doi.org/10.1016/j.bioorg.2019.01.033
  • Kim, M.J., Lee, S.B., Lee, H.S., Lee, S.Y., Baek, J.S., Kim, D., Moon, T.W., Robyt, J.F., & Park, K.H. (1999). Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosineglucose. Archives of Biochemistry and Biophysics, 371, 277 283. https://doi.org/10.1006/abbi.1999.1423
  • Krohn, K., Flörke, U., Rao, M.S., Steingröver, K., Aust, H.J., Draeger, S., & Schulz, B. (2001). Metabolites from fungi 15. New isocoumarins from an endophytic fungus isolated from the Canadian thistle Cirsium arvense. Natural Product Letters, 15, 353 361. https://doi.org/10.1080/10575630108041303
  • Kschonsek, J., Wiegand, C., Hipler, U.-C., & Böhm, V. (2019). Influence of polyphenolic content on the in vitro allergenicity of old and new apple cultivars: A pilot study. Nutrition, 58, 30-35. https://doi.org/10.1016/j.nut.2018.07.001
  • Li, K., Fan, H., Yin, P.P., Yang, L.G., Xue, Q., Li, X.; Sun, L.W., & Liu, Y.J. (2018). Structure activity relationship of eight primary flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arabian Journal of Chemistry, 11, 159 170. https://doi.org/10.1016/j.arabjc.2017.08.002
  • Li, K., Yao, F., Xue, Q., Fan, H., Yang, L., Li, X., Sun, L., & Li, Y. (2018). Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign score method. Chemistry Central Journal, 12, 82. https://doi.org/10.1186/s13065-018-0445-y
  • Li, Y.Q., Zhou, F.C., & Gao, F.(2009). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α glucosidase. J. Agric. Food Chem. 57(24), 11463 11468. https://doi.org/10.1021/jf903083h
  • Loizzo, M.R., Tundis, R., & Menichini, F. (2012). Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Sci. Food Saf., 11, 378-398. http://dx.doi.org/10.1111/j.1541-4337.2012.00191.x
  • Maleśev, D., & Kunti, V.(2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 72, 921-939. https://doi.org/10.2298/JSC0710921M
  • Malunga, L.N., Thandapilly, S.J., & Ames, N. (2018). Cereal-derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. Journal of Food Biochemistry, 42, e12635. https://doi.org/10.1111/jfbc.12635
  • Matsuno, T., Kunikate, T., Tanigawa, T., Suyama, T., & Yamada, A. (2008). Establishment of cultivation system based on flowering characteristics in Hydrangea serrata (Thunb.) Ser. Hortic. Res., 7, 189-195. https://doi.org/10.2503/hrj.7.189
  • Mayer, A.M. (2006). Polyphenol oxidases in plants and fungi: going places? Phytochemistry, 67, 2318-31. https://doi.org/10.1016/j.phytochem.2006.08.006
  • Moll, M.D., Kahlert, L., Gross, E., Schwarze, E.-C., Blings, M., Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2022). VIS-NIR modeling of hydrangenol and phyllodulcin contents in tea-hortensia (Hydrangea macrophylla subsp. serrata), Hortic., 8, 264. https://doi.org/10.3390/horticulturae8030264
  • Moll, M.D., Tränkner, C., Blings, M., Schwarze, E.-C., Gross, E., Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2022). Proposing a chemometric normalized difference phyllodulcin index (cNDPI) for phyllodulcin synthesis estimation, J. JARMAP, 30, 100398. https://doi.org/10.1016/j.jarmap.2022.100398
  • Moll, M.D., Vieregge, A.S., Wiesbaum, C., Blings, M., Vana, F.,Hillebrand, S., Ley, J., Kraska, T., & Pude, R. (2021). Dihydroisocoumarin content and phenotyping of Hydrangea macrophylla subsp. serrata cultivars under different shading regimes. Agronomy, 11, 1743. https://doi.org/10.3390/agronomy11091743
  • Moon, K.M., Kwon, E.B., Lee, B., & Kim, C.Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25, 2754. https://doi.org/10.3390/molecules25122754
  • Nelson, D., & Cox, M. (2005). Enzyme kinetics as an approach to understanding mechanism. In Lehninger Principles of Biochemistry, 4th ed.; Freeman, W.H., Ed.; Macmillan: New York, NY, USA.
  • Procházková, D., Bousová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82, 513-523. https://doi.org/10.1016/j.fitote.2011.01.018
  • Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity, 5, 357-367. https://doi.org/10.2147/DMSO.S28340
  • Sae-leaw, T., & Benjakul, S. (2019). Prevention of melanosis in crustaceans by plant polyphenols: A review. Trends in Food Science & Technology, 85, 1 9. https://doi.org/10.1016/j.tifs.2018.12.003
  • Sharma, R. (2012). Enzyme inhibition and bioapplications; IntechOpen: Rijeka, Croatia, https://doi.org/10.5772/1963
  • Singh, P., & Goyal, G.K. (2008). Dietary lycopene: Its properties and anticarcinogenic effects. Compr. Rev. Food Sci. Food Saf., 7, 255 270. https://doi.org/10.1111/j.1541 4337.2008.00044.x
  • Suzuki, H., Ikeda, T., Matsumoto, T., & Noguchi, M. (1978). Polyphenol components in cultured cells of amacha (Hydrangea macrophylla Seringe var.thunbergii Makino). J-STAGE, 42, 1133-1137. https://doi.org/10.1080/00021369.1978.10863124
  • Şöhretoğlu, D., Sari, S., Barut, B., & Özel, A. (2018). Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chemistry, 79, 257 264. https://doi.org/10.1016/j.bioorg.2018.05.010
  • Tianpanich, K., Prachya, S., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P.J. (2011). Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J. Nat. Prod., 74, 79 81. https://doi.org/10.1021/np1003752
  • Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D.D., & Wingender, W. (2010). Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angewandte Chemie International Edition in English, 20, 744-761
  • Vocadlo, D.J., & Davies, G.J. (2008) Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol., 12, 539-555. https://doi.org/10.1016/j.cbpa.2008.05.010
  • Yasuda, T., Kayaba, S., Takahashi, K., Nakazawa, T., & Ohsawa, K. (2004). Metabolic fate of orally administered phyllodulcin in rats. J. Nat. Prod., 67, 1604 1607. https://doi.org/10.1021/np0400353
There are 44 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Ahlam Al-yafeai This is me 0009-0003-3095-3574

Barbara Schmitt This is me 0009-0004-4823-9720

Angelika Malarski This is me 0009-0006-5986-5000

Volker Böhm 0000-0002-9474-4718

Publication Date February 5, 2024
Submission Date November 21, 2023
Acceptance Date January 6, 2024
Published in Issue Year 2024

Cite

APA Al-yafeai, A., Schmitt, B., Malarski, A., Böhm, V. (2024). In-Vitro Bioactivity Evaluation of Hydrangenol Extracted from Hydrangea macrophylla (Thunb.) Ser. Leaves. International Journal of Secondary Metabolite, 11(1), 78-92. https://doi.org/10.21448/ijsm.1390183
International Journal of Secondary Metabolite

e-ISSN: 2148-6905