Review
BibTex RIS Cite

Review on the toxic effect of fluorine and lead on lichen metabolism

Year 2024, , 765 - 794, 03.11.2024
https://doi.org/10.21448/ijsm.1401066

Abstract

Thanks to their ability to absorb large amounts of trace elements from the atmosphere, lichens are widely used as bioaccumulators and bioindicators of air pollution. Among air pollutants, heavy metals represented by lead are the most important contributors to the deterioration of ecosystems. Fluorine is prevalent in a wide range of environmental matrices, even in trace amounts, and is one of the most phytotoxic halogens to plants. When lichens are exposed to air pollution, they frequently undergo structural, morphological and physiological alterations, and exhibit several coping strategies to combat and tolerate stressful situations. This manuscript presents general information about lichens, fluorine, and lead as well as the toxic effect of these two air pollutants on lichens, and the means of combat used by lichens to respond to fluorine and lead-induced stress.

References

  • Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107-197. https://doi.org/10.1016/j.ecolind.2020.107197
  • Abas, A., & Awang, A. (2017). Air pollution assessments using lichen biodiversity index (LBI) in Kuala Lumpur, Malaysia. Pollution Research, 36(2), 241-248
  • Aboal, J.R., Couto, J.A., Fernndáez, J.A., & Carballeira, A. (2008). Physiological responses to atmospheric fluorine pollution in transplants of Pseudoscleropodium purum. Environnemental Pollution, 153(3), 602-609. https://doi.org/10.1016/j.envpol.2007.09.002
  • Abu-Muriefah, S.S. (2015). Effects of Silicon on membrane characteristics, photosynthetic pigments, antioxidative ability, and mineral element contents of faba bean (Vicia faba L.) plants grown under Cd and Pb stress. International Journal of Advanced Research in Biological Sciences, 2(6), 1-17
  • Alison, M.K. (2006). Guide to common macrolichens and bryophytes of the Umatilla National Forest.
  • Alhasnawi, A. (2019). Role of proline in plant stress tolerance: A mini review. Resurrect Crops, 20(1), 223-229. https://doi.org/10.31830/2348-7542.2019.032
  • Ali, S., Fakhri, Y., Golbini, M., Thakur, S.K., Alinejad, A., Parseh, I., Shekhar, S., & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, https://doi.org/10.1016/j.gsd.2019.100224
  • Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., Catalá, M., & Casano, L.M. (2015). Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea Thalli and its isolated microalgae. Microbial Ecology, 69(3), 698–709. https://doi.org/10.1007/s00248-014-0524-0
  • Amnan, M.A.M., Aizat, W.M., Khaidizar, F.D., & Tan, B.C. (2022). Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants, 11, 221. https://doi.org/10.1101/2021.09.27.461768
  • Amine-Khodja, I.R., Boscari, A., Riah, N., Kechid, M., Maougal, R.T., Belbekri, N., & Djekoun, A. (2022). Impact of two strains of Rhizobium leguminosarum on the adaptation to terminal water deficit of two cultivars Vicia faba. Plants, 11(4), 515. https://doi.org/10.3390/plants11040515
  • Arif, M.S., Yasmeen, T., Shahzad, S.M., Riaz, M., Rizwan, M., Iqbal, S., Asif, M., Soliman, M.H., & Ali, S. (2019). Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere, 234, 70-80. https://doi.org/10.1016/j.chemosphere.2019.06.024
  • Armstrong, R.A. (2017). Adaptation of Lichens to Extreme Conditions. In: Shukla V, Kumar S, Kumar N. (eds.). Plant Adaptation Strategies in Changing Environment. Springer, Singapore, pp. 1-27. https://doi.org/10.1007/978-981-10-6744-0_1
  • Ashraf, M., & Harris, P.J.C. (2013). Photosynthesis under stressful environments: An overview. Phtosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6
  • Bajpai, J. (2013). Fluoride carcinogenesis: The jury is still out!. South Asian journal of cancer, 2, 192. https://doi.org/10.4103/2278-330X.119881
  • Bajpai, R., Semwal, M., & Singh, C.P. (2018). Suitability of lichens to monitor climate change. Cryptogam Biodiversity and Assessment, Special Volume, 182 188. https://doi.org/10.21756/cab.esp13
  • Bajpai, R., Upreti, D.K., Nayaka, S., & Kumari, B. (2010). Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. Journal of Hazardous Materials, 174(1-3), 429-436. https://doi.org/10.1016/j.jhazmat.2009.09.071
  • Balarinová, K., Barták, M., Hazdrová, J., Hájek, J., & Jílková, J. (2014). Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthtica, 52(4), 538 547. https://doi.org/10.1007/s11099-014-0060-7
  • Bamagoos, A.A., Mallhi, Z.I., El-Esawi, M.A., Rizwan, M., Ahmad, A., Hussain, A., Alharby, H.F., Alharbi, B.M., & Ali, S. (2022). Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (Ricinus communis L.) by glutathione application: new insights into the mechanisms regulating antioxidants, gas exchange and lead uptake. International Journal of Phytoremediation, 24(9), 933 944. https://doi.org/10.1080/15226514.2021.1985959
  • Banerjee, A., & Roychoudhury, A. (2019). Fluorine: a biohazardous agent for plants and phytoremediation strategies for its removal from the environment. Biologia Plantarum, 63, 104-112. https://doi.org/10.32615/bp.2019.013
  • Barbosa, Jr. F., Ramires, I., Rodrigues, M.H.C., Saint' Pierre, T.D., Curtius, A.J., Buzalaf, M.R., Gerlach, R.F., & Tanus-Santos, J.E. (2006). Contrasting effects of age on the plasma/whole lead ratio in men and women with a history of lead exposure. Environmental Research, 102, 90-95. https://doi.org/10.1016/j.envres
  • Barry, P.S.I. (1981). Concentrations of lead in the tissues of children. British journal of industrial medicine, 38, 61-71. https://doi.org/10.1136/oem.38.1.61
  • Batool, M., Abdullah, S., Umar Ijaz, M., Kousar, S., Tatima, M., Ilyas, R., Ambreen, F., & Mughal, K.T. (2018). heavy metals (Cadmium and Lead) induced oxidative stress in Channa marulius and Wallago attu during acute toxicity experiments. Pakistan Journal of Zoology supplement series, 13, 74-79
  • Beckett, R., Minibayeva, F., Solhaug, K., & Roach, T. (2021). Photoprotection in lichens: Adaptations of photobionts to high light. The Lichenologist, 53(1), 21 33. https://doi.org/10.1017/S0024282920000535
  • Belguidoum, A., Lograda, T., & Ramdani, M. (2021). Ability of metal trace elements accumulation by Lichens, Xanthoria parietina and Ramalina farinacea, in Megres area (Setif, Algeria). Acta Scientifica Naturalis, 8(1), 91-108. https://doi.org/10.2478/asn-2021-0008
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2022). Polyphenols and antibacterial activity of Xanthoria parietina (L.) Th. Fr. methanol extract under lead stress. Journal of Applied Biological Sciences, 16(3), 537-552. https://doi.org/10.5281/zenodo.7114289
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2023a). Some indicators of damage and responses of Xanthoria parietina (L.) Th. Fr. to fluoride and lead induced-stress. Journal of Applied Biological Sciences, 17(1), 69-82. https://doi.org/10.5281/zenodo.7579804
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2023b). Oxidative stress induced by fluorine in Xanthoria parietina (L.) Th. Fr. International Journal of Secondary Metabolite, 10(1), 124-136. https://doi.org/10.21448/ijsm.1136546
  • Benhamada, O., Laib, E., & Benhamada, N., Charef, S., Chennah, M., Chennouf, S., Derbak, H., Leghouchi, E. (2023c). Oxidative stress caused by lead in the lichen Xanthoria parietina. Acta Scientiarum. Biological Sciences, 45, e63221. https://doi.org/10.4025/actascibiolsci.v45i1.63221
  • Benítez, A., Medina, J., Vásquez, C., Loaiza, T., Luzuriaga, Y., & Calva, J. (2019). Lichens and bromeliads as bioindicators of heavy metal deposition in ecuador. Lichen Diversity and Biomonitoring, 11(2), 28. https://doi.org/10.3390/d11020028
  • Bhatt, S., Deshpande, M., Chaki, S., Patel, N., Pandy, N., & Soni, B. (2011). Chemical synthesis and characterization of lead sulphide (PbS) Nanoparticles. AIP Conference Proceedings, 1349. https://doi.org/10.1063/1.3605844
  • Bhattacharyya, D.S., Deep, P., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. American journal of Pharmtech Research, 6(6), 28-44.
  • Boldyrev, M.A. (2018). Lead: properties, history, and applications. Wiki Journal of Science, 1(2), 7. https://doi.org/10.15347/wjs/2018.007
  • Bonvicini, G., Fregni, A., & Palmonari, C. (2006). Fluorine compounds from industrial sources: the case of ceramic industries. In: Tressaud, A. (ed.). Fluorine and the environment: atmospheric chemistry, emissions, and lithosphere. France: Elsevier, Amsterdam, pp. 225–249
  • Bose, A., Vashistha, K., & O'Loughlin, B.J. (1983). Another cause of lead toxicity. Pediatrics, 72(1), 106-108. PMID: 6866579
  • Branquinho, C., Brown, D.H., Máguas, C., & Catarino, F. (1997). Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environmental and Experimental Botany, 37(2–3), 95-105. https://doi.org/10.1016/S0098-8472(96)01038-6
  • Büdel, B., & Scheidegger, C. (1995). Thallus morphology and anatomy. In: Nash III, T.H. (ed.), Lichen biology. Cambridge University Press, Cambridge, pp. 37–64
  • Büdel, B., & Scheidegger, C. (2008). Thallus morphology and anatomy. In: Nash III, T.H., (ed.), Lichen biology, Cambridge University Press: Cambridge, UK, pp. 40–68. ISBN 9780521871624
  • Buzalaf, M.A.R., & Whitford, G.M. (2011). Fluoride metabolism. Monographs in Oral Science, 22, 20-36. https://doi.org/10.1159/000325107
  • Caggiano, R., Trippetta, S., & Sabia, S. (2015). Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy). Natural Hazards and Earth System Sciences, 15(2), 325 333. https://doi.org/10.5194/nhess-15-325-2015
  • Calcott, M.J., Ackerley, D.F., Knight, A., Keyzers, R.A., & Owen, J.G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730-1760. https://doi.org/10.1039/c7cs00431a
  • Carreras, H.A., & Pignata, M.L. (2007). Effects of the heavy metals Cu+2, Ni+2, Pb+2 and Zn+2 on some physiological parameters of the Usnea amblyoclada. Journal of Ecotoxicology and Environmental Safety, 67(1), 59-66. https://doi.org/10.1016/j.ecoenv.2006.05.005
  • Chae, H.J., Kim, G.J., Deshar, B., Kim, H.J., Shin, M.J., Kwon, H., Youn, U.J., Nam, J.W., Kim, S.H., Choi, H., & Suh, S.S. (2021). Anticancer activity of 2-O-caffeoyl alphitolic acid extracted from the lichen Usnea barbata 2017-KL-10. Molecules, 26(13), 3937. https://doi.org/10.3390/molecules26133937
  • Chakrabarti, S., Patrab, P.K., & Santiniketan. (2014). Biochemical and antioxidant responses of paddy (Oryza sativa L.) to fluoride stress. Fluoride, 48(1), 56-61
  • Chappuis, P. (1991). Les oligo-élements en médecine et en biologie, Ed. Lavoisier
  • Chatterjee, N., Sahu, G., Bag, A., Pal, B., & Hazra, G. (2020). Role of fluoride on soil, plant and Human health: A Review on its sources, toxicity and mitigation strategies. International Journal of Environment and Climate Change, 10, 77 90. https://doi.org/10.9734/IJECC/2020/v10i830220
  • Chen, H., Xu, Y., Chen, H., Liu, H., Yu, Q., & Han, L. (2022). Isolation and identification of polyphenols from fresh sweet sorghum stems and their antibacterial mechanism against foodborne pathogens. Frontiers in Bioengineering and Biotechnology, 9, 1 15. https://doi.org/10.3389/fbioe.2021.770726
  • Chetia, J., Gogoi, N., Gogoi, R., & Yasmin, F. (2021). Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India. Plant Physiology Reports, 26, 210–219. https://doi.org/10.1007/s40502-021-00575-3
  • Chen, T-H., Kaveevivitchai, W., Jacobson, A.J., & Miljanic´, O.Sˇ. (2015). Adsorption of fluorinated anesthetics within the pores of a molecular crystal. Chemical Communication, 51, 14096-14098. https://doi.org/10.1039/c5cc04885k
  • Choubisa, S.L. (2021). Toxic effects of fluoride on human bones. Advances in Pharmacology and Toxicology, 13(1), 9–13
  • Choudhary, S., Rani, M., Devika, O.S., Patra, A., Singh, R.K., & Prasad, S.K. (2019). Impact of fluoride on agriculture: A review on its sources, toxicity in plants and mitigation strategies. International Journal of Chemical Studies, 7(2), 1675-1680.
  • Chowaniec, K., & Rola, K. (2022). Evaluation of the importance of ionic and osmotic components of salt stress on the photosynthetic efficiency of epiphytic lichens. Physiology and Molecular Biology of Plants, 28, 107–121. https://doi.org/10.1007/s12298-022-01134-2
  • Conti, M.E., & Cecchetti, G.B. (2001) Biological monitoring: Lichens as bioindicators of air pollution assessment A review. Environnemental Pollution, 114, 471 492. http://dx.doi.org/10.1016/S0269-7491(00)00224-4
  • Conti, M.E., & Tudino, M. (2016). Lichens as biomonitors of heavy metals pollution in book: Comprehensive Analytical Chemistry Volume 73 The Quality of Air. Edition: 1st Ed. Chapter: 6, Elsevier. https://doi.org/10.1016/bs.coac.2016.02.005
  • Crawford, S.D. (2015). Lichens used in traditional medicine. In: Ranković B. (ed.). Lichen secondary metabolites. Springer, Cham, pp. 27–80. https://doi.org/10.1007/978-3-319-13374-4_2
  • Crompton, T.R. (2000). Battery reference book. Oxford, England: Newnes. 18/2–18/4.
  • Cruise, A., Singh, A., & Quiney, R. (2010). Sodium fluoride in otosclerosis treatment: Review. The Journal of laryngology and otology, 124(6). 583 586. http://doi.org/10.1017/S0022215110000241
  • Darnajoux, R., Lutzoni, F., Miadlikowska, J., & Bellenger, J.P. (2015). Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment, 533, 1-7. https://doi.org/10.1016/j.scitotenv.2015.06.030
  • Demková, L., Bobul’ská, L., Árvay, J., Jezný, T., & Ducsay, L. (2017). Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 52(1), 30-36. https://doi.org/10.1080/10934529.2016.1221220
  • Dennerlein, K., Kiesewetter, F., Kilo, S., Jäger, T., Göen, T., Korinth, G., & Drexler, H (2016). Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model. Toxicology Letters, 248, 25 33. https://doi.org/10.1016/j.toxlet.2016.02.015
  • Deruelle, S., & Lallement, R. (1983). Les lichens témoins de la pollution. Thèmes vuibert Université biologie. (Paris), pp. 48-88
  • Dévéhat, F., Thüs, H., Abasq, M.L., Delmail, D., & Boustie, J. (2014). Oxidative stress regulation in lichens and its relevance for survival in coastal habitats. Advances in Botanical Research, 71, 467-503. https://doi.org/10.1016/B978-0-12-408062-1.00016-0
  • Douibi, C., Ramdani, M., Khelfi1, A., Benharket, R., Lograda, T., & Chalard, P. (2015). Biomonitoring of heavy metals by lichens in Setif Area (East of Algeria). Unified Journal of Environmental Science and Toxicology, 1(1), 001- 013
  • Dzubaj, A., Backor, M., Tomko, J., Péli, E., & Tuba, Z. (2008). Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicology and Environmental Safety, 70(2), 319-26. https://doi.org/10.1016/j.ecoenv
  • EFSA, (2013). Panel on dietetic products, nutrition; scientific opinion on dietary reference values for fluoride. EFSA J., 11(8), 3332
  • Ekstrand, J. (1996). Fluoride metabolism. In: Fejerskov, O., Ekstrand, J. and Burt, B. (eds.), Fluoride in dentistry, (2nd Ed). Munksgaard, Denmark, pp. 55-65
  • Eldridge, D.J., & Delgado-Baquerizo, M. (2018). The influence of climatic legacies on the distribution of dryland biocrust communities. Global Change Biology, 25(1), 327–336. https://doi.org/10.1111/gcb.14506
  • Elix, J., & Stocker-Wörgötter, E. (2008). Biochemistry and secondary metabolites. In T.H., Nash III (Ed.), Lichen Biology (pp. 104-133). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511790478.008
  • Elkhateeb, W., Elnahas, M., & Daba, G. (2021). Lichentherapy: Highlights on the pharmaceutical potentials of lichens. Open Access Journal of Microbiology & Biotechnology, 6(1),1-10. https://doi.org/10.23880/oajmb-16000190
  • Elkhateeb, W., Elghwas, D., & Daba, G. (2022). Lichens Uses: Surprising uses of lichens that improve Human life. Journal of Biomedical Research & Environmental Sciences, 3, 189-194. https://doi.org/10.37871/jbres1420
  • Elloumi, N., Zouari, M., Mezghani, I., Ben Abdallah, F. Woodward, S., & Kallel, M. (2017). Adaptive biochemical and physiological responses of Eriobotrya japonica to fluoride air pollution. Ecotoxicology, 26, 991–1001. https://doi.org/10.1007/s10646-017-1827-y
  • Esposito, S., Sorbo, S., Conte, B., & Basile, A. (2012). Effects of heavy metals on ultrastructure and HSP70S induction in the aquatic moss Leptodictyum Riparium Hedw. International Journal of Phytoremediation, 14(4), 443 455. https://doi.org/10.1080/15226514.2011.620904
  • Expósito, J.R., Barreno, E., & Catalá, M. (2022). 18 - Role of NO in lichens. In: Singh V.P., Singh S., Tripathi D.K., Romero-Puertas M.C. and Sandalio M.L. (eds), Nitric Oxide in Plant Biology. Academic Press, pp. 407-429. https://doi.org/10.1016/B978-0-12-818797-5.00027-3
  • Expósito, J.R., Barreno, E., & Catalá, M. (2019). Biological strategies of lichen symbionts to the toxicity of lead (Pb). In book: Lead in plants and the environment, pp.149-170. https://doi.org/10.1007/978-3-030-21638-2_9
  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006), Fluoride in drinking-water. London: World Health Organization (WHO). [Access: March 16 2015]. http://apps.who.int/iris/bitstream/10665/43514/1/9241563192
  • Filella, M., & Bonet, J. (2017). Environmental impact of alkyl lead (IV) Derivatives: Perspective after pheir Phase out. Metal Ions in Life Sciences, 10, 17. https://doi.org/10.1515/9783110434330-014
  • Filler, R., & Saha, R. (2009). Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Medicinal Chemistry, 1(5), 777-791. http://doi.org/10.4155/fmc.09.65
  • Fordyce, F. (2011). Fluorine: Human Health Risks. Encyclopedia of Environmental Health, 2, 776-785. https://doi.org/10.1016/B978-0-444-52272-6.00697-8
  • Fuge, R. (2018). Fluorine in the environment, a review of its sources and geochemistry. Applied Geochemistry, 100, 393-406. https://doi.org/10.1016/J.APGEOCHEM.2018.12.016
  • Gad, S.C., & Pham, T. (2014). Lead. Encyclopedia of Toxicology (3rd Ed.), pp. 61-65. https://doi.org/10.1016/B978-0-12-386454-3.00868-X
  • Gandhi, A.D., Umamahesh, K., Sathiyaraj, S., Suriyakala, G., Velmurugan, R., Al Farraj, D.A., Gawwad, M.R.A., Murugan, K., Babujanarthanam, R., & Saranya, R. (2022). Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. Journal of Infection and Public Health, 15(4), 491 497. https://doi.org/10.1016/j.jiph.2021.10.014
  • Gangola, M.P., & Ramadoss, B.R. (2018). Chapter 2 - Sugars play a critical role in abiotic stress tolerance in plants. In: Wani S.H. (ed.), Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, Edition: (1st Ed.) Academic Press, pp. 17-38. https://doi.org/10.1016/B978-0-12-813066-7.00002-4
  • Garty, J., Leher, H., Garty-spitz, R.L., Ganor, E., Stupp, A., Alpert, P., & Osetinsky, I. (2008). Temporal fluctuations of mineral concentrations as related to the physiological status of the lichen Ramalina lacera (With.) J.R. Laund. Israel Journal of Plant Sciences, 56(4), 361-369. https://doi.org/10.1560/IJPS.56.4.361
  • Gauslaa, Y., Mikulec, M.M., & Solhaug, K.A. (2021). Short-term growth experiments – A tool for quantifying lichen fitness across different mineral settings. Flora - Morphology Distribution Functional Ecology of Plants, 282(3), 151900. https://doi.org/10.1016/j.flora.2021.151900
  • Gessner, D.K., Ringseis, R., & Eder, K. (2017). Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition, 101(4), 605-628. https://doi.org/10.1111/jpn.12579
  • Ghazi, A.M., & Millette, J.R. (1964). 4 – Lead. Environmental Forensics, 55-79. https://doi.org/10.1016/B978-012507751-4/50026-4
  • Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X., & Khan, M.A.R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227 239. https://doi.org/10.1111/plb.13363
  • Gilbert, O.L. (1973). The effect of airborne fluorides, in: Ferry, B.W., Baddeley, M.S and Hawksworth D.L (Eds), Air Pollution and Lichens. Athlone, London, p 176
  • Goncharov, N., Savelieva, E., Koryagina, N., Zinchenko, V., Kuznetsov, S., Mindukshev, I., Avdonin, P., Ukolov, A., & Jenkins, R. (2020). Fluoroacetate. In: Gupta R.C. (ed.), Handbook of Toxicology of Chemical Warfare Agents (3rd Ed.), Academic Press, pp. 215-238, ISBN 9780128190906, https://doi.org/10.1016/B978-0-12-819090-6.00015-5
  • Gong, B., Sun, S., Yan, Y., Jing, X., & Shi, Q. (2018). Glutathione metabolism and its function in higher plants adapting to stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Berlin, 181 205. https://doi.org/10.1007/978-3-319-75088-0_9
  • Gurbanov, R., & Unal, D. (2019) The biomolecular alterations in Cladonia convoluta in response to lead exposure. Spectroscopy Letters, 51, 563 570. https://doi.org/10.1080/00387010.2018.1533564
  • Gupta, S.P. (2019). Roles of fluorine in drug design and drug action. Letters in Drug Design & Discovery, 16(10), 1089 – 1109. http://doi.org/10.2174/1570180816666190130154726
  • Guth, S., Hüser, S., Roth, A., Degen, G., Diel, P., Edlund, K., ... Hengstler, J.G. (2020). Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology, 94(5), 1375-1415. https://doi.org/10.1007/s00204-020-02725-2
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M., & Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A Review of Recent Experimental Evidence. International Journal of Molecular Sciences, 21(22), 8695. https://doi.org/10.3390/ijms21228695
  • Hauck, M., Willenbruch, K., & Leuschner, C. (2009). Lichen substances prevent lichens from nutrient deficiency. Journal of Chemical Ecology, 35, 71 73. https://doi.org/10.1007/s10886-008-9584-2
  • Hernberg, S. (2000). Lead poisoning in a historical perspective. Journal of Intensive Medicine, 38(3), 244-54. https://doi.org/10.1002/1097-0274(200009)
  • Honegger, R. (1998). The Lichen Symbiosis - What is so spectacular about it? The Lichenologist, 30(3), 193-212
  • Ingram, G.S., Agalamanyi, E.A., & Higham, S.M. (2005). Caries and fluoride processes. Journal of Dentistry, 33(3), 187-191. https://doi.org/10.1016/j.jdent.2004.10.004
  • Ite, A.E., Udousoro, I.I., & Ibok, U.J. (2014). Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno local government areas of Akwa Ibom State, Nigeria. American Journal of Environmental Protection, 2(1), 22-31. https://doi.org/10.12691/env-2-1-5
  • James, A.C., Stahlhofen, W., Rudolf, G., Köbrich, R., Briant, J.K., Egan, M.J., Nixon, W., & Birchall, A. (1994). Deposition of inhaled particles. Annals of ICRP 24(1–3), 231–299. https://doi.org/10.1016/0146-6453(94)90042-6
  • Kabir, M., Habiba, U., Iqbal, M., Shafiq, M., & Farooqi, Z. (2020). Industrial pollution and its impacts on ecosystem: A Review. Biochemical Research, 17(2),1364-1372
  • Kamel, H.A. (2008). Lead accumulation and its effect on photosynthesis and free amino acids in Vicia faba grown hydroponically. Australian Journal of Basic and Applied Sciences, 2(3), 438-446
  • Kandelinskaya, O., Grischenko, H., Hihinyak, Y., Andreev, M., Convey, P., Lukashanets, D., Kozel, N., & Prokopiev, I. (2021). Chemical compounds and antioxidant activity of Antarctic lichens. Antarctic Science, 34(1), 3 15. https://doi.org/10.1017/S0954102021000511
  • Kapusta, P., & Sobczyk, Ł. (2015). Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Science of the Total Environment, 1, 536, 517-526. https://doi.org/10.1016/j.scitotenv.2015.07.086
  • Karakoti, N., Bajpai, R., Upreti, D.K., Mishra, G.K., Srivastava, A., & Nayaka, S. (2014). Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environmental Earth Sciences, 71(5). https://doi.org/10.1007/s12665-013-2623-5
  • Khan, M., Al Azzawi, T.N.I., Imran, M., Hussain, A., Mun, B.G., Pande, A., & Yun, B.W. (2021). Effects of lead (Pb)-induced oxidative stress on morphological andphysio-biochemical properties of rice. Biocell, 45(5), 1413 1423. https://doi.org/10.32604/biocell.2021.015954
  • Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., Ismail, I., Shahid, M., & Babar, Md. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2). https://doi.org/10.30848/PJB2020-2(24)
  • Kiani, R., Arzani, A., & Maibody, S.A.M. (2021). Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Frontiers in Plant Science, 12, 646221. https://doi.org/10.3389/fpls.2021.646221
  • Kim, II-S., Song, W., & Arakawa, H. (2019). The role of low-level sodium fluoride in periodontal inflammation. Journal of Hard Tissue Biology, 28(2), 159 164. http://doi.org/10.2485/jhtb.28.159
  • Kim, A.K., & Su, J.Z. (1999). Full-scale evaluation of halon replacement agents. Journal of Fire Protection Engineering, 10(2), 1-23. https://doi.org/10.1177/104239159901000201
  • Kleerekoper, M. (1998). The role of fluoride in the prevention of osteoporosis. Endocrinology and Metabolism Clinics of North America, 27(2), 441-52. http://doi.org/10.1016/s0889-8529(05)70015-3
  • Koch, N.M., Matos, P., Branquinho, C., Pinho, P., Lucheta, F., de Azevedo Martins, S.M., & Ferrao Vargas, V.M. (2019). Selecting lichen functional traits as ecological indicators of the effects of urban environment. Science of the Total Environment, 654, 705–713. https://doi.org/10.1016/j.scitotenv
  • Kołton, A., Długosz-Grochowska, O., Wojciechowska, R., & Czaja, M. (2022). Biosynthesis regulation of folates and phenols in plants. Scientia Horticulturae, 291, 110561. https://doi.org/10.1016/j.scienta.2021.110561
  • Kováčik, J., Dresler, S., Peterková, V., & Babula, P. (2018). Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere, 203, 402 409. https://doi.org/10.1016/j.chemosphere.2018.03.112
  • Kováčik, J., Rotková, G., Bujdoš, M., Babula, P., Peterková, V., & Matúš, P. (2017). Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. Journal of Hazardous Materials, 339, 200–207. https://doi.org/10.1016/j.jhazmat.2017.06.035
  • Kraft, M., Scheidegger, C., & Werth, S. (2022). Stressed out: the effects of heat stress and parasitism on gene expression of the lichen-forming fungus Lobaria pulmonaria. The Lichenologist, 54, 71-83. https://doi.org/10.1017/S0024282921000463
  • Kranner, I., Beckett, R., Hochman, A., & Nash III, T.H. (2009). Desiccation-tolerance in lichens: A Review. The Bryologist, 111, 576-593. https://doi.org/10.1639/0007-2745-111.4.576
  • Kuang, P., Deng, H., Cui, H., Chen, L., Fang, J., Zuo, Z., Deng, J., Wang, X., & Zhao, L. (2016). Sodium fluoride (NaF) causes toxic effects on splenic development in mice. Oncotarget, 8, 4703-4717, https://doi.org/10.18632/oncotarget.13971
  • Kularatne, K.I.A., & de Freitas C.R. (2013). Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environmental and Experimental Botany, 88, 24 32. https://doi.org/10.1016/j.envexpbot.2012.02.010
  • Kuldeep, S., & Prodyut, B. (2015). Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: Review. International Research Journal of Environment Sciences, 4(12), 107-117
  • LeBlanc, F., Comeau, G., & Rao, D.N. (2011). Fluoride injury symptoms in epiphytic lichens and mosses. Canadian Journal of Botany, 49(9), 1691-1698. https://doi.org/10.1139/b71-238
  • Lee, Y.J., & Jeong, I.B. (2021). Chemical pneumonitis by prolonged hydrogen fluoride inhalation. Respiratory Medicine Case Reports, 32, 101338. https://doi.org/10.1016/j.rmcr.2020.101338
  • Lei, S., Rossi, S., & Huang, B. (2022). Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in Perennial Ryegrass. Plants, 11, 199. https://doi.org/10.3390/plants11020199
  • Li, X., Liu, J., Li, X., Liu, H., Liu, H., Li, Y., Liu, Y., & Dong, Y. (2018). Recent advance in the synthesis of (1,1-difluoroethyl) arenes. Journal of Fluorine Chemistry, 216, 102-106. https://doi.org/10.1016/j.jfluchem.2018.10.011
  • Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxidants and Redox Signaling, 19(9). https://doi.org/10.1089/ars.2012.5074
  • Lin, S., Wang, X., Yu, I.T., Tang, W., Miao, J., Li, J., Wu, S., & Lin, X. (2011). Environmental lead pollution and elevated blood lead levels among children in a rural area of China. American Journal of Public Health, 101(5), 834 841. https://doi.org/10.2105/AJPH.2010.193656
  • Lu, F.C. (1992). Basic toxicology: fundamentals, target organs, and risk assessment. - Hemisphere publishing corporation, Ed. Masson, p. 303, 304
  • Maciąg, D.M., Węgrzyn, G., & Guzow, K.B. (2014). Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiology Letters, 353(1), 57–62. https://doi.org/10.1111/1574-6968.12409
  • Marques, J., Gonçalves, J., Oliveira, C., Favero-Longo, S.E., Paz-Bermúdez, G., Almeida, R., & Prieto, B. (2016). On the dual nature of lichen-induced rock surface weathering in contrasting micro environments. Ecology, 97(10), 2844 2857. https://doi.org/10.1002/ecy.1525
  • Matos, P., Pinho, P., Aragon, G., Martínez, I., Nunes, A., Soares, A.M.V.M., & Branquinho, C. (2015). Lichen traits responding to aridity. Journal of Ecology, 103(2), 451-458. https://doi.org/10.1111/1365-2745.12364
  • Mishra, A., Ishwakarma, K., Malaviya, P., Kumar, N., Pavón, L.R., Shandilya, C., Sharma, R., Bisht, A., & Takkar, S. (2022). On plant epigenomes for food security. In. Thakur, I.S., Ngo, H.H, Soccol, C.R., and Larroche, C. (Eds), Ashok Pandey Influence of greenhouse gases. Biomass, Biofuels, Biochemicals, Elsevier, pp. 421-450, ISBN 9780128235003. https://doi.org/10.1016/B978-0-12-823500-3.00003-0
  • Mikheeva, E., Prosekov, A., & Volobaev, V. (2020). Genotoxic proprieties of fluorine (review). Hygiene and Sanitation, 99(3), 253-258. https://doi.org/10.33029/0016-9900-2020-99-3-253-258
  • Mitrović, T., Stamenkovic, S., Cvetković, V., Nikolic, M., Tošić, S., & Stojičić, D. (2011). Lichens as source of versatile bioactive compounds. Biologica Nyssana, 2(1), 1-6
  • Mohideen, H., Dahiya, D.S., Parsons, D., Hussain, H., & Syed Ahmed, R. (2022). Skeletal fluorosis: A case of inhalant abuse leading to a diagnosis of colon cancer. Journal of Investigative Medicine High Impact Case Reports, 10, 1 6. https://doi.org/10.1177/23247096221084919
  • Moissan, H. (1886). Le Fluor. La Nature, 701, 363-366
  • Mondal, N.K. (2017). Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicology and Environmental Safety, 144, 36-44. https://doi.org/10.1016/j.ecoenv.2017.06.009
  • Mohamed, E., Mohamed, L., & Abdelhay, E.G. (2020). Using calcicolous and corticolous lichens to assess lead and cadmium air pollution of the Moroccan Atlantic Coast Safi-Essaouira. Polish Journal of Environmental Studies, 29(1), 779 787. https://doi.org/10.15244/pjoes/102629
  • Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Lichen as multipartner symbiotic relationships. Encyclopedia, 2, 1421–1431. https://doi.org/10.3390/encyclopedia2030096
  • Mukemre, M., Zengin, G., Turker, R.S., Aslan, A., & Dalar, A. (2021). Biological activities and chemical composition of Xanthoria lichens from Turkey. International Journal of Secondary Metabolite, 8(4), 376–388. https://doi.org/10.21448/ijsm.994427
  • Mundada, P.S., Jadhav, S.V., Salunkhe, S.S., Gurme, S.T., Umdale, S.D., Nikam, T.D., & Ahire, M.L. (2021). Plant performance and defensive role of proline under environmental stress. In: Husen A. (ed.), Plant Performance Under Environmental Stress. Springer; Berlin/Heidelberg, pp. 201-223. https://doi.org/10.1007/978-3-030-78521-5_8
  • Nahar, K., Hasanuzzaman, M., Suzuki, T., & Fujita, M. (2017). Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology, 26(1), 58-73. https://doi.org/10.1007/s10646-016-1740-9
  • Nareshkumar, A., Veeranagamallaiah, G., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., Venkatesh, B., & Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) Cultivars. Agricultural Sciences, 6(10), 1283-1297. https://doi.org/10.4236/as.2015.610123
  • Nash III, T.H. (1971). Lichen sensitivity to hydrogen fluoride. Bulletin of the Torrey Botanical Club, 98(2), 103-106
  • Nayaka, S., & Haridas, B. (2020). Bioactive secondary metabolites from lichens. In book: Plant metabolites: Methods, applications and prospects (pp.255-290), Publisher: Springer, Singapore. https://doi.org/10.1007/978-981-15-5136-9_12
  • Nielsen, E. (2013). Lead and inorganic lead compounds. Evaluation of health hazards and estimation of a quality criterion in soil. The Danish Environmental Protection Agency, Strandgade, 29, 1401 Copenhagen K, Denmark, www.mst.dk/english. ISBN: 978-87-93026-73-5
  • Nobile, V., Schiano, I., Peral, A., Giardina, S., Spartà, E., & Caturla, N. (2021). Antioxidant and reduced skin-ageing effects of a polyphenol-enriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study. Food and Nutrition Research, 65. https://doi.org/10.29219/fnr.v65.5619
  • Norman, H.O., & Arden, C.G. (1991). Water fluoridation in primary preventive dentistry. (3rd Ed.). Stamford, CT: Appleton and Lange
  • Nimis, P.L., Aptroot, A., Boonpragob, K., Buaruang, K., Poengsungnoen, V., Polyiam, W., Vongshewarat, K., Meesim, S., Boonpeng, C., Phokaeo, S., Molsil, M., Nirongbutr, P., Sangvichien, E., Moro, A., Pittao, E., & Martellos, S. (2017). 100 Lichens from Thailand: a tutorial for students (online) ISBN 978-88-8303-853-2 EUT - Edizioni Università di Trieste Via E. Weiss, 21, 34128 Trieste https://eut.units.it
  • Nugraha, A.S., Pratoko, D.K., Damayanti, Y.D., Lestari, N.D., Laksono, T.A., Addy, H.S., Untari, L.F., Kusumawardani, B., & Wangchuk, P. (2019). Antibacterial and anticancer activities of nine lichens of Indonesian Java Island. Journal of Biologically Active Products from Nature, 9(1), 39-46. https://doi.org/10.1080/22311866.2019.1567383
  • Ozenda, P. (2000). Les végétaux, organisation et diversité biologique, Ed. Masson (2nd Ed.), 192p
  • Ozenda, P., & Clauzade, G. (1970). Les Lichens: Étude biologique et flore illustrée. Paris, Ed. Masson (2nd Ed.), pp. 633-634
  • Pak, C., Zerwekh, J., Antich, P., Bell, N., & Singer, F. (2009). Slow-release sodium fluoride in osteoporosis. Journal of Bone and Mineral Research, 11(5), 561 564. http://doi.org/10.1002/jbmr.5650110502
  • Paoli, L., Munzi, S., Guttova, A., Senko, D., Sardella, G., & Loppi, S. (2015). Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators, 52. https://doi.org/10.1016/j.ecolind.2014.12.018
  • Papanikolaou, N.C., Hatzidaki, E.G., Belivanis, S., Tzanakakis, G.N., & Tsatsakis, A.M. (2005). Lead toxicity update. A brief review. Medical Science Monitor, 11(10), 329-336. PMID: 16192916
  • Pavlov, D. (2017). Lead-acid batteries: science and technology (2nd Ed.), pp. 245-273. https://doi.org/10.1016/B978-0-444-59552-2.00005-5
  • Pelc, J., Śnioszek, M., Wróbel, J., & Telesiński, A. (2020). Effect of fluoride on germination, early growth and antioxidant enzymes activity of three winter wheat (Triticum aestivum L.) cultivars. Applied Sciences, 10(19). https://doi.org/10.3390/app10196971
  • Perkins, D.F. (1992). Relationship between fluoride contents and loss of lichens near an aluminium works. Water Air and Soil Pollution, 64, 503 510. https://doi.org/10.1007/BF00483360
  • Perlmutter, G.B. (2009). Basic Lichenology 2: Reproduction. Bulletin of the California Lichen Society, 16(1), 7-11
  • Pescott, O.L., Simkin, J.M., August, T.A., Randle, Z., Dore, A.J., & Botham, M.S. (2015). Air pollution and its effects on lichens, bryophytes, and lichens-feeding Lipedoptera: review and evidence from biological records. Biological Journal of the Linnean Society, 115(3), 611-635. https://doi.org/10.1111/bij.12541
  • Philip, A.T., & Gerson, B. (1994). Lead poisoning-Part I. incidence, etiology, and toxicokinetic. Clinical and Laboratory Medicine, 14(2), 423-444. PMID: 7924196
  • Pisani, T., Munzi, S., Paoli, L., Bacˇkor, M., & Loppi, S. (2009). Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere, 76(7), 921–926. https://doi.org/10.1016/j.chemosphere.2009.04.058
  • Podterob, A.P. (2008). Chemical composition of lichens and their medical applications. Pharmaceutical Chemistry Journal, 42, 582–588. https://doi.org/10.1007/s11094-009-0183-5
  • Pollick, H. (2018). The role of fluoride in the prevention of tooth decay. Pediatric clinics of North America, 65(5), 923-940. https://doi.org/10.1016/j.pcl.2018.05.014
  • Popescu, M., Blanchard, J-M., & Carre, J. (1998). Analyse et traitement physicochimique des rejets atmosphériques industriels (émissions, fumées, odeurs & poussières). Ed. Lavoisier, 854 p.
  • Purvis, O.W. (2014). Adaptation and interaction of saxicolous crustose lichens with metals. Botanical Studies, 55(1), 23. https://doi.org/10.1186/1999-3110-55-23
  • Quijano-Abril, M.A., Ramirez-Ospina, D.M., Domínguez-Rave, M.I., & Londoño-Valencia, J. (2021). Lichens as biosensors for the evaluation of urban and sub-urban air pollution in a tropical mountain valley, Rionegro, Antioquia. Revista Bionatura, 6(1), 1501-1509. https://doi.org/10.21931/RB/2021.06.01.10
  • Ram, A., Verma, P., & Gadi, B.R. (2014). Effect of fluoride and salicylic acid on seedlings growth and biochemical parameters of watermelon (Citrullus lanatus). Research report Fluoride, 47(1), 49-55
  • Ribeiro, D., Yujra, V., Hugo, V., Claudio, S., Estadella, D., Viana, M., & Oshima, C. (2017). Putative mechanisms of genotoxicity induced by fluoride: a comprehensive review. Environmental Science and Pollution Research, 24(2). https://doi.org/10.1007/s11356-017-9105-3
  • Roberts, B., & Thompson, L.K., (2011). Lichens as indicators of fluoride emission from a phosphorus plant, Long Harbour, Newfoundland, Canada. Canadian Journal of Botany, 58(20), 2218-2228. https://doi.org/10.1139/b80-256
  • Rodríguez, E.M., Marante, F.G.T., Hernández, J.C., Barrera, J.B., & Rosa, F.J.E. (2016). Antioxidant activity of polyphenols from Hypogymnia tavaresii D. Hawksw & P. James. Quimica Nova, 39(4), 456-461. https://doi.org/10.5935/0100-4042.20160053
  • Rola, K. (2020). Insight into the pattern of heavy-metal accumulation in lichen thalli. Journal of Trace Elements in Medicine and Biology, 61, 126512. https://doi.org/10.1016/j.jtemb.2020.126512
  • Rola, K., Latkowska, E., Myśliwa-Kurdziel, B., & Osyczka, P. (2019). Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites. Science of the Total Environment, 279, 260-269. https://doi.org/10.1016/j.scitotenv.2019.05.002
  • Sakai, T. (2000). Biomarkers of lead exposure. Industrial Health, 38(2), 127-142. http://dx.doi.org/10.2486/indhealth.38.127
  • Sahariya, A., Bharadwaj, C., Iwuala, E., & Alam, A. (2021). Fluoride toxicity in soil and plants: an overview. 8, 26-34
  • Sanità di Toppi, L., Pawlik-Skowrońska, B., Vurro, E., Vattuone, Z., Kalinowska, R. Restivo, F.M., Musetti, R., & Skowroński, T. (2008). First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta). Environmental Pollution, 151(2), 280-286.: https://doi.org/10.1016/j.envpol.2007.06.010
  • Sargsyan, R., Gasparyan, A., Tadevosyan, G., & Panosyan, H. (2021). Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express, 11(1), 110. https://doi.org/10.1186/s13568-021-01271-z
  • Schaefer, L., & Fegley, B. (2005). Silicon tetrafluoride on Io. Icarus, 179, 252–258. https://doi.org/10.1016/j.icarus.2005.05.020
  • Šeklić, D.S., Jovanović, M.M, Virijević, K.D., Grujić, J.N, Živanović, M.N., & Marković, S.D. (2022). Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. Journal of Ethnopharmacology, 287(10), 114758, https://doi.org/10.1016/j.jep.2021.114758
  • Semadi, A. (1989). Effets de la pollution atmosphérique (pollution globale, fluorée et plombique) sur la végétation dans la région de Annaba (Algérie). Thèse de Doctorat, France. Corpus ID: 128261548. ISSN 0294-1767
  • Sharma, P., & Dubey, R. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Sharma, R., & Kaur, R. (2018). Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiologiae Plantarum, 40, 181. https://doi.org/10.1007/s11738-018-2754-0
  • Sharma, R., & Kaur, R. (2019). Fluoride toxicity triggered oxidative stress and the activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden. Journal of Plant Interactions, 14(1), 440-452. https://doi.org/10.1080/17429145.2019.1646826
  • Sharma, R., Kumari, A., Rajput, S., Nishu, Arora, S., Rampal, R., & Kaur, R. (2019). Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden. Scientific Reports, 9, 20006. https://doi.org/10.1038/s41598-019-56110-w
  • Sheldon, D., & Crimmin, M. (2022). Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chemical Society Reviews, 51(12), 4977 4995. https://doi.org/10.1039/D1CS01072G
  • Singh, C.P., Bajpai, R., Singh, R.P., & Upreti, D.K. (2016). Improving bioclimatic envelop modeling for Lichens through remote sensing based substratum correction: A study over Indian Himalaya. Cryptogam Biodiversity and Assessment, 1(2), 1 19. https://www.researchgate.net/publication/311464001
  • Singh, S., Kaur, I., & Kariyat, R. (2021). The multifunctional roles of polyphenols in plant-herbivore interactions. International Journal of Molecular Sciences, 22(3), 1442. https://doi.org/10.3390/ijms22031442
  • Singh, S., Singh, J., & Singh, N. (2013). Studies on the impact of fluoride toxicity on growth parameters of Raphanus Sativus L. Indian Journal of Scientific Research, 4(1), 61-63
  • Škvorová, Z., Černajová, I., Steinová, J., Peksa, O., Moya, P., & Škaloud, P. (2022). Promiscuity in lichens follows clear rules: Partner switching in Cladonia Is regulated by climatic factors and soil chemistry. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.781585
  • Sodani, R., Pandurangam, V., & Srivastava, J. (2021). Germination and morphological responses of Triticum aestivum L. to different concentrations of fluoride. Environnment Conservation Journal, 22(3), 143-148 https://doi.org/10.36953/ecj.2021.22318
  • Solárová, Z., Liskova, A., Samec, M., Kubatka, P., Büsselberg, D., & Solár, P. (2020). Anticancer potential of lichens’ secondary metabolites. Biomolecules, 10(1), 87. https://doi.org/10.3390/biom10010087
  • Song, K.S., & Williams, R.T. (1993). Alkaline earth fluorides. In: Self-Trapped Excitons. Springer Series in Solid State Sciences, 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97432-8_4
  • Stromsnes, K., Lagzdina, R., Olaso-Gonzalez, G., Gimeno-Mallench, L., & Gambini1, J. (2021). Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in In Vitro studies, Animal Models, and Humans. Biomedicines, 9(8), 1074. https://doi.org/10.3390/biomedicines9081074
  • Subhashini, A., & Suganthi, R. (2014). Determination of toxic heavy metals in four different lichen species of Tamil Nadu, India. Asian Journal of Biological and Life Sciences, 3(1), 45-48
  • Šujetovienė, G. (2015). Monitoring lichen as indicators of atmospheric quality. In: Upreti D., Divakar, P., Shukla, V., Bajpai, R. (eds), Recent Advances in Lichenology. Vol. 1. Modern methods and approaches in biomonitoring and bioprospection. Springer, New Delhi, 87, 118. https://doi.org/10.1007/978-81-322-2181-4_4
  • Šujetovienė, G., & Česynaitė, J. (2021). Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors. Journal of Toxicology and Environmental Health, 84(7), 273-287. https://doi.org/10.1080/15287394.2020.1862006
  • Šujetovienė, G., & Sliumpaitė, I. (2013). Effects of cadmium on physiological parameters of the lichen Evernia prunastri and Ramalina fastigiata In E3S Web of Conferences (Vol. 1). EDP Sciences. https://doi.org/10.1051/e3sconf/20130129007
  • Šujetovienė, G., Smilgaitis, P., Dagiliūtė, R., & Žaltauskaitė, J. (2019). Metal accumulation and physiological response of the lichens transplanted near a landfill in central Lithuania. Waste Management, 85, 60-65. https://doi.org/10.1016/j.wasman.2018.12.017
  • Sulaiman, N., Fuzy, S.F.F.M, Muis, S.I.N.A., & Ismail, B.S (2018). Use of lichens as bioindicators for determining atmospheric heavy metal concentration in Malaysia. Pakistan Journal of Botany, 50(1), 421-428
  • Tak, Y. (2018). Catastrophic Effect of Fluoride in Plants: A Mini review. Indian Research Journal of Genetics and Biotechnology, 10(02), 222-227.
  • Taiwo, I.E., Henry, A.N., Imbufe, A.P., & Adetoro, O.O., (2014). Heavy metal bioaccumulation and biomarkers of oxidative stress in the wild African tiger frog, Hoplobatrachus occipitalis. African Journal of Environmental Science and Technology, 8(1), 6 15. https://doi.org/10.5897/AJEST2013.603
  • Talcott, P. (2018). Toxicologic Problems. In: Reed, S.M., Bayly, W.M., and Sellon, D.C. (eds.), Equine Internal Medicine (4th Ed.). France: Amazon, pp. 1460-1512, ISBN 9780323443296. https://doi.org/10.1016/B978-0-323-44329-6.00021-8
  • Tarawneh, A.H., Salamon, I., Altarawneh, R., & Mitra, J. (2021). Assessment of lichens as biomonitors of heavy metal pollution in selected mining area, Slovakia. Pakistan Journal of Analytical and Environmental Chemistry, 22(1), 53 59. https://doi.org/10.21743/pjaec/2021.06.07
  • Tiwari, S., Tripathi, I.P., & Tiwari, H.L. (2013). Effects of lead on environment. International Journal of Emerging Research in Management &Technology, 2(6).
  • Toto, A., Wild, P., Graille, M., Turcu, V., Crézé, C., Hemmendinger, M., Sauvain, J.J., Bergamaschi, E., Canu, I.G., & Hopf, N.B. (2022). Urinary malondialdehyde (MDA) concentrations in the general population-A systematic literature review and meta-analysis. Toxics, 10(4), 160. https://doi.org/10.3390/toxics10040160
  • Tuladhar, P. Sasidharan, S., & Saudagar, P. (2021). 17 - Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol Agents and Secondary Metabolites, pp. 419-441. https://doi.org/10.1016/B978-0-12-822919-4.00017-X
  • Ullah, S., Li, Z., Hassan, S., Ahmad, S., Guo, X., Wanghe, A., & Nabi, G., (2021). Heavy metals bioaccumulation and subsequent multiple biomarkers-based appraisal of toxicity in the critically endangered Tor putitora. Ecotoxicology and Environmental Safety, 228(1), 113032. https://doi.org/10.1016/j.ecoenv.2021.113032
  • van Hulst, R.A., Muth, C-M., & Radermacher, P., (2008). Air embolism and diving injury. In: Papadakos, P.J. and Lachmann, B. (eds.), Laraine Visser-Isles, Mechanical Ventilation, W.B. Saunders, pp. 365-375. ISBN 9780721601861. https://doi.org/10.1016/B978-0-7216-0186-1.50036-3
  • Vannini, A., Tedesco, R., Loppi, S., Di Cecco, V., Di Martino, L., Nascimbene, J., Dallo, F., & Barbante, C. (2021). Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Science of The Total Environment, 798, 149369. https://doi.org/10.1016/j.scitotenv.2021.149369
  • Vardanyan, R.S., & Hruby, V.J. (2006). Antineoplastics. In: Vardanyan, R.S. and Hruby V.J. (eds.), Synthesis of Essential Drugs, France: Elsevier, pp. 389-418. ISBN 9780444521668. https://doi.org/10.1016/B978-044452166-8/50030-3
  • Villa, A., Anabalon, M., Zohouri, V., Maguire, A., Franco, A.M., & Rugg-Gunn, A. (2010). Relationships between fluoride intake, urinary fluoride excretion and fluoride retention in children and adults: an analysis of available data. Caries Research, 44(1), 60–68.
  • Vitikainen, O. (2009). William Nylander (1822–1899) and lichen chemotaxonomy. The Bryologist, 104, 263 267. https://doi.org/10.1639/0007 2745(2001)104[0263:WNALC]2.0.CO;2
  • Walna, B., Kurzyca, I., & Siepak, J. (2007). Variations in fluoride level in precipitation in a region of human impact. Water, Air, & Soil Pollution: Focus, 7, 33 40. https://doi.org/10.1007/s11267-006-9108-4
  • Wani, A.L., ARA, A., & Usmani, J.A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009
  • Weaver, R. (1975). Lichens: mysterious and diverse, pp. 133-159. Corpus ID: 44411836
  • Węgrzyn, M., Wietrzyk, P., Lisowska, M., Klimek, B., & Nicia, P. (2016). What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard? Polar Science, 10(4), 532-540. https://doi.org/10.1016/j.polar.2016.10.002
  • Whitford, G.M. (1996). The metabolism and toxicity of fluoride. Monographs in Oral Science, 16(2), 1–153
  • Wieners, P.C., Mudimu, O., & Bilger, W. (2018). Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. Planta, 248(3), 601-612. https://doi.org/10.1007/s00425-018-2925-7
  • Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa, A., & Listrani, S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome. Italy. Science of The Total Environment, 690, 1355-1368. https://doi.org/10.1016/j.scitotenv.2019.06.526
  • Yamazaki, T., Taguchi, T., & Ojima, I. (2009). 'Unique properties of fluorine and their relevance to medicinal chemistry and chemical biology', Fluorine in Medicinal Chemistry and Chemical Biology, pp. 3-46. http://doi.org/10.1002/9781444312096.CH1
  • Yang, Y.N., Safarova, R.B., Park, S.Y., Sakuraba, Y., Oh, M., Zulfugarov, I.S., Lee, C.B., Tanaka, A., Paek, N., & Lee, C. (2019). Chlorophyll degradation and light-harvesting complex II aggregate formation during dark-induced leaf senescence in Arabidopsis pheophytinase mutants. Journal of Plant Biology, 62, 27 38. https://doi.org/10.1007/s12374-018-0242-0
  • Yousuf, S., Choudhary, M.I., & Atta-ur-Rahman (2014). Chapter 7 - Lichens: Chemistry and biological activities. Studies in Natural Products Chemistry, 43, 2014, 223-259. https://doi.org/10.1016/B978-0-444-63430-6.00007-2
  • Zhang, C., Yan, K., Fu, C., Peng, H., Craig, J., Hawker, C., & Whittaker, A. (2022a). Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chemical Reviews, 122(1), 167 208. https://doi.org/10.1021/acs.chemrev.1c00632
  • Zhang, J., Yu, G., Wen, W., Ma, X., Xu, B., & Huang, B. (2016). Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. Journal of Experimental Botany, 67, 935 945. https://doi.org/10.1093/jxb/erv509
  • Zhang, H., Zhu, J., Gong, Z., & Zhu, J.K. (2022b). Abiotic stress responses in plants. Nature Reviews Genetics, 23(9), 104–119. https://doi.org/10.1038/s41576-021-00413-0
  • Ziegler, E.E., Edwards, B.B., Jensen, R.L., Mahaffey, K.R., & Fomon, S.J. (1978). Absorption and retention of lead by infants. Pediatric Research, 12, 29 34. https://doi.org/10.1203/00006450-197801000-00008
  • Zohoori, F.V., & Duckworth, R.M. (2017). Chapter 44 - Fluoride: Intake and metabolism, therapeutic and toxicological consequences. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, 539-550. https://doi.org/10.1016/B978-0-12-802168-2.00044-0
  • Zoungranan, Y., Lynda, E., Tchirioua, E., & Bieri, D.G. (2019). Effect of metal cations Pb2+, Cu2+, Zn2+, Mg2+ and Fe2+ on some physiological parameters of lichen Parmotrema dilatatum. American Journal of Environmental Protection, 7(1), 24 33. https://doi.org/10.12691/env-7-1-5
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557

Review on the toxic effect of fluorine and lead on lichen metabolism

Year 2024, , 765 - 794, 03.11.2024
https://doi.org/10.21448/ijsm.1401066

Abstract

Thanks to their ability to absorb large amounts of trace elements from the atmosphere, lichens are widely used as bioaccumulators and bioindicators of air pollution. Among air pollutants, heavy metals represented by lead are the most important contributors to the deterioration of ecosystems. Fluorine is prevalent in a wide range of environmental matrices, even in trace amounts, and is one of the most phytotoxic halogens to plants. When lichens are exposed to air pollution, they frequently undergo structural, morphological and physiological alterations, and exhibit several coping strategies to combat and tolerate stressful situations. This manuscript presents general information about lichens, fluorine, and lead as well as the toxic effect of these two air pollutants on lichens, and the means of combat used by lichens to respond to fluorine and lead-induced stress.

References

  • Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107-197. https://doi.org/10.1016/j.ecolind.2020.107197
  • Abas, A., & Awang, A. (2017). Air pollution assessments using lichen biodiversity index (LBI) in Kuala Lumpur, Malaysia. Pollution Research, 36(2), 241-248
  • Aboal, J.R., Couto, J.A., Fernndáez, J.A., & Carballeira, A. (2008). Physiological responses to atmospheric fluorine pollution in transplants of Pseudoscleropodium purum. Environnemental Pollution, 153(3), 602-609. https://doi.org/10.1016/j.envpol.2007.09.002
  • Abu-Muriefah, S.S. (2015). Effects of Silicon on membrane characteristics, photosynthetic pigments, antioxidative ability, and mineral element contents of faba bean (Vicia faba L.) plants grown under Cd and Pb stress. International Journal of Advanced Research in Biological Sciences, 2(6), 1-17
  • Alison, M.K. (2006). Guide to common macrolichens and bryophytes of the Umatilla National Forest.
  • Alhasnawi, A. (2019). Role of proline in plant stress tolerance: A mini review. Resurrect Crops, 20(1), 223-229. https://doi.org/10.31830/2348-7542.2019.032
  • Ali, S., Fakhri, Y., Golbini, M., Thakur, S.K., Alinejad, A., Parseh, I., Shekhar, S., & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, https://doi.org/10.1016/j.gsd.2019.100224
  • Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., Catalá, M., & Casano, L.M. (2015). Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea Thalli and its isolated microalgae. Microbial Ecology, 69(3), 698–709. https://doi.org/10.1007/s00248-014-0524-0
  • Amnan, M.A.M., Aizat, W.M., Khaidizar, F.D., & Tan, B.C. (2022). Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants, 11, 221. https://doi.org/10.1101/2021.09.27.461768
  • Amine-Khodja, I.R., Boscari, A., Riah, N., Kechid, M., Maougal, R.T., Belbekri, N., & Djekoun, A. (2022). Impact of two strains of Rhizobium leguminosarum on the adaptation to terminal water deficit of two cultivars Vicia faba. Plants, 11(4), 515. https://doi.org/10.3390/plants11040515
  • Arif, M.S., Yasmeen, T., Shahzad, S.M., Riaz, M., Rizwan, M., Iqbal, S., Asif, M., Soliman, M.H., & Ali, S. (2019). Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere, 234, 70-80. https://doi.org/10.1016/j.chemosphere.2019.06.024
  • Armstrong, R.A. (2017). Adaptation of Lichens to Extreme Conditions. In: Shukla V, Kumar S, Kumar N. (eds.). Plant Adaptation Strategies in Changing Environment. Springer, Singapore, pp. 1-27. https://doi.org/10.1007/978-981-10-6744-0_1
  • Ashraf, M., & Harris, P.J.C. (2013). Photosynthesis under stressful environments: An overview. Phtosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6
  • Bajpai, J. (2013). Fluoride carcinogenesis: The jury is still out!. South Asian journal of cancer, 2, 192. https://doi.org/10.4103/2278-330X.119881
  • Bajpai, R., Semwal, M., & Singh, C.P. (2018). Suitability of lichens to monitor climate change. Cryptogam Biodiversity and Assessment, Special Volume, 182 188. https://doi.org/10.21756/cab.esp13
  • Bajpai, R., Upreti, D.K., Nayaka, S., & Kumari, B. (2010). Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. Journal of Hazardous Materials, 174(1-3), 429-436. https://doi.org/10.1016/j.jhazmat.2009.09.071
  • Balarinová, K., Barták, M., Hazdrová, J., Hájek, J., & Jílková, J. (2014). Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthtica, 52(4), 538 547. https://doi.org/10.1007/s11099-014-0060-7
  • Bamagoos, A.A., Mallhi, Z.I., El-Esawi, M.A., Rizwan, M., Ahmad, A., Hussain, A., Alharby, H.F., Alharbi, B.M., & Ali, S. (2022). Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (Ricinus communis L.) by glutathione application: new insights into the mechanisms regulating antioxidants, gas exchange and lead uptake. International Journal of Phytoremediation, 24(9), 933 944. https://doi.org/10.1080/15226514.2021.1985959
  • Banerjee, A., & Roychoudhury, A. (2019). Fluorine: a biohazardous agent for plants and phytoremediation strategies for its removal from the environment. Biologia Plantarum, 63, 104-112. https://doi.org/10.32615/bp.2019.013
  • Barbosa, Jr. F., Ramires, I., Rodrigues, M.H.C., Saint' Pierre, T.D., Curtius, A.J., Buzalaf, M.R., Gerlach, R.F., & Tanus-Santos, J.E. (2006). Contrasting effects of age on the plasma/whole lead ratio in men and women with a history of lead exposure. Environmental Research, 102, 90-95. https://doi.org/10.1016/j.envres
  • Barry, P.S.I. (1981). Concentrations of lead in the tissues of children. British journal of industrial medicine, 38, 61-71. https://doi.org/10.1136/oem.38.1.61
  • Batool, M., Abdullah, S., Umar Ijaz, M., Kousar, S., Tatima, M., Ilyas, R., Ambreen, F., & Mughal, K.T. (2018). heavy metals (Cadmium and Lead) induced oxidative stress in Channa marulius and Wallago attu during acute toxicity experiments. Pakistan Journal of Zoology supplement series, 13, 74-79
  • Beckett, R., Minibayeva, F., Solhaug, K., & Roach, T. (2021). Photoprotection in lichens: Adaptations of photobionts to high light. The Lichenologist, 53(1), 21 33. https://doi.org/10.1017/S0024282920000535
  • Belguidoum, A., Lograda, T., & Ramdani, M. (2021). Ability of metal trace elements accumulation by Lichens, Xanthoria parietina and Ramalina farinacea, in Megres area (Setif, Algeria). Acta Scientifica Naturalis, 8(1), 91-108. https://doi.org/10.2478/asn-2021-0008
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2022). Polyphenols and antibacterial activity of Xanthoria parietina (L.) Th. Fr. methanol extract under lead stress. Journal of Applied Biological Sciences, 16(3), 537-552. https://doi.org/10.5281/zenodo.7114289
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2023a). Some indicators of damage and responses of Xanthoria parietina (L.) Th. Fr. to fluoride and lead induced-stress. Journal of Applied Biological Sciences, 17(1), 69-82. https://doi.org/10.5281/zenodo.7579804
  • Benhamada, O., Benhamada, N., & Leghouchi, E. (2023b). Oxidative stress induced by fluorine in Xanthoria parietina (L.) Th. Fr. International Journal of Secondary Metabolite, 10(1), 124-136. https://doi.org/10.21448/ijsm.1136546
  • Benhamada, O., Laib, E., & Benhamada, N., Charef, S., Chennah, M., Chennouf, S., Derbak, H., Leghouchi, E. (2023c). Oxidative stress caused by lead in the lichen Xanthoria parietina. Acta Scientiarum. Biological Sciences, 45, e63221. https://doi.org/10.4025/actascibiolsci.v45i1.63221
  • Benítez, A., Medina, J., Vásquez, C., Loaiza, T., Luzuriaga, Y., & Calva, J. (2019). Lichens and bromeliads as bioindicators of heavy metal deposition in ecuador. Lichen Diversity and Biomonitoring, 11(2), 28. https://doi.org/10.3390/d11020028
  • Bhatt, S., Deshpande, M., Chaki, S., Patel, N., Pandy, N., & Soni, B. (2011). Chemical synthesis and characterization of lead sulphide (PbS) Nanoparticles. AIP Conference Proceedings, 1349. https://doi.org/10.1063/1.3605844
  • Bhattacharyya, D.S., Deep, P., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. American journal of Pharmtech Research, 6(6), 28-44.
  • Boldyrev, M.A. (2018). Lead: properties, history, and applications. Wiki Journal of Science, 1(2), 7. https://doi.org/10.15347/wjs/2018.007
  • Bonvicini, G., Fregni, A., & Palmonari, C. (2006). Fluorine compounds from industrial sources: the case of ceramic industries. In: Tressaud, A. (ed.). Fluorine and the environment: atmospheric chemistry, emissions, and lithosphere. France: Elsevier, Amsterdam, pp. 225–249
  • Bose, A., Vashistha, K., & O'Loughlin, B.J. (1983). Another cause of lead toxicity. Pediatrics, 72(1), 106-108. PMID: 6866579
  • Branquinho, C., Brown, D.H., Máguas, C., & Catarino, F. (1997). Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environmental and Experimental Botany, 37(2–3), 95-105. https://doi.org/10.1016/S0098-8472(96)01038-6
  • Büdel, B., & Scheidegger, C. (1995). Thallus morphology and anatomy. In: Nash III, T.H. (ed.), Lichen biology. Cambridge University Press, Cambridge, pp. 37–64
  • Büdel, B., & Scheidegger, C. (2008). Thallus morphology and anatomy. In: Nash III, T.H., (ed.), Lichen biology, Cambridge University Press: Cambridge, UK, pp. 40–68. ISBN 9780521871624
  • Buzalaf, M.A.R., & Whitford, G.M. (2011). Fluoride metabolism. Monographs in Oral Science, 22, 20-36. https://doi.org/10.1159/000325107
  • Caggiano, R., Trippetta, S., & Sabia, S. (2015). Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy). Natural Hazards and Earth System Sciences, 15(2), 325 333. https://doi.org/10.5194/nhess-15-325-2015
  • Calcott, M.J., Ackerley, D.F., Knight, A., Keyzers, R.A., & Owen, J.G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730-1760. https://doi.org/10.1039/c7cs00431a
  • Carreras, H.A., & Pignata, M.L. (2007). Effects of the heavy metals Cu+2, Ni+2, Pb+2 and Zn+2 on some physiological parameters of the Usnea amblyoclada. Journal of Ecotoxicology and Environmental Safety, 67(1), 59-66. https://doi.org/10.1016/j.ecoenv.2006.05.005
  • Chae, H.J., Kim, G.J., Deshar, B., Kim, H.J., Shin, M.J., Kwon, H., Youn, U.J., Nam, J.W., Kim, S.H., Choi, H., & Suh, S.S. (2021). Anticancer activity of 2-O-caffeoyl alphitolic acid extracted from the lichen Usnea barbata 2017-KL-10. Molecules, 26(13), 3937. https://doi.org/10.3390/molecules26133937
  • Chakrabarti, S., Patrab, P.K., & Santiniketan. (2014). Biochemical and antioxidant responses of paddy (Oryza sativa L.) to fluoride stress. Fluoride, 48(1), 56-61
  • Chappuis, P. (1991). Les oligo-élements en médecine et en biologie, Ed. Lavoisier
  • Chatterjee, N., Sahu, G., Bag, A., Pal, B., & Hazra, G. (2020). Role of fluoride on soil, plant and Human health: A Review on its sources, toxicity and mitigation strategies. International Journal of Environment and Climate Change, 10, 77 90. https://doi.org/10.9734/IJECC/2020/v10i830220
  • Chen, H., Xu, Y., Chen, H., Liu, H., Yu, Q., & Han, L. (2022). Isolation and identification of polyphenols from fresh sweet sorghum stems and their antibacterial mechanism against foodborne pathogens. Frontiers in Bioengineering and Biotechnology, 9, 1 15. https://doi.org/10.3389/fbioe.2021.770726
  • Chetia, J., Gogoi, N., Gogoi, R., & Yasmin, F. (2021). Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India. Plant Physiology Reports, 26, 210–219. https://doi.org/10.1007/s40502-021-00575-3
  • Chen, T-H., Kaveevivitchai, W., Jacobson, A.J., & Miljanic´, O.Sˇ. (2015). Adsorption of fluorinated anesthetics within the pores of a molecular crystal. Chemical Communication, 51, 14096-14098. https://doi.org/10.1039/c5cc04885k
  • Choubisa, S.L. (2021). Toxic effects of fluoride on human bones. Advances in Pharmacology and Toxicology, 13(1), 9–13
  • Choudhary, S., Rani, M., Devika, O.S., Patra, A., Singh, R.K., & Prasad, S.K. (2019). Impact of fluoride on agriculture: A review on its sources, toxicity in plants and mitigation strategies. International Journal of Chemical Studies, 7(2), 1675-1680.
  • Chowaniec, K., & Rola, K. (2022). Evaluation of the importance of ionic and osmotic components of salt stress on the photosynthetic efficiency of epiphytic lichens. Physiology and Molecular Biology of Plants, 28, 107–121. https://doi.org/10.1007/s12298-022-01134-2
  • Conti, M.E., & Cecchetti, G.B. (2001) Biological monitoring: Lichens as bioindicators of air pollution assessment A review. Environnemental Pollution, 114, 471 492. http://dx.doi.org/10.1016/S0269-7491(00)00224-4
  • Conti, M.E., & Tudino, M. (2016). Lichens as biomonitors of heavy metals pollution in book: Comprehensive Analytical Chemistry Volume 73 The Quality of Air. Edition: 1st Ed. Chapter: 6, Elsevier. https://doi.org/10.1016/bs.coac.2016.02.005
  • Crawford, S.D. (2015). Lichens used in traditional medicine. In: Ranković B. (ed.). Lichen secondary metabolites. Springer, Cham, pp. 27–80. https://doi.org/10.1007/978-3-319-13374-4_2
  • Crompton, T.R. (2000). Battery reference book. Oxford, England: Newnes. 18/2–18/4.
  • Cruise, A., Singh, A., & Quiney, R. (2010). Sodium fluoride in otosclerosis treatment: Review. The Journal of laryngology and otology, 124(6). 583 586. http://doi.org/10.1017/S0022215110000241
  • Darnajoux, R., Lutzoni, F., Miadlikowska, J., & Bellenger, J.P. (2015). Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment, 533, 1-7. https://doi.org/10.1016/j.scitotenv.2015.06.030
  • Demková, L., Bobul’ská, L., Árvay, J., Jezný, T., & Ducsay, L. (2017). Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 52(1), 30-36. https://doi.org/10.1080/10934529.2016.1221220
  • Dennerlein, K., Kiesewetter, F., Kilo, S., Jäger, T., Göen, T., Korinth, G., & Drexler, H (2016). Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model. Toxicology Letters, 248, 25 33. https://doi.org/10.1016/j.toxlet.2016.02.015
  • Deruelle, S., & Lallement, R. (1983). Les lichens témoins de la pollution. Thèmes vuibert Université biologie. (Paris), pp. 48-88
  • Dévéhat, F., Thüs, H., Abasq, M.L., Delmail, D., & Boustie, J. (2014). Oxidative stress regulation in lichens and its relevance for survival in coastal habitats. Advances in Botanical Research, 71, 467-503. https://doi.org/10.1016/B978-0-12-408062-1.00016-0
  • Douibi, C., Ramdani, M., Khelfi1, A., Benharket, R., Lograda, T., & Chalard, P. (2015). Biomonitoring of heavy metals by lichens in Setif Area (East of Algeria). Unified Journal of Environmental Science and Toxicology, 1(1), 001- 013
  • Dzubaj, A., Backor, M., Tomko, J., Péli, E., & Tuba, Z. (2008). Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicology and Environmental Safety, 70(2), 319-26. https://doi.org/10.1016/j.ecoenv
  • EFSA, (2013). Panel on dietetic products, nutrition; scientific opinion on dietary reference values for fluoride. EFSA J., 11(8), 3332
  • Ekstrand, J. (1996). Fluoride metabolism. In: Fejerskov, O., Ekstrand, J. and Burt, B. (eds.), Fluoride in dentistry, (2nd Ed). Munksgaard, Denmark, pp. 55-65
  • Eldridge, D.J., & Delgado-Baquerizo, M. (2018). The influence of climatic legacies on the distribution of dryland biocrust communities. Global Change Biology, 25(1), 327–336. https://doi.org/10.1111/gcb.14506
  • Elix, J., & Stocker-Wörgötter, E. (2008). Biochemistry and secondary metabolites. In T.H., Nash III (Ed.), Lichen Biology (pp. 104-133). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511790478.008
  • Elkhateeb, W., Elnahas, M., & Daba, G. (2021). Lichentherapy: Highlights on the pharmaceutical potentials of lichens. Open Access Journal of Microbiology & Biotechnology, 6(1),1-10. https://doi.org/10.23880/oajmb-16000190
  • Elkhateeb, W., Elghwas, D., & Daba, G. (2022). Lichens Uses: Surprising uses of lichens that improve Human life. Journal of Biomedical Research & Environmental Sciences, 3, 189-194. https://doi.org/10.37871/jbres1420
  • Elloumi, N., Zouari, M., Mezghani, I., Ben Abdallah, F. Woodward, S., & Kallel, M. (2017). Adaptive biochemical and physiological responses of Eriobotrya japonica to fluoride air pollution. Ecotoxicology, 26, 991–1001. https://doi.org/10.1007/s10646-017-1827-y
  • Esposito, S., Sorbo, S., Conte, B., & Basile, A. (2012). Effects of heavy metals on ultrastructure and HSP70S induction in the aquatic moss Leptodictyum Riparium Hedw. International Journal of Phytoremediation, 14(4), 443 455. https://doi.org/10.1080/15226514.2011.620904
  • Expósito, J.R., Barreno, E., & Catalá, M. (2022). 18 - Role of NO in lichens. In: Singh V.P., Singh S., Tripathi D.K., Romero-Puertas M.C. and Sandalio M.L. (eds), Nitric Oxide in Plant Biology. Academic Press, pp. 407-429. https://doi.org/10.1016/B978-0-12-818797-5.00027-3
  • Expósito, J.R., Barreno, E., & Catalá, M. (2019). Biological strategies of lichen symbionts to the toxicity of lead (Pb). In book: Lead in plants and the environment, pp.149-170. https://doi.org/10.1007/978-3-030-21638-2_9
  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006), Fluoride in drinking-water. London: World Health Organization (WHO). [Access: March 16 2015]. http://apps.who.int/iris/bitstream/10665/43514/1/9241563192
  • Filella, M., & Bonet, J. (2017). Environmental impact of alkyl lead (IV) Derivatives: Perspective after pheir Phase out. Metal Ions in Life Sciences, 10, 17. https://doi.org/10.1515/9783110434330-014
  • Filler, R., & Saha, R. (2009). Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Medicinal Chemistry, 1(5), 777-791. http://doi.org/10.4155/fmc.09.65
  • Fordyce, F. (2011). Fluorine: Human Health Risks. Encyclopedia of Environmental Health, 2, 776-785. https://doi.org/10.1016/B978-0-444-52272-6.00697-8
  • Fuge, R. (2018). Fluorine in the environment, a review of its sources and geochemistry. Applied Geochemistry, 100, 393-406. https://doi.org/10.1016/J.APGEOCHEM.2018.12.016
  • Gad, S.C., & Pham, T. (2014). Lead. Encyclopedia of Toxicology (3rd Ed.), pp. 61-65. https://doi.org/10.1016/B978-0-12-386454-3.00868-X
  • Gandhi, A.D., Umamahesh, K., Sathiyaraj, S., Suriyakala, G., Velmurugan, R., Al Farraj, D.A., Gawwad, M.R.A., Murugan, K., Babujanarthanam, R., & Saranya, R. (2022). Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. Journal of Infection and Public Health, 15(4), 491 497. https://doi.org/10.1016/j.jiph.2021.10.014
  • Gangola, M.P., & Ramadoss, B.R. (2018). Chapter 2 - Sugars play a critical role in abiotic stress tolerance in plants. In: Wani S.H. (ed.), Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, Edition: (1st Ed.) Academic Press, pp. 17-38. https://doi.org/10.1016/B978-0-12-813066-7.00002-4
  • Garty, J., Leher, H., Garty-spitz, R.L., Ganor, E., Stupp, A., Alpert, P., & Osetinsky, I. (2008). Temporal fluctuations of mineral concentrations as related to the physiological status of the lichen Ramalina lacera (With.) J.R. Laund. Israel Journal of Plant Sciences, 56(4), 361-369. https://doi.org/10.1560/IJPS.56.4.361
  • Gauslaa, Y., Mikulec, M.M., & Solhaug, K.A. (2021). Short-term growth experiments – A tool for quantifying lichen fitness across different mineral settings. Flora - Morphology Distribution Functional Ecology of Plants, 282(3), 151900. https://doi.org/10.1016/j.flora.2021.151900
  • Gessner, D.K., Ringseis, R., & Eder, K. (2017). Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition, 101(4), 605-628. https://doi.org/10.1111/jpn.12579
  • Ghazi, A.M., & Millette, J.R. (1964). 4 – Lead. Environmental Forensics, 55-79. https://doi.org/10.1016/B978-012507751-4/50026-4
  • Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X., & Khan, M.A.R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227 239. https://doi.org/10.1111/plb.13363
  • Gilbert, O.L. (1973). The effect of airborne fluorides, in: Ferry, B.W., Baddeley, M.S and Hawksworth D.L (Eds), Air Pollution and Lichens. Athlone, London, p 176
  • Goncharov, N., Savelieva, E., Koryagina, N., Zinchenko, V., Kuznetsov, S., Mindukshev, I., Avdonin, P., Ukolov, A., & Jenkins, R. (2020). Fluoroacetate. In: Gupta R.C. (ed.), Handbook of Toxicology of Chemical Warfare Agents (3rd Ed.), Academic Press, pp. 215-238, ISBN 9780128190906, https://doi.org/10.1016/B978-0-12-819090-6.00015-5
  • Gong, B., Sun, S., Yan, Y., Jing, X., & Shi, Q. (2018). Glutathione metabolism and its function in higher plants adapting to stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Berlin, 181 205. https://doi.org/10.1007/978-3-319-75088-0_9
  • Gurbanov, R., & Unal, D. (2019) The biomolecular alterations in Cladonia convoluta in response to lead exposure. Spectroscopy Letters, 51, 563 570. https://doi.org/10.1080/00387010.2018.1533564
  • Gupta, S.P. (2019). Roles of fluorine in drug design and drug action. Letters in Drug Design & Discovery, 16(10), 1089 – 1109. http://doi.org/10.2174/1570180816666190130154726
  • Guth, S., Hüser, S., Roth, A., Degen, G., Diel, P., Edlund, K., ... Hengstler, J.G. (2020). Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology, 94(5), 1375-1415. https://doi.org/10.1007/s00204-020-02725-2
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M., & Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A Review of Recent Experimental Evidence. International Journal of Molecular Sciences, 21(22), 8695. https://doi.org/10.3390/ijms21228695
  • Hauck, M., Willenbruch, K., & Leuschner, C. (2009). Lichen substances prevent lichens from nutrient deficiency. Journal of Chemical Ecology, 35, 71 73. https://doi.org/10.1007/s10886-008-9584-2
  • Hernberg, S. (2000). Lead poisoning in a historical perspective. Journal of Intensive Medicine, 38(3), 244-54. https://doi.org/10.1002/1097-0274(200009)
  • Honegger, R. (1998). The Lichen Symbiosis - What is so spectacular about it? The Lichenologist, 30(3), 193-212
  • Ingram, G.S., Agalamanyi, E.A., & Higham, S.M. (2005). Caries and fluoride processes. Journal of Dentistry, 33(3), 187-191. https://doi.org/10.1016/j.jdent.2004.10.004
  • Ite, A.E., Udousoro, I.I., & Ibok, U.J. (2014). Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno local government areas of Akwa Ibom State, Nigeria. American Journal of Environmental Protection, 2(1), 22-31. https://doi.org/10.12691/env-2-1-5
  • James, A.C., Stahlhofen, W., Rudolf, G., Köbrich, R., Briant, J.K., Egan, M.J., Nixon, W., & Birchall, A. (1994). Deposition of inhaled particles. Annals of ICRP 24(1–3), 231–299. https://doi.org/10.1016/0146-6453(94)90042-6
  • Kabir, M., Habiba, U., Iqbal, M., Shafiq, M., & Farooqi, Z. (2020). Industrial pollution and its impacts on ecosystem: A Review. Biochemical Research, 17(2),1364-1372
  • Kamel, H.A. (2008). Lead accumulation and its effect on photosynthesis and free amino acids in Vicia faba grown hydroponically. Australian Journal of Basic and Applied Sciences, 2(3), 438-446
  • Kandelinskaya, O., Grischenko, H., Hihinyak, Y., Andreev, M., Convey, P., Lukashanets, D., Kozel, N., & Prokopiev, I. (2021). Chemical compounds and antioxidant activity of Antarctic lichens. Antarctic Science, 34(1), 3 15. https://doi.org/10.1017/S0954102021000511
  • Kapusta, P., & Sobczyk, Ł. (2015). Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Science of the Total Environment, 1, 536, 517-526. https://doi.org/10.1016/j.scitotenv.2015.07.086
  • Karakoti, N., Bajpai, R., Upreti, D.K., Mishra, G.K., Srivastava, A., & Nayaka, S. (2014). Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environmental Earth Sciences, 71(5). https://doi.org/10.1007/s12665-013-2623-5
  • Khan, M., Al Azzawi, T.N.I., Imran, M., Hussain, A., Mun, B.G., Pande, A., & Yun, B.W. (2021). Effects of lead (Pb)-induced oxidative stress on morphological andphysio-biochemical properties of rice. Biocell, 45(5), 1413 1423. https://doi.org/10.32604/biocell.2021.015954
  • Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., Ismail, I., Shahid, M., & Babar, Md. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2). https://doi.org/10.30848/PJB2020-2(24)
  • Kiani, R., Arzani, A., & Maibody, S.A.M. (2021). Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Frontiers in Plant Science, 12, 646221. https://doi.org/10.3389/fpls.2021.646221
  • Kim, II-S., Song, W., & Arakawa, H. (2019). The role of low-level sodium fluoride in periodontal inflammation. Journal of Hard Tissue Biology, 28(2), 159 164. http://doi.org/10.2485/jhtb.28.159
  • Kim, A.K., & Su, J.Z. (1999). Full-scale evaluation of halon replacement agents. Journal of Fire Protection Engineering, 10(2), 1-23. https://doi.org/10.1177/104239159901000201
  • Kleerekoper, M. (1998). The role of fluoride in the prevention of osteoporosis. Endocrinology and Metabolism Clinics of North America, 27(2), 441-52. http://doi.org/10.1016/s0889-8529(05)70015-3
  • Koch, N.M., Matos, P., Branquinho, C., Pinho, P., Lucheta, F., de Azevedo Martins, S.M., & Ferrao Vargas, V.M. (2019). Selecting lichen functional traits as ecological indicators of the effects of urban environment. Science of the Total Environment, 654, 705–713. https://doi.org/10.1016/j.scitotenv
  • Kołton, A., Długosz-Grochowska, O., Wojciechowska, R., & Czaja, M. (2022). Biosynthesis regulation of folates and phenols in plants. Scientia Horticulturae, 291, 110561. https://doi.org/10.1016/j.scienta.2021.110561
  • Kováčik, J., Dresler, S., Peterková, V., & Babula, P. (2018). Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere, 203, 402 409. https://doi.org/10.1016/j.chemosphere.2018.03.112
  • Kováčik, J., Rotková, G., Bujdoš, M., Babula, P., Peterková, V., & Matúš, P. (2017). Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. Journal of Hazardous Materials, 339, 200–207. https://doi.org/10.1016/j.jhazmat.2017.06.035
  • Kraft, M., Scheidegger, C., & Werth, S. (2022). Stressed out: the effects of heat stress and parasitism on gene expression of the lichen-forming fungus Lobaria pulmonaria. The Lichenologist, 54, 71-83. https://doi.org/10.1017/S0024282921000463
  • Kranner, I., Beckett, R., Hochman, A., & Nash III, T.H. (2009). Desiccation-tolerance in lichens: A Review. The Bryologist, 111, 576-593. https://doi.org/10.1639/0007-2745-111.4.576
  • Kuang, P., Deng, H., Cui, H., Chen, L., Fang, J., Zuo, Z., Deng, J., Wang, X., & Zhao, L. (2016). Sodium fluoride (NaF) causes toxic effects on splenic development in mice. Oncotarget, 8, 4703-4717, https://doi.org/10.18632/oncotarget.13971
  • Kularatne, K.I.A., & de Freitas C.R. (2013). Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environmental and Experimental Botany, 88, 24 32. https://doi.org/10.1016/j.envexpbot.2012.02.010
  • Kuldeep, S., & Prodyut, B. (2015). Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: Review. International Research Journal of Environment Sciences, 4(12), 107-117
  • LeBlanc, F., Comeau, G., & Rao, D.N. (2011). Fluoride injury symptoms in epiphytic lichens and mosses. Canadian Journal of Botany, 49(9), 1691-1698. https://doi.org/10.1139/b71-238
  • Lee, Y.J., & Jeong, I.B. (2021). Chemical pneumonitis by prolonged hydrogen fluoride inhalation. Respiratory Medicine Case Reports, 32, 101338. https://doi.org/10.1016/j.rmcr.2020.101338
  • Lei, S., Rossi, S., & Huang, B. (2022). Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in Perennial Ryegrass. Plants, 11, 199. https://doi.org/10.3390/plants11020199
  • Li, X., Liu, J., Li, X., Liu, H., Liu, H., Li, Y., Liu, Y., & Dong, Y. (2018). Recent advance in the synthesis of (1,1-difluoroethyl) arenes. Journal of Fluorine Chemistry, 216, 102-106. https://doi.org/10.1016/j.jfluchem.2018.10.011
  • Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxidants and Redox Signaling, 19(9). https://doi.org/10.1089/ars.2012.5074
  • Lin, S., Wang, X., Yu, I.T., Tang, W., Miao, J., Li, J., Wu, S., & Lin, X. (2011). Environmental lead pollution and elevated blood lead levels among children in a rural area of China. American Journal of Public Health, 101(5), 834 841. https://doi.org/10.2105/AJPH.2010.193656
  • Lu, F.C. (1992). Basic toxicology: fundamentals, target organs, and risk assessment. - Hemisphere publishing corporation, Ed. Masson, p. 303, 304
  • Maciąg, D.M., Węgrzyn, G., & Guzow, K.B. (2014). Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiology Letters, 353(1), 57–62. https://doi.org/10.1111/1574-6968.12409
  • Marques, J., Gonçalves, J., Oliveira, C., Favero-Longo, S.E., Paz-Bermúdez, G., Almeida, R., & Prieto, B. (2016). On the dual nature of lichen-induced rock surface weathering in contrasting micro environments. Ecology, 97(10), 2844 2857. https://doi.org/10.1002/ecy.1525
  • Matos, P., Pinho, P., Aragon, G., Martínez, I., Nunes, A., Soares, A.M.V.M., & Branquinho, C. (2015). Lichen traits responding to aridity. Journal of Ecology, 103(2), 451-458. https://doi.org/10.1111/1365-2745.12364
  • Mishra, A., Ishwakarma, K., Malaviya, P., Kumar, N., Pavón, L.R., Shandilya, C., Sharma, R., Bisht, A., & Takkar, S. (2022). On plant epigenomes for food security. In. Thakur, I.S., Ngo, H.H, Soccol, C.R., and Larroche, C. (Eds), Ashok Pandey Influence of greenhouse gases. Biomass, Biofuels, Biochemicals, Elsevier, pp. 421-450, ISBN 9780128235003. https://doi.org/10.1016/B978-0-12-823500-3.00003-0
  • Mikheeva, E., Prosekov, A., & Volobaev, V. (2020). Genotoxic proprieties of fluorine (review). Hygiene and Sanitation, 99(3), 253-258. https://doi.org/10.33029/0016-9900-2020-99-3-253-258
  • Mitrović, T., Stamenkovic, S., Cvetković, V., Nikolic, M., Tošić, S., & Stojičić, D. (2011). Lichens as source of versatile bioactive compounds. Biologica Nyssana, 2(1), 1-6
  • Mohideen, H., Dahiya, D.S., Parsons, D., Hussain, H., & Syed Ahmed, R. (2022). Skeletal fluorosis: A case of inhalant abuse leading to a diagnosis of colon cancer. Journal of Investigative Medicine High Impact Case Reports, 10, 1 6. https://doi.org/10.1177/23247096221084919
  • Moissan, H. (1886). Le Fluor. La Nature, 701, 363-366
  • Mondal, N.K. (2017). Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicology and Environmental Safety, 144, 36-44. https://doi.org/10.1016/j.ecoenv.2017.06.009
  • Mohamed, E., Mohamed, L., & Abdelhay, E.G. (2020). Using calcicolous and corticolous lichens to assess lead and cadmium air pollution of the Moroccan Atlantic Coast Safi-Essaouira. Polish Journal of Environmental Studies, 29(1), 779 787. https://doi.org/10.15244/pjoes/102629
  • Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Lichen as multipartner symbiotic relationships. Encyclopedia, 2, 1421–1431. https://doi.org/10.3390/encyclopedia2030096
  • Mukemre, M., Zengin, G., Turker, R.S., Aslan, A., & Dalar, A. (2021). Biological activities and chemical composition of Xanthoria lichens from Turkey. International Journal of Secondary Metabolite, 8(4), 376–388. https://doi.org/10.21448/ijsm.994427
  • Mundada, P.S., Jadhav, S.V., Salunkhe, S.S., Gurme, S.T., Umdale, S.D., Nikam, T.D., & Ahire, M.L. (2021). Plant performance and defensive role of proline under environmental stress. In: Husen A. (ed.), Plant Performance Under Environmental Stress. Springer; Berlin/Heidelberg, pp. 201-223. https://doi.org/10.1007/978-3-030-78521-5_8
  • Nahar, K., Hasanuzzaman, M., Suzuki, T., & Fujita, M. (2017). Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology, 26(1), 58-73. https://doi.org/10.1007/s10646-016-1740-9
  • Nareshkumar, A., Veeranagamallaiah, G., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., Venkatesh, B., & Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) Cultivars. Agricultural Sciences, 6(10), 1283-1297. https://doi.org/10.4236/as.2015.610123
  • Nash III, T.H. (1971). Lichen sensitivity to hydrogen fluoride. Bulletin of the Torrey Botanical Club, 98(2), 103-106
  • Nayaka, S., & Haridas, B. (2020). Bioactive secondary metabolites from lichens. In book: Plant metabolites: Methods, applications and prospects (pp.255-290), Publisher: Springer, Singapore. https://doi.org/10.1007/978-981-15-5136-9_12
  • Nielsen, E. (2013). Lead and inorganic lead compounds. Evaluation of health hazards and estimation of a quality criterion in soil. The Danish Environmental Protection Agency, Strandgade, 29, 1401 Copenhagen K, Denmark, www.mst.dk/english. ISBN: 978-87-93026-73-5
  • Nobile, V., Schiano, I., Peral, A., Giardina, S., Spartà, E., & Caturla, N. (2021). Antioxidant and reduced skin-ageing effects of a polyphenol-enriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study. Food and Nutrition Research, 65. https://doi.org/10.29219/fnr.v65.5619
  • Norman, H.O., & Arden, C.G. (1991). Water fluoridation in primary preventive dentistry. (3rd Ed.). Stamford, CT: Appleton and Lange
  • Nimis, P.L., Aptroot, A., Boonpragob, K., Buaruang, K., Poengsungnoen, V., Polyiam, W., Vongshewarat, K., Meesim, S., Boonpeng, C., Phokaeo, S., Molsil, M., Nirongbutr, P., Sangvichien, E., Moro, A., Pittao, E., & Martellos, S. (2017). 100 Lichens from Thailand: a tutorial for students (online) ISBN 978-88-8303-853-2 EUT - Edizioni Università di Trieste Via E. Weiss, 21, 34128 Trieste https://eut.units.it
  • Nugraha, A.S., Pratoko, D.K., Damayanti, Y.D., Lestari, N.D., Laksono, T.A., Addy, H.S., Untari, L.F., Kusumawardani, B., & Wangchuk, P. (2019). Antibacterial and anticancer activities of nine lichens of Indonesian Java Island. Journal of Biologically Active Products from Nature, 9(1), 39-46. https://doi.org/10.1080/22311866.2019.1567383
  • Ozenda, P. (2000). Les végétaux, organisation et diversité biologique, Ed. Masson (2nd Ed.), 192p
  • Ozenda, P., & Clauzade, G. (1970). Les Lichens: Étude biologique et flore illustrée. Paris, Ed. Masson (2nd Ed.), pp. 633-634
  • Pak, C., Zerwekh, J., Antich, P., Bell, N., & Singer, F. (2009). Slow-release sodium fluoride in osteoporosis. Journal of Bone and Mineral Research, 11(5), 561 564. http://doi.org/10.1002/jbmr.5650110502
  • Paoli, L., Munzi, S., Guttova, A., Senko, D., Sardella, G., & Loppi, S. (2015). Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators, 52. https://doi.org/10.1016/j.ecolind.2014.12.018
  • Papanikolaou, N.C., Hatzidaki, E.G., Belivanis, S., Tzanakakis, G.N., & Tsatsakis, A.M. (2005). Lead toxicity update. A brief review. Medical Science Monitor, 11(10), 329-336. PMID: 16192916
  • Pavlov, D. (2017). Lead-acid batteries: science and technology (2nd Ed.), pp. 245-273. https://doi.org/10.1016/B978-0-444-59552-2.00005-5
  • Pelc, J., Śnioszek, M., Wróbel, J., & Telesiński, A. (2020). Effect of fluoride on germination, early growth and antioxidant enzymes activity of three winter wheat (Triticum aestivum L.) cultivars. Applied Sciences, 10(19). https://doi.org/10.3390/app10196971
  • Perkins, D.F. (1992). Relationship between fluoride contents and loss of lichens near an aluminium works. Water Air and Soil Pollution, 64, 503 510. https://doi.org/10.1007/BF00483360
  • Perlmutter, G.B. (2009). Basic Lichenology 2: Reproduction. Bulletin of the California Lichen Society, 16(1), 7-11
  • Pescott, O.L., Simkin, J.M., August, T.A., Randle, Z., Dore, A.J., & Botham, M.S. (2015). Air pollution and its effects on lichens, bryophytes, and lichens-feeding Lipedoptera: review and evidence from biological records. Biological Journal of the Linnean Society, 115(3), 611-635. https://doi.org/10.1111/bij.12541
  • Philip, A.T., & Gerson, B. (1994). Lead poisoning-Part I. incidence, etiology, and toxicokinetic. Clinical and Laboratory Medicine, 14(2), 423-444. PMID: 7924196
  • Pisani, T., Munzi, S., Paoli, L., Bacˇkor, M., & Loppi, S. (2009). Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere, 76(7), 921–926. https://doi.org/10.1016/j.chemosphere.2009.04.058
  • Podterob, A.P. (2008). Chemical composition of lichens and their medical applications. Pharmaceutical Chemistry Journal, 42, 582–588. https://doi.org/10.1007/s11094-009-0183-5
  • Pollick, H. (2018). The role of fluoride in the prevention of tooth decay. Pediatric clinics of North America, 65(5), 923-940. https://doi.org/10.1016/j.pcl.2018.05.014
  • Popescu, M., Blanchard, J-M., & Carre, J. (1998). Analyse et traitement physicochimique des rejets atmosphériques industriels (émissions, fumées, odeurs & poussières). Ed. Lavoisier, 854 p.
  • Purvis, O.W. (2014). Adaptation and interaction of saxicolous crustose lichens with metals. Botanical Studies, 55(1), 23. https://doi.org/10.1186/1999-3110-55-23
  • Quijano-Abril, M.A., Ramirez-Ospina, D.M., Domínguez-Rave, M.I., & Londoño-Valencia, J. (2021). Lichens as biosensors for the evaluation of urban and sub-urban air pollution in a tropical mountain valley, Rionegro, Antioquia. Revista Bionatura, 6(1), 1501-1509. https://doi.org/10.21931/RB/2021.06.01.10
  • Ram, A., Verma, P., & Gadi, B.R. (2014). Effect of fluoride and salicylic acid on seedlings growth and biochemical parameters of watermelon (Citrullus lanatus). Research report Fluoride, 47(1), 49-55
  • Ribeiro, D., Yujra, V., Hugo, V., Claudio, S., Estadella, D., Viana, M., & Oshima, C. (2017). Putative mechanisms of genotoxicity induced by fluoride: a comprehensive review. Environmental Science and Pollution Research, 24(2). https://doi.org/10.1007/s11356-017-9105-3
  • Roberts, B., & Thompson, L.K., (2011). Lichens as indicators of fluoride emission from a phosphorus plant, Long Harbour, Newfoundland, Canada. Canadian Journal of Botany, 58(20), 2218-2228. https://doi.org/10.1139/b80-256
  • Rodríguez, E.M., Marante, F.G.T., Hernández, J.C., Barrera, J.B., & Rosa, F.J.E. (2016). Antioxidant activity of polyphenols from Hypogymnia tavaresii D. Hawksw & P. James. Quimica Nova, 39(4), 456-461. https://doi.org/10.5935/0100-4042.20160053
  • Rola, K. (2020). Insight into the pattern of heavy-metal accumulation in lichen thalli. Journal of Trace Elements in Medicine and Biology, 61, 126512. https://doi.org/10.1016/j.jtemb.2020.126512
  • Rola, K., Latkowska, E., Myśliwa-Kurdziel, B., & Osyczka, P. (2019). Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites. Science of the Total Environment, 279, 260-269. https://doi.org/10.1016/j.scitotenv.2019.05.002
  • Sakai, T. (2000). Biomarkers of lead exposure. Industrial Health, 38(2), 127-142. http://dx.doi.org/10.2486/indhealth.38.127
  • Sahariya, A., Bharadwaj, C., Iwuala, E., & Alam, A. (2021). Fluoride toxicity in soil and plants: an overview. 8, 26-34
  • Sanità di Toppi, L., Pawlik-Skowrońska, B., Vurro, E., Vattuone, Z., Kalinowska, R. Restivo, F.M., Musetti, R., & Skowroński, T. (2008). First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta). Environmental Pollution, 151(2), 280-286.: https://doi.org/10.1016/j.envpol.2007.06.010
  • Sargsyan, R., Gasparyan, A., Tadevosyan, G., & Panosyan, H. (2021). Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express, 11(1), 110. https://doi.org/10.1186/s13568-021-01271-z
  • Schaefer, L., & Fegley, B. (2005). Silicon tetrafluoride on Io. Icarus, 179, 252–258. https://doi.org/10.1016/j.icarus.2005.05.020
  • Šeklić, D.S., Jovanović, M.M, Virijević, K.D., Grujić, J.N, Živanović, M.N., & Marković, S.D. (2022). Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. Journal of Ethnopharmacology, 287(10), 114758, https://doi.org/10.1016/j.jep.2021.114758
  • Semadi, A. (1989). Effets de la pollution atmosphérique (pollution globale, fluorée et plombique) sur la végétation dans la région de Annaba (Algérie). Thèse de Doctorat, France. Corpus ID: 128261548. ISSN 0294-1767
  • Sharma, P., & Dubey, R. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Sharma, R., & Kaur, R. (2018). Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiologiae Plantarum, 40, 181. https://doi.org/10.1007/s11738-018-2754-0
  • Sharma, R., & Kaur, R. (2019). Fluoride toxicity triggered oxidative stress and the activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden. Journal of Plant Interactions, 14(1), 440-452. https://doi.org/10.1080/17429145.2019.1646826
  • Sharma, R., Kumari, A., Rajput, S., Nishu, Arora, S., Rampal, R., & Kaur, R. (2019). Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden. Scientific Reports, 9, 20006. https://doi.org/10.1038/s41598-019-56110-w
  • Sheldon, D., & Crimmin, M. (2022). Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chemical Society Reviews, 51(12), 4977 4995. https://doi.org/10.1039/D1CS01072G
  • Singh, C.P., Bajpai, R., Singh, R.P., & Upreti, D.K. (2016). Improving bioclimatic envelop modeling for Lichens through remote sensing based substratum correction: A study over Indian Himalaya. Cryptogam Biodiversity and Assessment, 1(2), 1 19. https://www.researchgate.net/publication/311464001
  • Singh, S., Kaur, I., & Kariyat, R. (2021). The multifunctional roles of polyphenols in plant-herbivore interactions. International Journal of Molecular Sciences, 22(3), 1442. https://doi.org/10.3390/ijms22031442
  • Singh, S., Singh, J., & Singh, N. (2013). Studies on the impact of fluoride toxicity on growth parameters of Raphanus Sativus L. Indian Journal of Scientific Research, 4(1), 61-63
  • Škvorová, Z., Černajová, I., Steinová, J., Peksa, O., Moya, P., & Škaloud, P. (2022). Promiscuity in lichens follows clear rules: Partner switching in Cladonia Is regulated by climatic factors and soil chemistry. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.781585
  • Sodani, R., Pandurangam, V., & Srivastava, J. (2021). Germination and morphological responses of Triticum aestivum L. to different concentrations of fluoride. Environnment Conservation Journal, 22(3), 143-148 https://doi.org/10.36953/ecj.2021.22318
  • Solárová, Z., Liskova, A., Samec, M., Kubatka, P., Büsselberg, D., & Solár, P. (2020). Anticancer potential of lichens’ secondary metabolites. Biomolecules, 10(1), 87. https://doi.org/10.3390/biom10010087
  • Song, K.S., & Williams, R.T. (1993). Alkaline earth fluorides. In: Self-Trapped Excitons. Springer Series in Solid State Sciences, 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97432-8_4
  • Stromsnes, K., Lagzdina, R., Olaso-Gonzalez, G., Gimeno-Mallench, L., & Gambini1, J. (2021). Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in In Vitro studies, Animal Models, and Humans. Biomedicines, 9(8), 1074. https://doi.org/10.3390/biomedicines9081074
  • Subhashini, A., & Suganthi, R. (2014). Determination of toxic heavy metals in four different lichen species of Tamil Nadu, India. Asian Journal of Biological and Life Sciences, 3(1), 45-48
  • Šujetovienė, G. (2015). Monitoring lichen as indicators of atmospheric quality. In: Upreti D., Divakar, P., Shukla, V., Bajpai, R. (eds), Recent Advances in Lichenology. Vol. 1. Modern methods and approaches in biomonitoring and bioprospection. Springer, New Delhi, 87, 118. https://doi.org/10.1007/978-81-322-2181-4_4
  • Šujetovienė, G., & Česynaitė, J. (2021). Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors. Journal of Toxicology and Environmental Health, 84(7), 273-287. https://doi.org/10.1080/15287394.2020.1862006
  • Šujetovienė, G., & Sliumpaitė, I. (2013). Effects of cadmium on physiological parameters of the lichen Evernia prunastri and Ramalina fastigiata In E3S Web of Conferences (Vol. 1). EDP Sciences. https://doi.org/10.1051/e3sconf/20130129007
  • Šujetovienė, G., Smilgaitis, P., Dagiliūtė, R., & Žaltauskaitė, J. (2019). Metal accumulation and physiological response of the lichens transplanted near a landfill in central Lithuania. Waste Management, 85, 60-65. https://doi.org/10.1016/j.wasman.2018.12.017
  • Sulaiman, N., Fuzy, S.F.F.M, Muis, S.I.N.A., & Ismail, B.S (2018). Use of lichens as bioindicators for determining atmospheric heavy metal concentration in Malaysia. Pakistan Journal of Botany, 50(1), 421-428
  • Tak, Y. (2018). Catastrophic Effect of Fluoride in Plants: A Mini review. Indian Research Journal of Genetics and Biotechnology, 10(02), 222-227.
  • Taiwo, I.E., Henry, A.N., Imbufe, A.P., & Adetoro, O.O., (2014). Heavy metal bioaccumulation and biomarkers of oxidative stress in the wild African tiger frog, Hoplobatrachus occipitalis. African Journal of Environmental Science and Technology, 8(1), 6 15. https://doi.org/10.5897/AJEST2013.603
  • Talcott, P. (2018). Toxicologic Problems. In: Reed, S.M., Bayly, W.M., and Sellon, D.C. (eds.), Equine Internal Medicine (4th Ed.). France: Amazon, pp. 1460-1512, ISBN 9780323443296. https://doi.org/10.1016/B978-0-323-44329-6.00021-8
  • Tarawneh, A.H., Salamon, I., Altarawneh, R., & Mitra, J. (2021). Assessment of lichens as biomonitors of heavy metal pollution in selected mining area, Slovakia. Pakistan Journal of Analytical and Environmental Chemistry, 22(1), 53 59. https://doi.org/10.21743/pjaec/2021.06.07
  • Tiwari, S., Tripathi, I.P., & Tiwari, H.L. (2013). Effects of lead on environment. International Journal of Emerging Research in Management &Technology, 2(6).
  • Toto, A., Wild, P., Graille, M., Turcu, V., Crézé, C., Hemmendinger, M., Sauvain, J.J., Bergamaschi, E., Canu, I.G., & Hopf, N.B. (2022). Urinary malondialdehyde (MDA) concentrations in the general population-A systematic literature review and meta-analysis. Toxics, 10(4), 160. https://doi.org/10.3390/toxics10040160
  • Tuladhar, P. Sasidharan, S., & Saudagar, P. (2021). 17 - Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol Agents and Secondary Metabolites, pp. 419-441. https://doi.org/10.1016/B978-0-12-822919-4.00017-X
  • Ullah, S., Li, Z., Hassan, S., Ahmad, S., Guo, X., Wanghe, A., & Nabi, G., (2021). Heavy metals bioaccumulation and subsequent multiple biomarkers-based appraisal of toxicity in the critically endangered Tor putitora. Ecotoxicology and Environmental Safety, 228(1), 113032. https://doi.org/10.1016/j.ecoenv.2021.113032
  • van Hulst, R.A., Muth, C-M., & Radermacher, P., (2008). Air embolism and diving injury. In: Papadakos, P.J. and Lachmann, B. (eds.), Laraine Visser-Isles, Mechanical Ventilation, W.B. Saunders, pp. 365-375. ISBN 9780721601861. https://doi.org/10.1016/B978-0-7216-0186-1.50036-3
  • Vannini, A., Tedesco, R., Loppi, S., Di Cecco, V., Di Martino, L., Nascimbene, J., Dallo, F., & Barbante, C. (2021). Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Science of The Total Environment, 798, 149369. https://doi.org/10.1016/j.scitotenv.2021.149369
  • Vardanyan, R.S., & Hruby, V.J. (2006). Antineoplastics. In: Vardanyan, R.S. and Hruby V.J. (eds.), Synthesis of Essential Drugs, France: Elsevier, pp. 389-418. ISBN 9780444521668. https://doi.org/10.1016/B978-044452166-8/50030-3
  • Villa, A., Anabalon, M., Zohouri, V., Maguire, A., Franco, A.M., & Rugg-Gunn, A. (2010). Relationships between fluoride intake, urinary fluoride excretion and fluoride retention in children and adults: an analysis of available data. Caries Research, 44(1), 60–68.
  • Vitikainen, O. (2009). William Nylander (1822–1899) and lichen chemotaxonomy. The Bryologist, 104, 263 267. https://doi.org/10.1639/0007 2745(2001)104[0263:WNALC]2.0.CO;2
  • Walna, B., Kurzyca, I., & Siepak, J. (2007). Variations in fluoride level in precipitation in a region of human impact. Water, Air, & Soil Pollution: Focus, 7, 33 40. https://doi.org/10.1007/s11267-006-9108-4
  • Wani, A.L., ARA, A., & Usmani, J.A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009
  • Weaver, R. (1975). Lichens: mysterious and diverse, pp. 133-159. Corpus ID: 44411836
  • Węgrzyn, M., Wietrzyk, P., Lisowska, M., Klimek, B., & Nicia, P. (2016). What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard? Polar Science, 10(4), 532-540. https://doi.org/10.1016/j.polar.2016.10.002
  • Whitford, G.M. (1996). The metabolism and toxicity of fluoride. Monographs in Oral Science, 16(2), 1–153
  • Wieners, P.C., Mudimu, O., & Bilger, W. (2018). Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. Planta, 248(3), 601-612. https://doi.org/10.1007/s00425-018-2925-7
  • Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa, A., & Listrani, S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome. Italy. Science of The Total Environment, 690, 1355-1368. https://doi.org/10.1016/j.scitotenv.2019.06.526
  • Yamazaki, T., Taguchi, T., & Ojima, I. (2009). 'Unique properties of fluorine and their relevance to medicinal chemistry and chemical biology', Fluorine in Medicinal Chemistry and Chemical Biology, pp. 3-46. http://doi.org/10.1002/9781444312096.CH1
  • Yang, Y.N., Safarova, R.B., Park, S.Y., Sakuraba, Y., Oh, M., Zulfugarov, I.S., Lee, C.B., Tanaka, A., Paek, N., & Lee, C. (2019). Chlorophyll degradation and light-harvesting complex II aggregate formation during dark-induced leaf senescence in Arabidopsis pheophytinase mutants. Journal of Plant Biology, 62, 27 38. https://doi.org/10.1007/s12374-018-0242-0
  • Yousuf, S., Choudhary, M.I., & Atta-ur-Rahman (2014). Chapter 7 - Lichens: Chemistry and biological activities. Studies in Natural Products Chemistry, 43, 2014, 223-259. https://doi.org/10.1016/B978-0-444-63430-6.00007-2
  • Zhang, C., Yan, K., Fu, C., Peng, H., Craig, J., Hawker, C., & Whittaker, A. (2022a). Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chemical Reviews, 122(1), 167 208. https://doi.org/10.1021/acs.chemrev.1c00632
  • Zhang, J., Yu, G., Wen, W., Ma, X., Xu, B., & Huang, B. (2016). Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. Journal of Experimental Botany, 67, 935 945. https://doi.org/10.1093/jxb/erv509
  • Zhang, H., Zhu, J., Gong, Z., & Zhu, J.K. (2022b). Abiotic stress responses in plants. Nature Reviews Genetics, 23(9), 104–119. https://doi.org/10.1038/s41576-021-00413-0
  • Ziegler, E.E., Edwards, B.B., Jensen, R.L., Mahaffey, K.R., & Fomon, S.J. (1978). Absorption and retention of lead by infants. Pediatric Research, 12, 29 34. https://doi.org/10.1203/00006450-197801000-00008
  • Zohoori, F.V., & Duckworth, R.M. (2017). Chapter 44 - Fluoride: Intake and metabolism, therapeutic and toxicological consequences. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, 539-550. https://doi.org/10.1016/B978-0-12-802168-2.00044-0
  • Zoungranan, Y., Lynda, E., Tchirioua, E., & Bieri, D.G. (2019). Effect of metal cations Pb2+, Cu2+, Zn2+, Mg2+ and Fe2+ on some physiological parameters of lichen Parmotrema dilatatum. American Journal of Environmental Protection, 7(1), 24 33. https://doi.org/10.12691/env-7-1-5
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557
There are 227 citations in total.

Details

Primary Language English
Subjects Enzymes
Journal Section Articles
Authors

Ouahiba Benhamada 0000-0003-2474-5739

Nabila Benhamada 0000-0001-8088-8561

Essaid Leghouchi This is me 0000-0001-9087-1050

Early Pub Date October 8, 2024
Publication Date November 3, 2024
Submission Date December 6, 2023
Acceptance Date July 16, 2024
Published in Issue Year 2024

Cite

APA Benhamada, O., Benhamada, N., & Leghouchi, E. (2024). Review on the toxic effect of fluorine and lead on lichen metabolism. International Journal of Secondary Metabolite, 11(4), 765-794. https://doi.org/10.21448/ijsm.1401066
International Journal of Secondary Metabolite

e-ISSN: 2148-6905