Research Article
BibTex RIS Cite

Evaluation of potential anti-aging effects of Achillea phrygia Boiss. & Balansa (Asteraceae)

Year 2024, , 646 - 657, 03.11.2024
https://doi.org/10.21448/ijsm.1401681

Abstract

This study aims to determine the anti-aging effects of Achillea phrygia, an endemic plant, by evaluating its sun protection factor (SPF) level, antioxidant activity, total phenolic content, extracellular matrix-degrading enzymes (ECM) inhibition, genotoxic/anti-genotoxic, and cytotoxic activities. The SPF level was assessed using an in vitro quantitative method, while antioxidant capacity was determined through DPPH, β-carotene, and hydroxyl-radical (H2O2) scavenging assays. The total phenolic content was quantitatively conducted using the Folin Ciocalteu reagent. The inhibition of ECM-degrading enzymes was determined using matrix metalloproteinase-1 (MMP-1), hyaluronidase, and elastase enzymes. Genotoxic/anti-genotoxic properties were assessed using the AMES Salmonella/microsome assay, and cytotoxicity effects were assessed through the MTT assay. The results indicated that A. phrygia showed moderate SPF activity (SPF = 4.013) and exhibited IC50 values of 0.183 ± 0.03, 0.079 ± 0.51, and 1.18 ± 0.35 mg/mL for DPPH, β-carotene, and hydroxyl-radicals, respectively. The total phenolic content was measured to be 23.56 ± 1.42 mg GAE/g dry extract. Furthermore, the extract demonstrated inhibition of MMP-1 (47.98%) and elastase (39.2%) activities. Importantly, it did not induce DNA damage and showed antigenotoxic activity ranging from 10% to 65.6%. The cytotoxicity assay revealed an IC50 value of 42.41±4.05 µg/mL. These findings suggest that A. phrygia could be utilized as a cosmetic ingredient in skincare products due to its ability to protect against UV radiation, exhibit antioxidant properties, prevent extracellular matrix degradation, and inhibit DNA damage.

References

  • Afshari, M., Rahimmalek, M., & Miroliaei, M. (2018). Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry & Biodiversity, 15(8), e1800075.
  • Agar, O.T., Dikmen, M., Ozturk, N., Yilmaz, M.A., Temel, H., & Turkmenoglu, F.P. (2015). Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules, 20(10), 17976-18000.
  • Akyil, D., Oktay, S., Liman, R., Eren, Y., & Konuk, M. (2012). Genotoxic and mutagenic effects of aqueous extract from aerial parts of Achillea teretifolia. Turkish Journal of Biology, 36(4), 441-448.
  • Alnuqaydan, A.M., & Sanderson, B.J. (2016). Toxicity and Genotoxicity of Beauty Products on Human Skin Cells In Vitro. Journal of Clinical Toxicology, 6(4), 1 9. https://doi.org/10.4172/2161-0495.1000315
  • Anlaş, C., Bakirel, T., Ustuner, O., Ustun-Alkan, F., Diren-Sigirci, B., Koca-Caliskan, U., Mancak-Karakus, M., Dogan, U., Ak, S., Akpulat, H.A. (2023). In vitro biological activities and preliminary phytochemical screening of different extracts from Achillea sintenisii Hub- Mor. Arabian Journal of Chemistry, 16(1), 104426
  • Anlaş, C., Bakirel, T., Çalişkan, U.K., Dönmez, C., Alkan, F.Ü., & Keleş, O.Ü. (2022). In vitro cytotoxicity and genotoxicity screening of Cuscuta arvensis Beyr. and Achillea wilhelmsii C. Koch. Journal of Research in Veterinary Medicine, 41(2), 143-149.
  • Aronson, J.K. (2016). Asteraceae. Meyler's Side Effects of Drugs (Sixteenth Edition). The International Encyclopedia of Adverse Drug Reactions and Interactions. Elsevier.
  • Barak, T.H., Kurt-Celep, I., Dilek-Tepe, H., Bardakcı, H., Akaydın, G., Yesilada, E., & Celep, E. (2023). In vitro assessment of dermatological activity potential of Achillea clypeolata Sm. in H2O2-treated human dermal fibroblasts. South African Journal of Botany, 160, 1-8.
  • Barda, C., Grafakou, M. E., Tomou, E. M., & Skaltsa, H. (2021). Phytochemistry and evidence-based traditional uses of the genus Achillea L.: an update (2011–2021). Scientia Pharmaceutica, 89(4), 50.
  • Barrantes, E., & Guinea, M. (2003). Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sciences, 72, 843–850. https://doi.org/10.1016/S0024-3205(02)02308-1
  • Başer, K.H.C. (2016). Essential Oils of Achillea Species of Turkey. Natural Volatiles and Essential Oils, 3(1), 1–14.
  • Becker, L.C., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W., & Andersen, F.A. (2016). Safety Assessment of Achillea millefolium as used in cosmetics. International Journal of Toxicology, 35(3), 5-15. https://doi.org/10.1177/1091581816677717
  • Cefali, L.C., Ataide, J.A., Moriel, P., Foglio, M.A., & Mazzola, P.G. (2016). Plant‐based active photoprotectants for sunscreens. International Journal of Cosmetic Science, 38(4), 346-353.
  • Choquenet, B., Couteau, C., Paparis, E., & Coiffard, L.J.M. (2008). quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. Journal of Natural Products, 71, 1117–1118. https://doi.org/10.1021/np7007297
  • Deniz, L., Serteser, A., & Kargıoglu, M. (2010). Local names and ethnobotanical features of some plants in Usak University (Usak) and its near vicinity. AKÜ Fen Bilimleri Dergisi, 10, 57–72.
  • Doğan, M., Taşkın, D., Ermanoğlu, M., & Arabacı, T. (2022). Characterization of nanoparticles containing Achillea phrygia and their antioxidant and antiproliferative properties. Cumhuriyet Science Journal, 43(1), 27-32. https://doi.org/10.17776/csj.1056496
  • Düsman, E., Almeida, I.V.D., Coelho, A.C., Balbi, T.J., Düsman Tonin, L.T., & Vicentini, V. E.P. (2013). Antimutagenic effect of medicinal plants Achillea millefolium and Bauhinia forficata in vivo. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Ebrahimabadi, A.H., Mazoochi, A., Kashi, F.J., Djafari-Bidgoli, Z., & Batooli, H. (2010). Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food and Chemical Toxicology, 48(5), 1371–1376. https://doi.org/10.1016/j.fct.2010.03.003
  • Eruygur, N., Buyukyildirim, T., Tetik Rama, S., Ayaz, F., Tekin, M., Tuzcu, M., ... & Abdullah Yilmaz, M. (2023). Phytochemical profiling and biological activity of Achillea sintenisii Hub.‐Mor. Chemistry & Biodiversity, 20(6), e202201258.
  • FDA. (2013). Food and Drug Administration. Sunscreen drug products for over-the-counter human use. Code of Federal Regulations. Title 21, v. 5.
  • Fibrich, B.D., & Lall, N. (2018). Chapter 3: Fighting the Inevitable: Skin Aging and Plants, in: Lall N, (Ed), Medicinal Plants for Holistic Health and Well-Being, in: Academic Press, United Kingdom. pp: 77–115.
  • Gaweł-Bęben, K., Strzępek-Gomółka, M., Czop, M., Sakipova, Z., Głowniak, K., & Kukula-Koch, W. (2020). Achillea millefolium L. and Achillea biebersteinii Afan. hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules, 25(15), 3368.
  • Huber-Morath, A. (1975). Achillea L. In: Davis PH. (eds.). Flora of Turkey and the East Aegean Islands, in: Edinburgh: Edinburgh Univ Press pp. 224–52.
  • Hussein, A.A., Al-Ezzy, R.M., & Abdallah, M.T. (2019). Biochemical, enzymatic, and immunological study on antimutagenic Achillea millefolium methanolic extract in vivo. Journal of Pharmacy and Pharmacology, 7, 69-74.
  • Jaradat, N.A., Zaid, A.N., Hussen, F., Issa, L., Altamimi, M., Fuqaha, B., Nawahda, A., & Assadi, M. (2018). Phytoconstituents, antioxidant, sun protection and skin anti-wrinkle effects using four solvents fractions of the root bark of the traditional plant Alkanna tinctoria (L.). European Journal of Integrative Medicine, 21, 88 93. https://doi.org/10.1016/j.eujim.2018.07.003
  • Krutmann, J. (2001). New developments in photoprotection of human skin. Skin Pharmacology and Physiology, 14, 401–407. https://doi.org/10.1159/000056374
  • Küpeli, E., Erdogan Orhan, I., Küsmenoğlu, Ş., & Yesilada, E. (2007). Evaluation of anti-inflammatory and antinocicptive activity of five Anatolian Achillea species. Turkish Journal of Pharmaceutical Sciences, 4, 89-99.
  • Lee, J-H., Zhou, H.Y., Cho, S.Y., Kim, Y.S., Lee, Y.S., & Jeong, C.S. (2007). Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Archives of Pharmacal Research, 30, 1318 – 1327. https://doi.org/10.1007/BF02980273
  • Lee, K-K., Kim, J-H., Cho, J-J., & Choi, J-D. (1999). Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. International Journal of Cosmetic Science, 21, 71–82. https://doi.org/10.1046/j.1467-2494.1999.181638.x
  • Lephart, E.D. (2016). Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Research Reviews, 31, 36–54. https://doi.org/10.1016/j.arr.2016.08.001
  • Lim, H., & Kim, H. (2007). Inhibition of Mammalian Collagenase, Matrix Metalloproteinase -1, by Naturally - Occurring Flavonoids. Planta Medica, 73, 12671274. https://doi.org/10.1055/s-2007-990220
  • Madan, K., & Nanda, S. (2018). In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorganic Chemistry, 77, 159167. https://doi.org/10.1016/j.bioorg.2017.12.030
  • Maron, D.M., & Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Masaki, H. (2010). Role of antioxidants in the skin: Anti-aging effects. Japanese Society for Investigative Dermatology, 58, 85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003
  • Meena, S.N., & Mohandass, C. (2019). in Advances in Biological Science Research. A Practical Approach (Elsevier), pp. 469–484.
  • Millis, A.J.T., Hoyle, M., McCue, H.M., & Martini, H. (1992). Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Experimental Cell Research, 201, 373–379. https://doi.org/10.1016/0014-4827(92)90286-H
  • Mohammadhosseini, M., Sarker, S.D., & Akbarzadeh, A. (2017). Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology, 199, 257-315.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63.
  • Pientaweeratch, S., Panapisal, V., & Tansirikongkol, A. (2016). Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical Biology, 54, 1865–1872 https://doi.org/10.3109/13880209.2015.1133658
  • Ramos-e-Silva, M., Celem, L.R., Ramos-e-Silva, S., & Fucci-da-Costa, A.P. (2013). Anti-aging cosmetics: Facts and controversies. Clinics in Dermatology, 31(6), 750–758. https://doi.org/10.1016/j.clindermatol.2013.05.013
  • Rauter, A.P., Dias, C., Martins, A., Branco, I., Neng, N.R., Nogueira, J.M., … Waltho, J.P. (2012). Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties. Food Chemistry, 132, 1930–1935. https://doi.org/10.1016/j.foodchem.2011.12.028
  • Saewan, N., & Jimtaisong, A. (2013). Photoprotection of natural flavonoids. Journal of Applied Pharmaceutical Science, 3(9), 129-141. https://doi.org/10.7324/JAPS.2013.3923
  • Salehi, B., Selamoglu, Z., Sevindik, M., Fahmy, N.M., Al-Sayed, E., El-Shazly, … Büsselberg, D. (2020). Achillea spp.: A comprehensive review on its ethnobotany, phytochemistry, phytopharmacology and industrial applications. Cellular and Molecular Biology, 25, 78-103.
  • Saraf, S., & Kaur, C.D. (2010). In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Research, 2, 22. https://doi.org/10.4103/0974-8490.60586
  • Singleton, V.L., Orthofer, R., & Lamuel-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzym. 299, 152–78.
  • Sun, X., Zhang, J., Mi, Y., Chen, Y., Tan, W., Li, Q., Dong, F., & Guo, Z. (2020). Synthesis, characterization, and the antioxidant activity of the acetylated chitosan derivatives containing sulfonium salts. International Journal of Biological Macromolecules, 152, 349–358. https://doi.org/10.1016/j.ijbiomac.2020.02.177
  • Wölfle, U., Heinemann, A., Esser, P.R., Haarhaus, B., Martin, S.F., & Schempp, C.M. (2012). Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: A role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes. Rejuvenation Research, 15, 466–475. https://doi.org/10.1089/rej.2011.1309
  • Zengin, G., Bulut, G., Mollica, A., Haznedaroglu, M.Z., Dogan, A., & Aktumsek, A. (2017a). Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: In vitro and in silico approaches. Food and Chemical Toxicology, 107, 597–608. https://doi.org/10.1016/j.fct.2017.03.037
  • Zengin, G., Aktumsek, A., Ceylan, R., Uysal, S., Mocan, A., Guler, G. O., ... Soković, M. (2017b). Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii, A. millefolium and A. teretifolia). Food & Function, 8(3), 1152-1165.
  • Zhang, C-H., Yu, Y., Liang,,Y-Z., Chen, X-Q., (2015). Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. International Journal of Biological Macromolecules, 79, 681–686. https://doi.org/10.1016/j.ijbiomac.2015.05.060

Evaluation of potential anti-aging effects of Achillea phrygia Boiss. & Balansa (Asteraceae)

Year 2024, , 646 - 657, 03.11.2024
https://doi.org/10.21448/ijsm.1401681

Abstract

This study aims to determine the anti-aging effects of Achillea phrygia, an endemic plant, by evaluating its sun protection factor (SPF) level, antioxidant activity, total phenolic content, extracellular matrix-degrading enzymes (ECM) inhibition, genotoxic/anti-genotoxic, and cytotoxic activities. The SPF level was assessed using an in vitro quantitative method, while antioxidant capacity was determined through DPPH, β-carotene, and hydroxyl-radical (H2O2) scavenging assays. The total phenolic content was quantitatively conducted using the Folin Ciocalteu reagent. The inhibition of ECM-degrading enzymes was determined using matrix metalloproteinase-1 (MMP-1), hyaluronidase, and elastase enzymes. Genotoxic/anti-genotoxic properties were assessed using the AMES Salmonella/microsome assay, and cytotoxicity effects were assessed through the MTT assay. The results indicated that A. phrygia showed moderate SPF activity (SPF = 4.013) and exhibited IC50 values of 0.183 ± 0.03, 0.079 ± 0.51, and 1.18 ± 0.35 mg/mL for DPPH, β-carotene, and hydroxyl-radicals, respectively. The total phenolic content was measured to be 23.56 ± 1.42 mg GAE/g dry extract. Furthermore, the extract demonstrated inhibition of MMP-1 (47.98%) and elastase (39.2%) activities. Importantly, it did not induce DNA damage and showed antigenotoxic activity ranging from 10% to 65.6%. The cytotoxicity assay revealed an IC50 value of 42.41±4.05 µg/mL. These findings suggest that A. phrygia could be utilized as a cosmetic ingredient in skincare products due to its ability to protect against UV radiation, exhibit antioxidant properties, prevent extracellular matrix degradation, and inhibit DNA damage.

References

  • Afshari, M., Rahimmalek, M., & Miroliaei, M. (2018). Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry & Biodiversity, 15(8), e1800075.
  • Agar, O.T., Dikmen, M., Ozturk, N., Yilmaz, M.A., Temel, H., & Turkmenoglu, F.P. (2015). Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules, 20(10), 17976-18000.
  • Akyil, D., Oktay, S., Liman, R., Eren, Y., & Konuk, M. (2012). Genotoxic and mutagenic effects of aqueous extract from aerial parts of Achillea teretifolia. Turkish Journal of Biology, 36(4), 441-448.
  • Alnuqaydan, A.M., & Sanderson, B.J. (2016). Toxicity and Genotoxicity of Beauty Products on Human Skin Cells In Vitro. Journal of Clinical Toxicology, 6(4), 1 9. https://doi.org/10.4172/2161-0495.1000315
  • Anlaş, C., Bakirel, T., Ustuner, O., Ustun-Alkan, F., Diren-Sigirci, B., Koca-Caliskan, U., Mancak-Karakus, M., Dogan, U., Ak, S., Akpulat, H.A. (2023). In vitro biological activities and preliminary phytochemical screening of different extracts from Achillea sintenisii Hub- Mor. Arabian Journal of Chemistry, 16(1), 104426
  • Anlaş, C., Bakirel, T., Çalişkan, U.K., Dönmez, C., Alkan, F.Ü., & Keleş, O.Ü. (2022). In vitro cytotoxicity and genotoxicity screening of Cuscuta arvensis Beyr. and Achillea wilhelmsii C. Koch. Journal of Research in Veterinary Medicine, 41(2), 143-149.
  • Aronson, J.K. (2016). Asteraceae. Meyler's Side Effects of Drugs (Sixteenth Edition). The International Encyclopedia of Adverse Drug Reactions and Interactions. Elsevier.
  • Barak, T.H., Kurt-Celep, I., Dilek-Tepe, H., Bardakcı, H., Akaydın, G., Yesilada, E., & Celep, E. (2023). In vitro assessment of dermatological activity potential of Achillea clypeolata Sm. in H2O2-treated human dermal fibroblasts. South African Journal of Botany, 160, 1-8.
  • Barda, C., Grafakou, M. E., Tomou, E. M., & Skaltsa, H. (2021). Phytochemistry and evidence-based traditional uses of the genus Achillea L.: an update (2011–2021). Scientia Pharmaceutica, 89(4), 50.
  • Barrantes, E., & Guinea, M. (2003). Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sciences, 72, 843–850. https://doi.org/10.1016/S0024-3205(02)02308-1
  • Başer, K.H.C. (2016). Essential Oils of Achillea Species of Turkey. Natural Volatiles and Essential Oils, 3(1), 1–14.
  • Becker, L.C., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W., & Andersen, F.A. (2016). Safety Assessment of Achillea millefolium as used in cosmetics. International Journal of Toxicology, 35(3), 5-15. https://doi.org/10.1177/1091581816677717
  • Cefali, L.C., Ataide, J.A., Moriel, P., Foglio, M.A., & Mazzola, P.G. (2016). Plant‐based active photoprotectants for sunscreens. International Journal of Cosmetic Science, 38(4), 346-353.
  • Choquenet, B., Couteau, C., Paparis, E., & Coiffard, L.J.M. (2008). quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. Journal of Natural Products, 71, 1117–1118. https://doi.org/10.1021/np7007297
  • Deniz, L., Serteser, A., & Kargıoglu, M. (2010). Local names and ethnobotanical features of some plants in Usak University (Usak) and its near vicinity. AKÜ Fen Bilimleri Dergisi, 10, 57–72.
  • Doğan, M., Taşkın, D., Ermanoğlu, M., & Arabacı, T. (2022). Characterization of nanoparticles containing Achillea phrygia and their antioxidant and antiproliferative properties. Cumhuriyet Science Journal, 43(1), 27-32. https://doi.org/10.17776/csj.1056496
  • Düsman, E., Almeida, I.V.D., Coelho, A.C., Balbi, T.J., Düsman Tonin, L.T., & Vicentini, V. E.P. (2013). Antimutagenic effect of medicinal plants Achillea millefolium and Bauhinia forficata in vivo. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Ebrahimabadi, A.H., Mazoochi, A., Kashi, F.J., Djafari-Bidgoli, Z., & Batooli, H. (2010). Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food and Chemical Toxicology, 48(5), 1371–1376. https://doi.org/10.1016/j.fct.2010.03.003
  • Eruygur, N., Buyukyildirim, T., Tetik Rama, S., Ayaz, F., Tekin, M., Tuzcu, M., ... & Abdullah Yilmaz, M. (2023). Phytochemical profiling and biological activity of Achillea sintenisii Hub.‐Mor. Chemistry & Biodiversity, 20(6), e202201258.
  • FDA. (2013). Food and Drug Administration. Sunscreen drug products for over-the-counter human use. Code of Federal Regulations. Title 21, v. 5.
  • Fibrich, B.D., & Lall, N. (2018). Chapter 3: Fighting the Inevitable: Skin Aging and Plants, in: Lall N, (Ed), Medicinal Plants for Holistic Health and Well-Being, in: Academic Press, United Kingdom. pp: 77–115.
  • Gaweł-Bęben, K., Strzępek-Gomółka, M., Czop, M., Sakipova, Z., Głowniak, K., & Kukula-Koch, W. (2020). Achillea millefolium L. and Achillea biebersteinii Afan. hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules, 25(15), 3368.
  • Huber-Morath, A. (1975). Achillea L. In: Davis PH. (eds.). Flora of Turkey and the East Aegean Islands, in: Edinburgh: Edinburgh Univ Press pp. 224–52.
  • Hussein, A.A., Al-Ezzy, R.M., & Abdallah, M.T. (2019). Biochemical, enzymatic, and immunological study on antimutagenic Achillea millefolium methanolic extract in vivo. Journal of Pharmacy and Pharmacology, 7, 69-74.
  • Jaradat, N.A., Zaid, A.N., Hussen, F., Issa, L., Altamimi, M., Fuqaha, B., Nawahda, A., & Assadi, M. (2018). Phytoconstituents, antioxidant, sun protection and skin anti-wrinkle effects using four solvents fractions of the root bark of the traditional plant Alkanna tinctoria (L.). European Journal of Integrative Medicine, 21, 88 93. https://doi.org/10.1016/j.eujim.2018.07.003
  • Krutmann, J. (2001). New developments in photoprotection of human skin. Skin Pharmacology and Physiology, 14, 401–407. https://doi.org/10.1159/000056374
  • Küpeli, E., Erdogan Orhan, I., Küsmenoğlu, Ş., & Yesilada, E. (2007). Evaluation of anti-inflammatory and antinocicptive activity of five Anatolian Achillea species. Turkish Journal of Pharmaceutical Sciences, 4, 89-99.
  • Lee, J-H., Zhou, H.Y., Cho, S.Y., Kim, Y.S., Lee, Y.S., & Jeong, C.S. (2007). Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Archives of Pharmacal Research, 30, 1318 – 1327. https://doi.org/10.1007/BF02980273
  • Lee, K-K., Kim, J-H., Cho, J-J., & Choi, J-D. (1999). Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. International Journal of Cosmetic Science, 21, 71–82. https://doi.org/10.1046/j.1467-2494.1999.181638.x
  • Lephart, E.D. (2016). Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Research Reviews, 31, 36–54. https://doi.org/10.1016/j.arr.2016.08.001
  • Lim, H., & Kim, H. (2007). Inhibition of Mammalian Collagenase, Matrix Metalloproteinase -1, by Naturally - Occurring Flavonoids. Planta Medica, 73, 12671274. https://doi.org/10.1055/s-2007-990220
  • Madan, K., & Nanda, S. (2018). In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorganic Chemistry, 77, 159167. https://doi.org/10.1016/j.bioorg.2017.12.030
  • Maron, D.M., & Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Masaki, H. (2010). Role of antioxidants in the skin: Anti-aging effects. Japanese Society for Investigative Dermatology, 58, 85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003
  • Meena, S.N., & Mohandass, C. (2019). in Advances in Biological Science Research. A Practical Approach (Elsevier), pp. 469–484.
  • Millis, A.J.T., Hoyle, M., McCue, H.M., & Martini, H. (1992). Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Experimental Cell Research, 201, 373–379. https://doi.org/10.1016/0014-4827(92)90286-H
  • Mohammadhosseini, M., Sarker, S.D., & Akbarzadeh, A. (2017). Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology, 199, 257-315.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63.
  • Pientaweeratch, S., Panapisal, V., & Tansirikongkol, A. (2016). Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical Biology, 54, 1865–1872 https://doi.org/10.3109/13880209.2015.1133658
  • Ramos-e-Silva, M., Celem, L.R., Ramos-e-Silva, S., & Fucci-da-Costa, A.P. (2013). Anti-aging cosmetics: Facts and controversies. Clinics in Dermatology, 31(6), 750–758. https://doi.org/10.1016/j.clindermatol.2013.05.013
  • Rauter, A.P., Dias, C., Martins, A., Branco, I., Neng, N.R., Nogueira, J.M., … Waltho, J.P. (2012). Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties. Food Chemistry, 132, 1930–1935. https://doi.org/10.1016/j.foodchem.2011.12.028
  • Saewan, N., & Jimtaisong, A. (2013). Photoprotection of natural flavonoids. Journal of Applied Pharmaceutical Science, 3(9), 129-141. https://doi.org/10.7324/JAPS.2013.3923
  • Salehi, B., Selamoglu, Z., Sevindik, M., Fahmy, N.M., Al-Sayed, E., El-Shazly, … Büsselberg, D. (2020). Achillea spp.: A comprehensive review on its ethnobotany, phytochemistry, phytopharmacology and industrial applications. Cellular and Molecular Biology, 25, 78-103.
  • Saraf, S., & Kaur, C.D. (2010). In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Research, 2, 22. https://doi.org/10.4103/0974-8490.60586
  • Singleton, V.L., Orthofer, R., & Lamuel-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzym. 299, 152–78.
  • Sun, X., Zhang, J., Mi, Y., Chen, Y., Tan, W., Li, Q., Dong, F., & Guo, Z. (2020). Synthesis, characterization, and the antioxidant activity of the acetylated chitosan derivatives containing sulfonium salts. International Journal of Biological Macromolecules, 152, 349–358. https://doi.org/10.1016/j.ijbiomac.2020.02.177
  • Wölfle, U., Heinemann, A., Esser, P.R., Haarhaus, B., Martin, S.F., & Schempp, C.M. (2012). Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: A role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes. Rejuvenation Research, 15, 466–475. https://doi.org/10.1089/rej.2011.1309
  • Zengin, G., Bulut, G., Mollica, A., Haznedaroglu, M.Z., Dogan, A., & Aktumsek, A. (2017a). Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: In vitro and in silico approaches. Food and Chemical Toxicology, 107, 597–608. https://doi.org/10.1016/j.fct.2017.03.037
  • Zengin, G., Aktumsek, A., Ceylan, R., Uysal, S., Mocan, A., Guler, G. O., ... Soković, M. (2017b). Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii, A. millefolium and A. teretifolia). Food & Function, 8(3), 1152-1165.
  • Zhang, C-H., Yu, Y., Liang,,Y-Z., Chen, X-Q., (2015). Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. International Journal of Biological Macromolecules, 79, 681–686. https://doi.org/10.1016/j.ijbiomac.2015.05.060
There are 50 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Articles
Authors

Rukiye Boran Gülen 0000-0003-2395-2445

Nurdan Saraç 0000-0001-7676-542X

Aysel Uğur 0000-0002-5188-1106

Early Pub Date October 8, 2024
Publication Date November 3, 2024
Submission Date December 7, 2023
Acceptance Date May 21, 2024
Published in Issue Year 2024

Cite

APA Boran Gülen, R., Saraç, N., & Uğur, A. (2024). Evaluation of potential anti-aging effects of Achillea phrygia Boiss. & Balansa (Asteraceae). International Journal of Secondary Metabolite, 11(4), 646-657. https://doi.org/10.21448/ijsm.1401681
International Journal of Secondary Metabolite

e-ISSN: 2148-6905