Research Article
BibTex RIS Cite

Antioxidative Defence Mechanisms in Tomato (Lycopersicum esculentum L.) Plants Sprayed with Different Pesticides and Boron compounds

Year 2018, , 200 - 209, 15.09.2018
https://doi.org/10.21448/ijsm.450830

Abstract

Oxidative stress was investigated in Lycopersicum esculentum L. by applying various pesticides and boron compounds for two years, near Ortaca-Muğla. The field sections were treated separately by commercial pesticides and boron compounds i.e. tarimbor (TB), boric acid (BA), laser (LA), zoom (ZO) and admiral (AD). During first year, boric acid (BA-1) caused highest increase in total chlorophyll (TCh) content (158.41 μg g-1) while the second dose (BA-2) decreased it (103.11 μg g-1). During second year, higher doses of tarimbor (236.49 μg g-1) caused increase in total chlorophyll (TCh) while ZO treatment decreased it (142.55 μg g-1) (control: 149.55 μg g-1). TB-1 caused the highest increase in proline content (33.52 nmol g-1) while highest reduction was observed in boric acid (BA-2) (22.51 nmol g-1) as compared to control group (26.77 nmol g-1). During the first year, an increase of boric acid and tarimbor concentrations decreased malonaldehyde (MDA) while during the second year, both increases and decreases were observed in the MDA amount. Highest superoxide dismutase (SOD) amount was found in the first year ZO treated plants i.e. 70.35 unit SOD/mg protein while TB-1 treatment caused the highest decrease in the SOD amount i.e. 35.21 unit SOD/mg protein (control: 45.23 unit SOD/mg protein).

References

  • Lichtenthaler, H.K. (1996). Vegetation stress: An introduction to the stress concept in plants . J Plant Physiol, 148, 4-14.
  • Dhaliwal, G.S., Singh, B. (2000). Pesticides and environment. Commonwealth Publishers, New Delhi, 439 pp.
  • Parween, T., Jan, S., Fatma, T. (2011). Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol. Plant., 33, 2321-2328.
  • Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., Yu, J.Q. (2006). Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest. Biochem. Physiol., 86, 42-48.
  • Kuhara, T.P., Stivers-Youngb, L.J., Hoffmann, M.P., Taylor, A.G. (2002). Control of corn flea beetle and stewart's wilt in sweet corn with imidacloprid and thiamethoxam seed treatments. Crop Protec., 21, 25-31.
  • Fitzgerald, J. (2004). Laboratory bioassay and field evaluation of insecticides for control of Anthonomus rubi, Lygus rugulipennis and Cheatosiphon fragaefolii, and effects on beneficial species in UK strawberry production. Crop Protec., 23, 801-809.
  • Putter, I., MacConnell, J.G., Preiser, F.A., Haidri, A.A., Ristich, S.S., Dybas, R.A. (1981). Avermectins: Novel insecticides acaricides and nematicides from a soil microorganism. Experientia., 37, 963-964.
  • Liu, T.X. (2003). Effects of a juvenile hormone analog, pyriproxifen, on Thrips tabaci (Thysanoptera: Thripidae). Pest. Manag. Sci., 59, 904-912.
  • Liu, T.X., Stansly, P.A. (2004). Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biol. Cont., 30(2), 298-305.
  • Ren, H.X., Wang, Z.L., Chen, X., Zhu, Y.L. (1999). Antioxidative responses to different altitudes in Plantagomajor. Environ. Exp. Bot., 42, 51-59.
  • Zaefyzadeh, M., Quliyev, R.A., Babayeva, S., Abbasov, M.A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk. J. Biol., 33, 1-7.
  • Banerjee, B.D., Seth V., Bahattacharya, A. (1999). Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett., 107, 33-47. [13] Nicholas, J., Wood, J.S. (2001). Catalase and superoxide dimutase activity in ammonia-oxidising bacteria. FEMS Microbiol. Ecol., 38,53-58.
  • Chen, Q., Zhang, M., Shen, S. (2010). Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol. Plant., 33, 273-278.
  • Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., BarbaEspin, G., Clemente-Moreno, M.J., Alcobendas, R., Artlip T., Hernandez, J.A. (2011). Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot., 62, 2599-2613.
  • Tuluce Y, Celik I. (2006). Influence of subacute and subchronic treatment of abcisic acid and gibberellic acid on serum marker enzymes and erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Pest Biochem Physiol., 86, 85–92.
  • Brown, P.H., Shelp, B.J. (1997). Boron mobility in plants. Plant and soil, 193(1-2), 85-101.
  • Loomis W.D. , Durst, R.W. (1992). Chemistry and biology of boron, BioFactors (Oxford, England), 3(4), 229-239.
  • Strain, H.H., Svec, W.A. (1966). Extraction separation estimation and isolation of the Chlorophylls. In: The Chlorophylls Academic Press, Vernon, L.P., Seely G.R. (Eds.): New York., pp 21-65.
  • Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39, 205-207.
  • Giannopolitis C.N., Ries S.K. (1977). Superoxide Dismutases Occurrence in Higher Plants. Plant Physiol., 59, 309-314.
  • Cakmak, I., Horst, W.J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plantarum., 83, 463-468.
  • Bergmeyer N. (1970). Methoden Der Enzymatischen Analyse, Berlin: Akademie Verlag, 1, 636–47.
  • Nakano, Y., Asada, Y. (1981). Purification of Ascorbate Peroxidase From Spinach Chloroplasts: Its Inactivation in Ascorbat Depleted Medium and Reactivation by Monodehydro ascorbate Radical. Plant Cell Physiol., 28, 131-135.
  • Herzog, V., Fahimi, H. (1973). Determination Of The Activity Of Peroxidase. Anal Biochem., 55, 554–562.
  • Bradford, M.M. (1992). A Rapid And Sensitive Method For The Quantitation Of Micrograms Quantities Of Protein Utilizing The Principle Of Protein-Dye Binding. Anal Biochem. 44, 276-287.
  • Madhava Rao K.V., Sresty T.V.S. (2000). Antioxidative Parameters in The Seedlings Of Pigeonpea (Cajanus Cajan L. Millspaugh) in Response to Zn and Ni Stresses. Plant Sci. 157, 113–28.
  • Lindsay, W.L., Norvell, W.A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Am. J., 42, 421-428.
  • Thomas, G.W. (1982). Exchangable cations. P. 159-165. Chemical and Microbiological properties. Agronomy Monograph No. 9 (2nd Ed) ASASSSA. Madison, Wisconsin. USA.
  • Knudsen, D., Peterson, G.A., Pratt, P.F. (1982). Lithium, sodium and potassium. Methods of soil analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No:9 (2. Ed.). ASA-SSSA. P. 225-246 Madison-Wisconsin, USA.
  • Bingham, F.T. (1982). Boron. Methods of Soil Analysis. Part 2, Second edition American society of Agronomy, Inc., Wisconsin USA, pp 431-447.
  • Kacar, B., Fox, R.L. (1966). Boron status of some Turkish soils. University of Ankara, Yearbook of the faculty of Agriculture, Ankara, 9-11.
  • Wang, J.Z., Tao, S.T. Qi, K.J., Wu, J., Wu, H.Q., Zhang, S.L. (2011). Changes in photosynthetic properties and antioxidativesystem of pear leaves to boron toxicity. African Journal of Biotechnology, 10(85), 19693-19700.
  • Tort, N., Dereboylu, A.E. (2003). Anadolu. J. of AARI, 13 (1), 142-157.
  • Öztürk, İ., Tort, N. (2004). The Effect of Fungicide Application on Some Photosynthetic Pigment Substances, Plant Hormones and the Amounts of Protein in the Leaves of Tomato (Lycopersicon esculentum Mill.). C.Ü., J Nat and Applied Sci, 25(1), 7-19.
  • Rao, G.G., Rao, G.R. (1981). Pigment composition and chlorophyllase activity in Pigeon pea (Cajanus indicus Spreng.) and gingelly (Sesamum indicum L.) under NaCl salinity. Indian J.Exp. Biol., 19, 768-770.
  • Ardıç, M. (2007). Effects of Boron Toxicity on Some Physiological and Biochemical Characteristics of Chickpea (Cicer arietinum L.), Eskişehir Osmangazi Uni., Ph. D. Thesis, Graduate School of Natural and Applied Sciences, Department of Biology, 83p.
  • Yildiztekin, M., Kaya, C., Tuna, A.L., Ashraf, M. (2015). Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides, Pakistan Journal of Botany (Pak J Bot), 47(2), 717-721.
  • Karabal, E., Yücel, M., Öktem, H.A. (2003). Antioxidant response soft tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164, 925-933 p.
  • Zabalza, A., Gaston, S., Sandalio, L.M., Rio, L.A., Royuela, M. (2007). Oxidative stres is not related to the mode of action of herbicides that inhibit acetolactate synthase., Environmental and Experimental Botany, 59(2), 150-159.
  • Choi, J.S., Lee, H.J., Hwang, I.T., Pyon, J.Y., Cho, K.Y. (1999). Differential susceptibilities of wheat and barley to Diphenyl eter herbicite Oxyfluorfen. Pesticide Biochemistry and Physiology., 65(1), 62-72.
  • Pogosyan, S.I, Shevchenko, N.V., Merziyak, M.N. (2003). Situmilation of nadph- dependent lipid peroxidation by 2,4- dichlorophenoxyacetic acid, 2.4.5- trichchlorophenoxyacetic acid and diquat in microcomes isolated from Pisum sativum. Plant Science letters, 37, 69-72.
  • Gaspar, T., Penel, C., Hagege, D., Greppin, H. (1991). Peroxidases in Plant Growth Differentiation And Development Processes, Univ. M. Curie-Sklodowska, Lublin, Poland And Univ., Geneva, Switzerland.
  • Dionisio-Sese, M.L., Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci., 135, 1-9.
  • Kaya, C., Tuna A.L., Dikilitaş, M., Ashraf, M., Köşkeroğlu, S., Güneri, M. (2009). Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae, 121, 284–288.
  • Tepe, M., Aydemir, T. (2011). Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogensources. African Journal of Biotechnology, 10(53). 10882-10891.

Antioxidative Defence Mechanisms in Tomato (Lycopersicum esculentum L.) Plants Sprayed with Different Pesticides and Boron compounds

Year 2018, , 200 - 209, 15.09.2018
https://doi.org/10.21448/ijsm.450830

Abstract

Oxidative stress was investigated in Lycopersicum esculentum L.
by applying various pesticides and boron compounds for two years, near
Ortaca-Muğla. The field sections were treated separately by commercial
pesticides and boron compounds i.e. tarimbor (TB), boric acid (BA), laser (LA),
zoom (ZO) and admiral (AD). During first year, boric acid (BA-1) caused
highest increase in total chlorophyll (TCh) content (158.41 μg g-1)
while the second dose (BA-2) decreased it (103.11 μg g-1). During
second year, higher doses of tarimbor
(236.49 μg g-1) caused increase in total chlorophyll (TCh) while ZO
treatment decreased it (142.55 μg g-1) (control: 149.55 μg g-1).
TB-1 caused the highest increase in proline content (33.52 nmol g-1)
while highest reduction was observed in boric acid (BA-2) (22.51 nmol g-1)
as compared to control group (26.77 nmol g-1). During the first
year, an increase of boric acid and tarimbor concentrations decreased
malonaldehyde (MDA) while during the second year, both increases and decreases
were observed in the MDA amount. Highest
superoxide
dismutase (SOD) amount was found in the first year ZO
treated plants i.e. 70.35 unit SOD/mg protein while TB-1 treatment caused the
highest decrease in the SOD amount i.e. 35.21 unit SOD/mg protein (control:
45.23 unit SOD/mg protein).

References

  • Lichtenthaler, H.K. (1996). Vegetation stress: An introduction to the stress concept in plants . J Plant Physiol, 148, 4-14.
  • Dhaliwal, G.S., Singh, B. (2000). Pesticides and environment. Commonwealth Publishers, New Delhi, 439 pp.
  • Parween, T., Jan, S., Fatma, T. (2011). Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol. Plant., 33, 2321-2328.
  • Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., Yu, J.Q. (2006). Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest. Biochem. Physiol., 86, 42-48.
  • Kuhara, T.P., Stivers-Youngb, L.J., Hoffmann, M.P., Taylor, A.G. (2002). Control of corn flea beetle and stewart's wilt in sweet corn with imidacloprid and thiamethoxam seed treatments. Crop Protec., 21, 25-31.
  • Fitzgerald, J. (2004). Laboratory bioassay and field evaluation of insecticides for control of Anthonomus rubi, Lygus rugulipennis and Cheatosiphon fragaefolii, and effects on beneficial species in UK strawberry production. Crop Protec., 23, 801-809.
  • Putter, I., MacConnell, J.G., Preiser, F.A., Haidri, A.A., Ristich, S.S., Dybas, R.A. (1981). Avermectins: Novel insecticides acaricides and nematicides from a soil microorganism. Experientia., 37, 963-964.
  • Liu, T.X. (2003). Effects of a juvenile hormone analog, pyriproxifen, on Thrips tabaci (Thysanoptera: Thripidae). Pest. Manag. Sci., 59, 904-912.
  • Liu, T.X., Stansly, P.A. (2004). Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biol. Cont., 30(2), 298-305.
  • Ren, H.X., Wang, Z.L., Chen, X., Zhu, Y.L. (1999). Antioxidative responses to different altitudes in Plantagomajor. Environ. Exp. Bot., 42, 51-59.
  • Zaefyzadeh, M., Quliyev, R.A., Babayeva, S., Abbasov, M.A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk. J. Biol., 33, 1-7.
  • Banerjee, B.D., Seth V., Bahattacharya, A. (1999). Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett., 107, 33-47. [13] Nicholas, J., Wood, J.S. (2001). Catalase and superoxide dimutase activity in ammonia-oxidising bacteria. FEMS Microbiol. Ecol., 38,53-58.
  • Chen, Q., Zhang, M., Shen, S. (2010). Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol. Plant., 33, 273-278.
  • Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., BarbaEspin, G., Clemente-Moreno, M.J., Alcobendas, R., Artlip T., Hernandez, J.A. (2011). Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot., 62, 2599-2613.
  • Tuluce Y, Celik I. (2006). Influence of subacute and subchronic treatment of abcisic acid and gibberellic acid on serum marker enzymes and erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Pest Biochem Physiol., 86, 85–92.
  • Brown, P.H., Shelp, B.J. (1997). Boron mobility in plants. Plant and soil, 193(1-2), 85-101.
  • Loomis W.D. , Durst, R.W. (1992). Chemistry and biology of boron, BioFactors (Oxford, England), 3(4), 229-239.
  • Strain, H.H., Svec, W.A. (1966). Extraction separation estimation and isolation of the Chlorophylls. In: The Chlorophylls Academic Press, Vernon, L.P., Seely G.R. (Eds.): New York., pp 21-65.
  • Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39, 205-207.
  • Giannopolitis C.N., Ries S.K. (1977). Superoxide Dismutases Occurrence in Higher Plants. Plant Physiol., 59, 309-314.
  • Cakmak, I., Horst, W.J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plantarum., 83, 463-468.
  • Bergmeyer N. (1970). Methoden Der Enzymatischen Analyse, Berlin: Akademie Verlag, 1, 636–47.
  • Nakano, Y., Asada, Y. (1981). Purification of Ascorbate Peroxidase From Spinach Chloroplasts: Its Inactivation in Ascorbat Depleted Medium and Reactivation by Monodehydro ascorbate Radical. Plant Cell Physiol., 28, 131-135.
  • Herzog, V., Fahimi, H. (1973). Determination Of The Activity Of Peroxidase. Anal Biochem., 55, 554–562.
  • Bradford, M.M. (1992). A Rapid And Sensitive Method For The Quantitation Of Micrograms Quantities Of Protein Utilizing The Principle Of Protein-Dye Binding. Anal Biochem. 44, 276-287.
  • Madhava Rao K.V., Sresty T.V.S. (2000). Antioxidative Parameters in The Seedlings Of Pigeonpea (Cajanus Cajan L. Millspaugh) in Response to Zn and Ni Stresses. Plant Sci. 157, 113–28.
  • Lindsay, W.L., Norvell, W.A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Am. J., 42, 421-428.
  • Thomas, G.W. (1982). Exchangable cations. P. 159-165. Chemical and Microbiological properties. Agronomy Monograph No. 9 (2nd Ed) ASASSSA. Madison, Wisconsin. USA.
  • Knudsen, D., Peterson, G.A., Pratt, P.F. (1982). Lithium, sodium and potassium. Methods of soil analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No:9 (2. Ed.). ASA-SSSA. P. 225-246 Madison-Wisconsin, USA.
  • Bingham, F.T. (1982). Boron. Methods of Soil Analysis. Part 2, Second edition American society of Agronomy, Inc., Wisconsin USA, pp 431-447.
  • Kacar, B., Fox, R.L. (1966). Boron status of some Turkish soils. University of Ankara, Yearbook of the faculty of Agriculture, Ankara, 9-11.
  • Wang, J.Z., Tao, S.T. Qi, K.J., Wu, J., Wu, H.Q., Zhang, S.L. (2011). Changes in photosynthetic properties and antioxidativesystem of pear leaves to boron toxicity. African Journal of Biotechnology, 10(85), 19693-19700.
  • Tort, N., Dereboylu, A.E. (2003). Anadolu. J. of AARI, 13 (1), 142-157.
  • Öztürk, İ., Tort, N. (2004). The Effect of Fungicide Application on Some Photosynthetic Pigment Substances, Plant Hormones and the Amounts of Protein in the Leaves of Tomato (Lycopersicon esculentum Mill.). C.Ü., J Nat and Applied Sci, 25(1), 7-19.
  • Rao, G.G., Rao, G.R. (1981). Pigment composition and chlorophyllase activity in Pigeon pea (Cajanus indicus Spreng.) and gingelly (Sesamum indicum L.) under NaCl salinity. Indian J.Exp. Biol., 19, 768-770.
  • Ardıç, M. (2007). Effects of Boron Toxicity on Some Physiological and Biochemical Characteristics of Chickpea (Cicer arietinum L.), Eskişehir Osmangazi Uni., Ph. D. Thesis, Graduate School of Natural and Applied Sciences, Department of Biology, 83p.
  • Yildiztekin, M., Kaya, C., Tuna, A.L., Ashraf, M. (2015). Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides, Pakistan Journal of Botany (Pak J Bot), 47(2), 717-721.
  • Karabal, E., Yücel, M., Öktem, H.A. (2003). Antioxidant response soft tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164, 925-933 p.
  • Zabalza, A., Gaston, S., Sandalio, L.M., Rio, L.A., Royuela, M. (2007). Oxidative stres is not related to the mode of action of herbicides that inhibit acetolactate synthase., Environmental and Experimental Botany, 59(2), 150-159.
  • Choi, J.S., Lee, H.J., Hwang, I.T., Pyon, J.Y., Cho, K.Y. (1999). Differential susceptibilities of wheat and barley to Diphenyl eter herbicite Oxyfluorfen. Pesticide Biochemistry and Physiology., 65(1), 62-72.
  • Pogosyan, S.I, Shevchenko, N.V., Merziyak, M.N. (2003). Situmilation of nadph- dependent lipid peroxidation by 2,4- dichlorophenoxyacetic acid, 2.4.5- trichchlorophenoxyacetic acid and diquat in microcomes isolated from Pisum sativum. Plant Science letters, 37, 69-72.
  • Gaspar, T., Penel, C., Hagege, D., Greppin, H. (1991). Peroxidases in Plant Growth Differentiation And Development Processes, Univ. M. Curie-Sklodowska, Lublin, Poland And Univ., Geneva, Switzerland.
  • Dionisio-Sese, M.L., Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci., 135, 1-9.
  • Kaya, C., Tuna A.L., Dikilitaş, M., Ashraf, M., Köşkeroğlu, S., Güneri, M. (2009). Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae, 121, 284–288.
  • Tepe, M., Aydemir, T. (2011). Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogensources. African Journal of Biotechnology, 10(53). 10882-10891.
There are 45 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Köksal Küçükakyüz

Mahmut Yıldıztekin 0000-0002-0206-0117

Hasan Sungur Civelek

Said Nadeem This is me

Atilla Levent Tuna

Publication Date September 15, 2018
Submission Date March 30, 2018
Published in Issue Year 2018

Cite

APA Küçükakyüz, K., Yıldıztekin, M., Civelek, H. S., Nadeem, S., et al. (2018). Antioxidative Defence Mechanisms in Tomato (Lycopersicum esculentum L.) Plants Sprayed with Different Pesticides and Boron compounds. International Journal of Secondary Metabolite, 5(3), 200-209. https://doi.org/10.21448/ijsm.450830
International Journal of Secondary Metabolite

e-ISSN: 2148-6905