Research Article
BibTex RIS Cite

Temperature Effect of the Theobromine’s Electronic and Antioxidant Properties

Year 2019, , 90 - 97, 16.03.2019
https://doi.org/10.21448/ijsm.504474

Abstract

Theobromine exists in cocoa, which has an antioxidant ingredient. It is also affect our nervous system. For this reason, it’s very important to know the properties of the theobromine. Theobromine is an experimentally studied molecule in the health and pharmaceutical fields. However, there are not many studies on theobromine properties in the theoretical field. Here, we show how theobromine electronic and antioxidant properties change with temperature theoretically. The calculations, were done by using Density Functional Theory (DFT), at B3LYP/6-31G(d,p) level. Six different temperature values (263.15 K, 273.15 K, 288.15 K, 298.15 K, 318.15 K, 328.15 K) were taken into account. Our results presented that the electronic structure of the theobromine didn’t change while the antioxidant properties were changed. Theobromine indicated the most antioxidant property at 263.15 K. Therefore, this situation should be taken into consideration in order to benefit more from the antioxidant properties of theobromine in the field of health and pharmaceuticals.

References

  • [1] Martínez-Pinilla E., Oñatibia-Astibia A., Franco R. (2015). The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol., 6, 30. DOI:10.3389/fphar.2015.00030.
  • [2] Mitchell, E. S., Slettenaar, M.,V dMeer, N., Transler, C., Jans, L., Quadt, F., Berry, M. (2011). Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiol. Behav., 104, 816 822. DOI:10.1016/j.physbeh.2011.07.027
  • [3] Baggott, M. J., Childs, E., Hart, A. B., De Bruin, E., Palmer, A.A., Wilkinson, J. E., de Wit, H. (2013). Psycho pharmacology of theobromine in healthy volunteers. Psychopharmacology (Berl), 228, 109–118. DOI:10.1007/s00213-013-3021-0
  • [4] van den Bogaard,B., Draijer, R.,Westerhof, B.E.,VanDenMeiracker,A.H., VanMontfrans, G.A.,and Van Den Born, B.J. (2010). Effects on peripheral and central blood pressure of cocoa with natural or high-dose theobromine: a randomized, double-blind crossovertrial. Hypertension, 56, 839–846. DOI: 10.1161/HYPERTENSIONAHA.110.158139
  • [5] Lemanska, K., Szymusiak, H., Tyrakowska, B., Zielinski, R., Soffers, A.E., Rietjens, I.M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med., 31, 869–881. DOI:10.1016/S0891-5849(01)00638-4
  • [6] Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med., 35, 475–484. DOI:10.1016/S0891-5849(03)00325-3
  • [7] Kozlowski, D., Marsal, P., Steel, M., Mokrini, R., Duroux, J.-L., Lazzaroni, R., Trouillas, P. (2007). Theoretical investigation of the formation of a new series of antioxidant depsides from the radiolysis of flavonoid compounds. Radiat. Res., 168, 243–252. DOI:10.1667/RR0824.1
  • [8] Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., Duroux, J.-L. (2007). Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A, 111, 1138 - 1145. DOI: 10.1021/jp066496+
  • [9] Anouar, E., Calliste, C.A., Kosinova, P., di Meo, F., Duroux, J.L., Champavier, Y., Marakchi, K., Trouillas, P. (2009). Free radical scavenging properties of guaiacol oligomers: A combined experimental and quantum study of the guaiacyl-moiety role. J. Phys. Chem. A, 113, 13881–13891. DOI: 10.1021/jp906285b
  • [10] Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., Duroux, J.-L. (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem., 97, 679–688. DOI:10.1016/j.foodchem.2005.05.042
  • [11] Trouillas, P., Marsal, P., Svobodova, A., Vostalova, J., Gazak, R., Hrbac, J., Sedmera, P., Kren, V., Lazzaroni, R., Duroux, J.-L., et al. (2008). Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. A, 112, 1054–1063. DOI:10.1021/jp075814h
  • [12] Mayer, J.M., Hrovat, D.A., Thomas, J.L., Borden, W.T. (2002). Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self- exchange reactions. J. Am. Chem. Soc., 124, 11142 - 11147. DOI: 10.1021/ja012732c
  • [13] Wang, L.-F., Zhang, H.-Y. (2004). Unexpected role of 5-OH in DPPH radical-scavenging activity of 4-thiaflavans. Revealed by theoretical calculations. Bioorg. Med. Chem. Lett., 14, 2609–2611. DOI:10.1016/j.bmcl.2004.02.066
  • [14] Luzhkov, V.B. (2005). Mechanisms of antioxidant activity: The DFT study of hydrogen abstraction from phenol and toluene by the hydroperoxyl radical. Chem. Phys., 314, 211–217. DOI:10.1016/j.chemphys.2005.03.001
  • [15] Szeląg, M., Mikulski, D., Molski, M. (2011). Quantum – chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Mod., 18, 2907-2916. DOI: 10.1007/s00894-011-1306-y
  • [16] Leopoldini, M., Russo, N., Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125, 288-306. DOI:10.1016/j.foodchem.2010.08.012
  • [17] Foti, M.C., Daquino, C., Geraci, C. (2004). Electron – transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J. Org. Chem., 69, 2309-2314. DOI: 10.1021/jo035758q
  • [18] Litwinienko, G., Ingold, K.U. (2004). Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem., 69, 5888-5896. DOI: 10.1021/jo049254j
  • [19] Musialik, M., Litwinienko, G. (2005). Scavenging of dpph. radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org. Lett., 7, 4951-4954. DOI: 10.1021/ol051962j
  • [20] Nakanishi, I., Kawashima, T., Ohkubo, K., Kanazawa, H., Inami, K., Mochizuki, M., Fukuhara, K., Okuda, H., . Ozawa, T., Itoh, S., Fukuzumi, S., Ikota, N. (2005). Electron – transfer mechanism in radical scavenging reactions by vitamin E model in a protic medium. Org. & Biomolecular Chem., 3, 626-629. DOI: 10.1039/B416572A
  • [21] Litwinienko, G., Ingold, K.U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res., 40, 222-230. DOI: 10.1021/ar0682029
  • [22] Leopoldini, M., Russo, N. Toscano, M. (2006). Gas and Liquid Phase Acidity of Natural Antioxidants. J. Agric. Food Chem,. 54, 3078–3085. DOI: 10.1021/jf053180a
  • [23] Mikulski, D., Szeląg, M., Molski, M., Górniak, R. (2010). Quantum- chemical study on the antioxidation mechanisms of trans- resveratrol reactions with free radicals in the gas phase, water and ethanol environment. J. Mol. Struct., 951, 37-48. DOI:10.1016/j.theochem.2010.04.005
  • [24] Sebastian, S., Sundaraganesan, N., Manoharan, S. (2009). Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy, 74, 312-323. DOI:10.1016/j.saa.2009.06.011
  • [25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2016). Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT, 2016.
  • [26] Roy, D. Dennington II, Todd, A. (2016). GaussView 5, Keith and John M. Millam Copyright Semichem, Inc. 2000-2016.
  • [27] Diwaker and Abhishek Kumar Gupta, "Quantum Chemical and Spectroscopic Investigations of (Ethyl 4 hydroxy-3-((E)-(pyren-1-ylimino)methyl)benzoate) by DFT Method," International Journal of Spectroscopy, vol. 2014, Article ID 841593, 15 pages, 2014. DOI:10.1155/2014/841593
  • [28] Kara, I., Kara,Y., Öztürk Kiraz, A., Mammadov, R. (2015). Theoretical calculations of a compound formed by Fe+3 and tris(catechol) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 592–599. DOI:10.1016/j.saa.2015.04.058.

Temperature Effect of the Theobromine’s Electronic and Antioxidant Properties

Year 2019, , 90 - 97, 16.03.2019
https://doi.org/10.21448/ijsm.504474

Abstract

Theobromine exists in cocoa, which has an antioxidant ingredient. It is also affect our nervous system. For this reason, it’s very important to know the properties of the theobromine. Theobromine is an experimentally studied molecule in the health and pharmaceutical fields. However, there are not many studies on theobromine properties in the theoretical field. Here, we show how theobromine electronic and antioxidant properties change with temperature theoretically. The calculations, were done by using Density Functional Theory (DFT), at B3LYP/6-31G(d,p) level. Six different temperature values (263.15 K, 273.15 K, 288.15 K, 298.15 K, 318.15 K, 328.15 K) were taken into account. Our results presented that the electronic structure of the theobromine didn’t change while the antioxidant properties were changed. Theobromine indicated the most antioxidant property at 263.15 K. Therefore, this situation should be taken into consideration in order to benefit more from the antioxidant properties of theobromine in the field of health and pharmaceuticals.

References

  • [1] Martínez-Pinilla E., Oñatibia-Astibia A., Franco R. (2015). The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol., 6, 30. DOI:10.3389/fphar.2015.00030.
  • [2] Mitchell, E. S., Slettenaar, M.,V dMeer, N., Transler, C., Jans, L., Quadt, F., Berry, M. (2011). Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiol. Behav., 104, 816 822. DOI:10.1016/j.physbeh.2011.07.027
  • [3] Baggott, M. J., Childs, E., Hart, A. B., De Bruin, E., Palmer, A.A., Wilkinson, J. E., de Wit, H. (2013). Psycho pharmacology of theobromine in healthy volunteers. Psychopharmacology (Berl), 228, 109–118. DOI:10.1007/s00213-013-3021-0
  • [4] van den Bogaard,B., Draijer, R.,Westerhof, B.E.,VanDenMeiracker,A.H., VanMontfrans, G.A.,and Van Den Born, B.J. (2010). Effects on peripheral and central blood pressure of cocoa with natural or high-dose theobromine: a randomized, double-blind crossovertrial. Hypertension, 56, 839–846. DOI: 10.1161/HYPERTENSIONAHA.110.158139
  • [5] Lemanska, K., Szymusiak, H., Tyrakowska, B., Zielinski, R., Soffers, A.E., Rietjens, I.M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med., 31, 869–881. DOI:10.1016/S0891-5849(01)00638-4
  • [6] Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med., 35, 475–484. DOI:10.1016/S0891-5849(03)00325-3
  • [7] Kozlowski, D., Marsal, P., Steel, M., Mokrini, R., Duroux, J.-L., Lazzaroni, R., Trouillas, P. (2007). Theoretical investigation of the formation of a new series of antioxidant depsides from the radiolysis of flavonoid compounds. Radiat. Res., 168, 243–252. DOI:10.1667/RR0824.1
  • [8] Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., Duroux, J.-L. (2007). Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A, 111, 1138 - 1145. DOI: 10.1021/jp066496+
  • [9] Anouar, E., Calliste, C.A., Kosinova, P., di Meo, F., Duroux, J.L., Champavier, Y., Marakchi, K., Trouillas, P. (2009). Free radical scavenging properties of guaiacol oligomers: A combined experimental and quantum study of the guaiacyl-moiety role. J. Phys. Chem. A, 113, 13881–13891. DOI: 10.1021/jp906285b
  • [10] Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., Duroux, J.-L. (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem., 97, 679–688. DOI:10.1016/j.foodchem.2005.05.042
  • [11] Trouillas, P., Marsal, P., Svobodova, A., Vostalova, J., Gazak, R., Hrbac, J., Sedmera, P., Kren, V., Lazzaroni, R., Duroux, J.-L., et al. (2008). Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. A, 112, 1054–1063. DOI:10.1021/jp075814h
  • [12] Mayer, J.M., Hrovat, D.A., Thomas, J.L., Borden, W.T. (2002). Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self- exchange reactions. J. Am. Chem. Soc., 124, 11142 - 11147. DOI: 10.1021/ja012732c
  • [13] Wang, L.-F., Zhang, H.-Y. (2004). Unexpected role of 5-OH in DPPH radical-scavenging activity of 4-thiaflavans. Revealed by theoretical calculations. Bioorg. Med. Chem. Lett., 14, 2609–2611. DOI:10.1016/j.bmcl.2004.02.066
  • [14] Luzhkov, V.B. (2005). Mechanisms of antioxidant activity: The DFT study of hydrogen abstraction from phenol and toluene by the hydroperoxyl radical. Chem. Phys., 314, 211–217. DOI:10.1016/j.chemphys.2005.03.001
  • [15] Szeląg, M., Mikulski, D., Molski, M. (2011). Quantum – chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Mod., 18, 2907-2916. DOI: 10.1007/s00894-011-1306-y
  • [16] Leopoldini, M., Russo, N., Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125, 288-306. DOI:10.1016/j.foodchem.2010.08.012
  • [17] Foti, M.C., Daquino, C., Geraci, C. (2004). Electron – transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J. Org. Chem., 69, 2309-2314. DOI: 10.1021/jo035758q
  • [18] Litwinienko, G., Ingold, K.U. (2004). Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem., 69, 5888-5896. DOI: 10.1021/jo049254j
  • [19] Musialik, M., Litwinienko, G. (2005). Scavenging of dpph. radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org. Lett., 7, 4951-4954. DOI: 10.1021/ol051962j
  • [20] Nakanishi, I., Kawashima, T., Ohkubo, K., Kanazawa, H., Inami, K., Mochizuki, M., Fukuhara, K., Okuda, H., . Ozawa, T., Itoh, S., Fukuzumi, S., Ikota, N. (2005). Electron – transfer mechanism in radical scavenging reactions by vitamin E model in a protic medium. Org. & Biomolecular Chem., 3, 626-629. DOI: 10.1039/B416572A
  • [21] Litwinienko, G., Ingold, K.U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res., 40, 222-230. DOI: 10.1021/ar0682029
  • [22] Leopoldini, M., Russo, N. Toscano, M. (2006). Gas and Liquid Phase Acidity of Natural Antioxidants. J. Agric. Food Chem,. 54, 3078–3085. DOI: 10.1021/jf053180a
  • [23] Mikulski, D., Szeląg, M., Molski, M., Górniak, R. (2010). Quantum- chemical study on the antioxidation mechanisms of trans- resveratrol reactions with free radicals in the gas phase, water and ethanol environment. J. Mol. Struct., 951, 37-48. DOI:10.1016/j.theochem.2010.04.005
  • [24] Sebastian, S., Sundaraganesan, N., Manoharan, S. (2009). Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy, 74, 312-323. DOI:10.1016/j.saa.2009.06.011
  • [25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2016). Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT, 2016.
  • [26] Roy, D. Dennington II, Todd, A. (2016). GaussView 5, Keith and John M. Millam Copyright Semichem, Inc. 2000-2016.
  • [27] Diwaker and Abhishek Kumar Gupta, "Quantum Chemical and Spectroscopic Investigations of (Ethyl 4 hydroxy-3-((E)-(pyren-1-ylimino)methyl)benzoate) by DFT Method," International Journal of Spectroscopy, vol. 2014, Article ID 841593, 15 pages, 2014. DOI:10.1155/2014/841593
  • [28] Kara, I., Kara,Y., Öztürk Kiraz, A., Mammadov, R. (2015). Theoretical calculations of a compound formed by Fe+3 and tris(catechol) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 592–599. DOI:10.1016/j.saa.2015.04.058.
There are 28 citations in total.

Details

Primary Language English
Subjects Medical and Biological Physics
Journal Section Articles
Authors

Aslı Öztürk Kiraz 0000-0001-9837-0779

Publication Date March 16, 2019
Submission Date March 28, 2018
Published in Issue Year 2019

Cite

APA Öztürk Kiraz, A. (2019). Temperature Effect of the Theobromine’s Electronic and Antioxidant Properties. International Journal of Secondary Metabolite, 6(1), 90-97. https://doi.org/10.21448/ijsm.504474
International Journal of Secondary Metabolite

e-ISSN: 2148-6905