Research Article
BibTex RIS Cite

The lipid-soluble vitamins contents of some Vicia L. species by using HPLC

Year 2019, , 98 - 105, 16.03.2019
https://doi.org/10.21448/ijsm.512335

Abstract

In the present study, lipid-soluble vitamin compositions in the seeds of the Vicia L. taxa (V. ervilia (L.) Willd., V. cuspidata Boiss., V. peregrina L., V. cracca L. subsp. stenophylla Gaudin, V. mollis Boiss.& Hausskn., V. hybrida L., V. sativa L. subsp. nigra (L.) Ehrh. var. nigra L., V. sativa L. subsp. sativa (Ser.) Gaudin var. sativa, V. crocea (Desf.) B. Fedstch., V. noeona Reuter ex Boiss. var. noeona, V. narbonensis L. var. narbonensis) were determined by using HPLC. It was found that studied Vicia species apart from V. ervilia and V. cuspidata have highest ß-carotene contents, 1523,7±6,4 µg/g and 236,62±1,8 µg/g, respectively. Also, this study showed that V. ervilia and V. cuspidata have highest γ-tocopherol content. On the other hand, current study indicated that Vicia species have D3 vitamin contents between 13,8±0,62 µg/g and 50,5±2,13 µg/g. However, the α-tocopherol, α-tocopherol acetate, D2, K1, retinol and retinol acetate contents of studied Vicia L. species were lowest.

References

  • [1] Mabberley, D. J. (1997). The plant book, 2nd ed. Cambridge University Press, Cambridge, UK.
  • [2] Agar, G., Adiguzel, A., Baris, O., Sengul, M., Gulluce, M., Sahin, F., Bayrak, Ö.F. (2006). FAME and RAPD analysis of selected Vicia taxa from eastern Anatolia, Turkey. Ann. Bot. Fennici, 43, 241-249.
  • [3] Mirali, N., El-Khouri, S., Rizq, F. (2007). Genetic diversity and relationships in some Vicia species as determined by SDS-PAGE of seed proteins. Biologia Plantarum, 51 (4), 660-666.
  • [4] Bektaş, E., Kaltalioglu, K., Sahin, H., Turkmen, Z., Kandemir, A. (2018). Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. International Journal of Secondary Metabolite, 5 (2), 75–86.
  • [5] Wojciechowski, M.F., Lavin, M., Sanderson, M.J. (2004). A phylogeny of legumes (Leguminosae) based on analysis the plastid matk gene resolves many well-supported subclades within the family. American Journal of Botany, 91(11), 1846–1862.
  • [6] Chavana, U.D., McKenzie, D.B., Amarowicz, R., Shahidi, F. (2003). Phytochemical components of beach pea (Lathyrus maritimus L.). Food Chemistry, 81,61–71.
  • [7] Gumienna, M., Lasik, M., & Czarnecki, Z. (2009). Influence of plant extracts addition on the antioxidative properties of products obtained from green lentil seeds during in vitro digestion process. Polish Journal of Food and Nutrition Sciences, 59, 295–298.
  • [8] Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V.T., Hassapidou, M., Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121, 682–690.
  • [9] Iriti, M., Varoni, E.M. (2017). Pulses, Healthy, and Sustainable Food Sources for Feeding the Planet. International Journal of Molecular Sciences, 18, 1-6.
  • [10] Kizhakekuttu, T.J., & Widlansky, M.E. (2010). Natural antioxidants and hypertension: promise and challenges. Cardiovascular Therapeutics, 28(4), 20–32.
  • [11] El-Qudah, J.M. (2014). Estimation of Carotenoid Contents of Selected Mediterranean Legumes by HPLC. World Journal of Medical Sciences, 10 (1), 89-93.
  • [12] Raveendar, S., Lee, G.A., Jeon, Y.-A., Lee, Y.J., Lee, J.-R., Cho, G.-T., Cho, J.-H., Park, J.-H., Ma, K.-H., Chung, J.-W. (2015). Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules, 20, 1543-1550.
  • [13] Kupicha, F.K. (1976). The infrageneric structure of Vicia. Notes from the Royal Botanic Garden Edinburgh, 34, 278–326.
  • [14] Maxted, N. & Douglas, C. (1997). A phenetic investigation of Vicia section Hypechusa (Alef.) Aschers&Graebner (Leguminosae, Papilionoideae, Vicieae). Lascalia, 19 (1-2), 345-370.
  • [15] Jaaska, V. (2005). Isozyme variation and phylogenetic relationships in Vicia subgenus Cracca (Fabaceae). Annals of Botany, 96, 1085–1096.
  • [16] Davis, P.H. (1970). Flora of Turkey and The East Aegean Islands, 3, Edinburgh University Press, Edinburgh.
  • [17] Davis, P.H., R. R. Mill and T. Kit. (1988). Vicia L. Flora of Turkey and East Aegean Islands, 3, Edinburgh University Press, Edinburgh.
  • [18] Maxted, N. (1989). A new Vicia from south-west Turkey. Notes from the Royal Botanic Garden, Edinburgh, 453, 453-456.
  • [19] Naranjo, C.A., Ferrari, M.R., Palermos, A.M., Poggia, L. (1998). Karyotype, DNA content and meiotic behaviour in five south American species of Vicia (Fabaceae). Annals of Botany, 82, 757–764, 1998.
  • [20] Vural, M. (2000). Vicia L. In: Güner A, Özhatay N, Ekim T & Başer KHC (eds.) Flora of Turkey and the East Aegean Islands, 11, 89- 92, Edinburgh University Press, Edinburgh.
  • [21] Inceer, H. and Hayırlıoğlu-Ayaz, S. (2005). Giemsa C-banded karyotypes of Vicia cracca L. subsp. cracca and V. bithynica L. Turk. J. Bot., 29, 311-316.
  • [22] Köpke, U., Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research 115, 217–233.
  • [23] Cucci, G., Lacolla, G., Summo, C., Pasqualone, A. (2019). Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Scientia Horticulturae, 243, 338–343.
  • [24] Hedley, C. (2001). Carbohydrates in Grain Legume Seeds. Improving Nutritional Quality and Agronomic Characteristics. CABI Publishing, Wallingford, UK.
  • [25] Pino-Garcia, Rico, D., Martin-Diana, A.B. (2018). Evaluation of bioactive properties of Vicia narbonensis L. as potential flour ingredient for gluten-free food industry. Journal of Functional Foods 47, 172–183.
  • [26] Karan, T., Şimşek, S., Yildiz, I., Erenler, R. (2018). Chemical composition and insecticidal activity of Origanum syriacum L. essential oil against Sitophilus oryzae and Rhyzopertha dominica. International Journal of Secondary Metabolite, 5 (2), 87–93.
  • [27] Kaska, A., Deniz, Mammadov, N. (2018). Biological activities of wild Asparagus (Asparagus acutifolius L.). International Journal of Secondary Metabolite, 5 (3), 243-251.
  • [28] Hamberg, M., Fahlstadius, P. (1992). On the specificity of a fatty acid epoxygenase in broad bean (Vicia faba L.). Plant Physiol., 99, 987-995.
  • [29] Bakoğlu, A., Bagci, E., Ciftci, H. (2009). Fatty acids, protein contents and metal composition of some feed crops from Turkey. Journal of Food, Agriculture & Environment, 7 (2), 343-346.
  • [30] Baginsky, C., Pena-Neira, A., Caceres, A., Hernandez, T., Estrella, I., Morales, H., Pertuze, R. (2013). Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile. Journal of Food Composition and Analysis, 311–316.
  • [31] Sathya Prabhu, D. and Devi Rajeswari, V. (2018). Nutritional and biological properties of Vicia faba L.: A perspective review. International Food Research Journal, 25(4), 1332-1340.
  • [32] Asensi-Fabado, M.A., and Munne-Bosch, S. (2010). Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15 (10), 582-592.
  • [33] Munné-Bosch, S., and Alegre, L. (2002). The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci.,21, 31–57.
  • [34] Yonekura L, Nagao A. (2007). Intestinal absorption of dietary carotenoids. Mol Nutr Food Res., 51(1), 107-15.
  • [35] Havaux, M. & García-Plazaola, J.I. (2014). Beyond non-photochemical fluorescence quenching: the overlapping antioxidant functions of zeaxanthin and tocopherols. In: NonPhotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 26, 583–603.
  • [36] Singh, R.P., Sharad, S., Kapur, S. (2004). Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM, 5(3), 218-25
  • [37] Halliwell, B. (1994). Free radicals, antioxidants and human disease: curiosity, cause or consequences? Lancet, 344,721-724.
  • [38] Jacob, R.A. (1995). The integrated antioxidant system. Nutr. Res.,15 (5), 755-766.
  • [39] Lobo, V., Phatak, A., Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4(8), 118–126.
  • [40] Monge-Rojas, R., Campos, H. (2011). Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. Journal of Food Composition and Analysis, 24, 202–216.
  • [41] Hara A, Radin N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal.Biochem., 90 (1), 420-426.
  • [42] Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losado, P. (2002). High-performance liquid chromatographic determination of a-tocopherol in macroalgae. Journal of Chromatography A 976, (1), 277–284.
  • [43] Yılmaz Ö., Keser, S., Tuzcu, M. & Çetintas, B. (2007). Resveratrol (trans-3,4’,5-trihydoxystilbene) decreases lipid peroxidation level and protects antioxidant capacity in sera and erytrocytes of old female wistar rats induced by the kidney carcinogen potassium bromate. Envir. Toxicol. Pharmacol., 24, 79-85.
  • [44] Amarowicz, R., Pegg, R.B. (2008). Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol., 110, 865–878.
  • [45] Marathe, S.A., Rajalakshmi, V., Jamdar, S.N., Sharma, A. (2011). Study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, 49, 1.
  • [46] Vioque, J., Alaiz, M., Giron-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132, 67–72.
  • [47] Mamatha, B.S., Sageetha, R.K., Baskaran, V. (2011). Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. International Journal of Food Science and Technology, 46, 315–323.
  • [48] Agarwal, S. & Rao, A.V. (2000). Carotenoids and chronic diseases. Drug Metabolism and Drug Interactions,17, 189–210.
  • [49] McDermott, J.H. (2000). Antioxidant nutrients: current dietary recommendations and research update. Journal of American Pharmacists Association, 40, 785–799.
  • [50] Sahin, A., Kıran, Y., Karatas, F and Sonmez, S. (2005). Vitamins A, C, and E and β-Carotene content in seeds of seven species of Vicia L. Journal of Integrative Plant Biology, 47 (4), 487−493.
  • [51] Yao, D.N., Kouassi, K.N., Erba, D., Scazzina, F., Pellegrini, N., Casiraghi, M.C. (2015). Nutritive evaluation of the bambara groundnut Ci12 landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in côte d’Ivoire. Int. J. Mol. Sci.16(9), 21428-21441.
  • [52] Minhajuddin, M., Beg, Z.H., & Iqbal, J. (2005). Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food and Chemical Toxicology, 43(5), 747–753.
  • [53] Kirmizis, D., & Chatzidimitriou, D. (2009). Antiatherogenic effects of vitamin E: The search for the Holy grail. Vascular Health and Risk Management, 5, 767–774.
  • [54] Saini, R.K., Keum, Y.S. (2016). Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 82, 59–70.
  • [55] Bağcı, E., Bruehl, L., Özçelik, H., Aitzemuller, K., Vural, M., Sahin, A. (2004). A study of the fatty acid and tocochromanol patterns of some Fabaceae (Leguminosae) plants from Turkey I. Grasas y Aceites, 55 (4), 378-384.
  • [56] Valdivielso, I., Bustamante, M.A., Gordoa, J.C.R., Najera, A.I., Renobales, M., Barron, L.J.R. (2015). Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid–liquid extraction followed by high performance liquid chromatography. Food Chemistry, 173, 709–717.
  • [57] Sahin, A., Emre, I., Yilmaz, O., Genç, H., Karatepe, M. (2009). Vitamin and fatty acid contents in seeds of some taxa belonging to genus Lathyrus L. growing in Turkey. Acta Botanica Gallica, 156 (3), 331-339.

The lipid-soluble vitamins contents of some Vicia L. species by using HPLC

Year 2019, , 98 - 105, 16.03.2019
https://doi.org/10.21448/ijsm.512335

Abstract

In the present study, lipid-soluble vitamin compositions in the seeds of the Vicia L. taxa (V. ervilia (L.) Willd., V. cuspidata Boiss., V. peregrina L., V. cracca L. subsp. stenophylla Gaudin, V. mollis Boiss.& Hausskn., V. hybrida L., V. sativa L. subsp. nigra (L.) Ehrh. var. nigra L., V. sativa L. subsp. sativa (Ser.) Gaudin var. sativa, V. crocea (Desf.) B. Fedstch., V. noeona Reuter ex Boiss. var. noeona, V. narbonensis L. var. narbonensis) were determined by using HPLC. It was found that studied Vicia species apart from V. ervilia and V. cuspidata have highest ß-carotene contents, 1523,7±6,4 µg/g and 236,62±1,8 µg/g, respectively. Also, this study showed that V. ervilia and V. cuspidata have highest γ-tocopherol content. On the other hand, current study indicated that Vicia species have D3 vitamin contents between 13,8±0,62 µg/g and 50,5±2,13 µg/g. However, the α-tocopherol, α-tocopherol acetate, D2, K1, retinol and retinol acetate contents of studied Vicia L. species were lowest.

References

  • [1] Mabberley, D. J. (1997). The plant book, 2nd ed. Cambridge University Press, Cambridge, UK.
  • [2] Agar, G., Adiguzel, A., Baris, O., Sengul, M., Gulluce, M., Sahin, F., Bayrak, Ö.F. (2006). FAME and RAPD analysis of selected Vicia taxa from eastern Anatolia, Turkey. Ann. Bot. Fennici, 43, 241-249.
  • [3] Mirali, N., El-Khouri, S., Rizq, F. (2007). Genetic diversity and relationships in some Vicia species as determined by SDS-PAGE of seed proteins. Biologia Plantarum, 51 (4), 660-666.
  • [4] Bektaş, E., Kaltalioglu, K., Sahin, H., Turkmen, Z., Kandemir, A. (2018). Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. International Journal of Secondary Metabolite, 5 (2), 75–86.
  • [5] Wojciechowski, M.F., Lavin, M., Sanderson, M.J. (2004). A phylogeny of legumes (Leguminosae) based on analysis the plastid matk gene resolves many well-supported subclades within the family. American Journal of Botany, 91(11), 1846–1862.
  • [6] Chavana, U.D., McKenzie, D.B., Amarowicz, R., Shahidi, F. (2003). Phytochemical components of beach pea (Lathyrus maritimus L.). Food Chemistry, 81,61–71.
  • [7] Gumienna, M., Lasik, M., & Czarnecki, Z. (2009). Influence of plant extracts addition on the antioxidative properties of products obtained from green lentil seeds during in vitro digestion process. Polish Journal of Food and Nutrition Sciences, 59, 295–298.
  • [8] Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V.T., Hassapidou, M., Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121, 682–690.
  • [9] Iriti, M., Varoni, E.M. (2017). Pulses, Healthy, and Sustainable Food Sources for Feeding the Planet. International Journal of Molecular Sciences, 18, 1-6.
  • [10] Kizhakekuttu, T.J., & Widlansky, M.E. (2010). Natural antioxidants and hypertension: promise and challenges. Cardiovascular Therapeutics, 28(4), 20–32.
  • [11] El-Qudah, J.M. (2014). Estimation of Carotenoid Contents of Selected Mediterranean Legumes by HPLC. World Journal of Medical Sciences, 10 (1), 89-93.
  • [12] Raveendar, S., Lee, G.A., Jeon, Y.-A., Lee, Y.J., Lee, J.-R., Cho, G.-T., Cho, J.-H., Park, J.-H., Ma, K.-H., Chung, J.-W. (2015). Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules, 20, 1543-1550.
  • [13] Kupicha, F.K. (1976). The infrageneric structure of Vicia. Notes from the Royal Botanic Garden Edinburgh, 34, 278–326.
  • [14] Maxted, N. & Douglas, C. (1997). A phenetic investigation of Vicia section Hypechusa (Alef.) Aschers&Graebner (Leguminosae, Papilionoideae, Vicieae). Lascalia, 19 (1-2), 345-370.
  • [15] Jaaska, V. (2005). Isozyme variation and phylogenetic relationships in Vicia subgenus Cracca (Fabaceae). Annals of Botany, 96, 1085–1096.
  • [16] Davis, P.H. (1970). Flora of Turkey and The East Aegean Islands, 3, Edinburgh University Press, Edinburgh.
  • [17] Davis, P.H., R. R. Mill and T. Kit. (1988). Vicia L. Flora of Turkey and East Aegean Islands, 3, Edinburgh University Press, Edinburgh.
  • [18] Maxted, N. (1989). A new Vicia from south-west Turkey. Notes from the Royal Botanic Garden, Edinburgh, 453, 453-456.
  • [19] Naranjo, C.A., Ferrari, M.R., Palermos, A.M., Poggia, L. (1998). Karyotype, DNA content and meiotic behaviour in five south American species of Vicia (Fabaceae). Annals of Botany, 82, 757–764, 1998.
  • [20] Vural, M. (2000). Vicia L. In: Güner A, Özhatay N, Ekim T & Başer KHC (eds.) Flora of Turkey and the East Aegean Islands, 11, 89- 92, Edinburgh University Press, Edinburgh.
  • [21] Inceer, H. and Hayırlıoğlu-Ayaz, S. (2005). Giemsa C-banded karyotypes of Vicia cracca L. subsp. cracca and V. bithynica L. Turk. J. Bot., 29, 311-316.
  • [22] Köpke, U., Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research 115, 217–233.
  • [23] Cucci, G., Lacolla, G., Summo, C., Pasqualone, A. (2019). Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Scientia Horticulturae, 243, 338–343.
  • [24] Hedley, C. (2001). Carbohydrates in Grain Legume Seeds. Improving Nutritional Quality and Agronomic Characteristics. CABI Publishing, Wallingford, UK.
  • [25] Pino-Garcia, Rico, D., Martin-Diana, A.B. (2018). Evaluation of bioactive properties of Vicia narbonensis L. as potential flour ingredient for gluten-free food industry. Journal of Functional Foods 47, 172–183.
  • [26] Karan, T., Şimşek, S., Yildiz, I., Erenler, R. (2018). Chemical composition and insecticidal activity of Origanum syriacum L. essential oil against Sitophilus oryzae and Rhyzopertha dominica. International Journal of Secondary Metabolite, 5 (2), 87–93.
  • [27] Kaska, A., Deniz, Mammadov, N. (2018). Biological activities of wild Asparagus (Asparagus acutifolius L.). International Journal of Secondary Metabolite, 5 (3), 243-251.
  • [28] Hamberg, M., Fahlstadius, P. (1992). On the specificity of a fatty acid epoxygenase in broad bean (Vicia faba L.). Plant Physiol., 99, 987-995.
  • [29] Bakoğlu, A., Bagci, E., Ciftci, H. (2009). Fatty acids, protein contents and metal composition of some feed crops from Turkey. Journal of Food, Agriculture & Environment, 7 (2), 343-346.
  • [30] Baginsky, C., Pena-Neira, A., Caceres, A., Hernandez, T., Estrella, I., Morales, H., Pertuze, R. (2013). Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile. Journal of Food Composition and Analysis, 311–316.
  • [31] Sathya Prabhu, D. and Devi Rajeswari, V. (2018). Nutritional and biological properties of Vicia faba L.: A perspective review. International Food Research Journal, 25(4), 1332-1340.
  • [32] Asensi-Fabado, M.A., and Munne-Bosch, S. (2010). Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15 (10), 582-592.
  • [33] Munné-Bosch, S., and Alegre, L. (2002). The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci.,21, 31–57.
  • [34] Yonekura L, Nagao A. (2007). Intestinal absorption of dietary carotenoids. Mol Nutr Food Res., 51(1), 107-15.
  • [35] Havaux, M. & García-Plazaola, J.I. (2014). Beyond non-photochemical fluorescence quenching: the overlapping antioxidant functions of zeaxanthin and tocopherols. In: NonPhotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 26, 583–603.
  • [36] Singh, R.P., Sharad, S., Kapur, S. (2004). Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM, 5(3), 218-25
  • [37] Halliwell, B. (1994). Free radicals, antioxidants and human disease: curiosity, cause or consequences? Lancet, 344,721-724.
  • [38] Jacob, R.A. (1995). The integrated antioxidant system. Nutr. Res.,15 (5), 755-766.
  • [39] Lobo, V., Phatak, A., Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4(8), 118–126.
  • [40] Monge-Rojas, R., Campos, H. (2011). Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. Journal of Food Composition and Analysis, 24, 202–216.
  • [41] Hara A, Radin N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal.Biochem., 90 (1), 420-426.
  • [42] Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losado, P. (2002). High-performance liquid chromatographic determination of a-tocopherol in macroalgae. Journal of Chromatography A 976, (1), 277–284.
  • [43] Yılmaz Ö., Keser, S., Tuzcu, M. & Çetintas, B. (2007). Resveratrol (trans-3,4’,5-trihydoxystilbene) decreases lipid peroxidation level and protects antioxidant capacity in sera and erytrocytes of old female wistar rats induced by the kidney carcinogen potassium bromate. Envir. Toxicol. Pharmacol., 24, 79-85.
  • [44] Amarowicz, R., Pegg, R.B. (2008). Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol., 110, 865–878.
  • [45] Marathe, S.A., Rajalakshmi, V., Jamdar, S.N., Sharma, A. (2011). Study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, 49, 1.
  • [46] Vioque, J., Alaiz, M., Giron-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132, 67–72.
  • [47] Mamatha, B.S., Sageetha, R.K., Baskaran, V. (2011). Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. International Journal of Food Science and Technology, 46, 315–323.
  • [48] Agarwal, S. & Rao, A.V. (2000). Carotenoids and chronic diseases. Drug Metabolism and Drug Interactions,17, 189–210.
  • [49] McDermott, J.H. (2000). Antioxidant nutrients: current dietary recommendations and research update. Journal of American Pharmacists Association, 40, 785–799.
  • [50] Sahin, A., Kıran, Y., Karatas, F and Sonmez, S. (2005). Vitamins A, C, and E and β-Carotene content in seeds of seven species of Vicia L. Journal of Integrative Plant Biology, 47 (4), 487−493.
  • [51] Yao, D.N., Kouassi, K.N., Erba, D., Scazzina, F., Pellegrini, N., Casiraghi, M.C. (2015). Nutritive evaluation of the bambara groundnut Ci12 landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in côte d’Ivoire. Int. J. Mol. Sci.16(9), 21428-21441.
  • [52] Minhajuddin, M., Beg, Z.H., & Iqbal, J. (2005). Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food and Chemical Toxicology, 43(5), 747–753.
  • [53] Kirmizis, D., & Chatzidimitriou, D. (2009). Antiatherogenic effects of vitamin E: The search for the Holy grail. Vascular Health and Risk Management, 5, 767–774.
  • [54] Saini, R.K., Keum, Y.S. (2016). Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 82, 59–70.
  • [55] Bağcı, E., Bruehl, L., Özçelik, H., Aitzemuller, K., Vural, M., Sahin, A. (2004). A study of the fatty acid and tocochromanol patterns of some Fabaceae (Leguminosae) plants from Turkey I. Grasas y Aceites, 55 (4), 378-384.
  • [56] Valdivielso, I., Bustamante, M.A., Gordoa, J.C.R., Najera, A.I., Renobales, M., Barron, L.J.R. (2015). Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid–liquid extraction followed by high performance liquid chromatography. Food Chemistry, 173, 709–717.
  • [57] Sahin, A., Emre, I., Yilmaz, O., Genç, H., Karatepe, M. (2009). Vitamin and fatty acid contents in seeds of some taxa belonging to genus Lathyrus L. growing in Turkey. Acta Botanica Gallica, 156 (3), 331-339.
There are 57 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

İrfan Emre 0000-0003-0591-3397

Muammer Bahşi This is me 0000-0001-5570-9509

Hasan Genç 0000-0002-9497-9605

Ökkeş Yılmaz 0000-0002-8276-4498

Ahmet Şahin This is me 0000-0002-6926-0340

Publication Date March 16, 2019
Submission Date January 8, 2019
Published in Issue Year 2019

Cite

APA Emre, İ., Bahşi, M., Genç, H., Yılmaz, Ö., et al. (2019). The lipid-soluble vitamins contents of some Vicia L. species by using HPLC. International Journal of Secondary Metabolite, 6(1), 98-105. https://doi.org/10.21448/ijsm.512335
International Journal of Secondary Metabolite

e-ISSN: 2148-6905