Research Article
BibTex RIS Cite

The Effect of 24-Epibrassinolide Treatments at Different Concentrations on Some Growth Parameters and Crocin Level in Saffron (Crocus sativus L.)

Year 2020, , 109 - 118, 13.06.2020
https://doi.org/10.21448/ijsm.699292

Abstract

Brassinosteroids (BRs) are steroid phyotohormones that play roles in plant growth, secondary metabolite accumulation, stress response, and adaptation. Saffron (Crocus sativus L.) is an important plant with significant pharmacological effects due to its rich phytochemical content. Crocin, the main pigment of the saffron stigma, is a natural food colorant and has anti-cancer activity. In this study, the effects of 24-Epibrassinolide (EBL) at different concentrations (10-6, 10-7, 10-8 and 10-9 M) on corm (mother corm) and aerial part related parameters as well as the level of crocin in saffron were investigated. The experiment was conducted in a plant growth cabinet as randomized plots design with 3 replications. 24-Epibrassinolide treatments did not affect the rates of shoot emergence from saffron corms, while 10-8 and 10-9 M EBL treatments increased the number of active nodium and cormlet (daughter corm) as compared to control. All the applied EBL concentrations significantly increased the root and shoot lengths of saffron plants. The maximum number of flowers per plant was observed as a result of the 10-8 M EBL treatment. Exogenous treatment of 10-9 M EBL enhanced the crocin level by 96.0% compared to the control. This is the first study to evaluate the effects of BRs in saffron.

Thanks

We appreciate Senior Biologist Işıl Kesbiç and Dr. Tülden İnanan for their assistance in HPLC analyses.

References

  • Çınar, A.S., Önder, A. (2019). Anadolu’nun kültürel mirası: Crocus sativus L. (Safran). FABAD J Pharm Sci., 44(1), 79-88.
  • Chen, S.A., Wang, X., Zhao, B., Yuan, X., Wang, Y. (2003). Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett., 25, 1235-1238. doi:doi.org/10.1023/A:1025036729160
  • Molina, R.V., Valero, M., Navarro, Y., Guardiola, J.L., Garcıa-Luis, A. (2005). Temperature effects on flower formation in saffron (Crocus sativus L.). Sci Hortic., 103(3), 361-379. doi:doi.org/10.1016/j.scienta.2004.06.005
  • Fernandez, J.A. (2004). Biology, biotechnology and biomedicine of saffron. Recent. Res. Dev. Plant Sci., 2, 127-159.
  • Gismondi, A., Serio, M., Canuti, L., Canini, A. (2012). Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant Sci., 3, 1573-1580. doi:doi.org/10.4236/ajps.2012.311190
  • Abdullaev, F.I. (2002). Cancer chemo preventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med., 227(1), 20-25. doi:doi.org/10.1177/153537020222700104
  • Pitsikas, N. (2016). Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules, 21(3), 303. doi:doi.org/10.3390/molecules21030303
  • Khorasanchi, Z., Shafiee, M., Kermanshahi, F., Khazaei, M., Ryzhikov, M., Parizadeh, M. R., Kermanshahi, B., Ferns, G.A., Avan, A., Hassanian, S.M. (2018). Crocus sativus a natura food coloring and flavoring has potent anti‐tumor properties. Phytomedicine, 43, 21-27. doi:doi.org/10.1016/j.phymed.2018.03.041
  • Sun, Y., Xu, H.J., Zhao, Y.X., Wang, L.Z., Sun, L.R., Wang, Z., Sun, X.F. (2013). Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid-Based Complementary Altern. Med., 690164. doi:doi.org/10.1155/2013/690164
  • Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., Qiu, X. (2015). Antitumor effects of crocin on human breast cancer cells. Int. J. Clin. Exp. Med., 8, 20316-20322.
  • Chen, S., Zhao, S., Wang, X., Zhang, L., Jiang, E., Gu, Y., Shangguan, A.J., Zhao, H., Lv, T., Yu, Z. (2015). Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res., 4(6), 775-783. doi:doi.org/10.3978/j.issn.2218-6751.2015.11.03
  • Festuccia, C., Mancini, A., Gravina, G.L., Scarsella, L., Llorens, S., Alonso, G.L., Tatone, C., Di Cesare, E., Jannini, E.A., Lenzi, A., D’Alessandro, A.M., Carmona, M. (2014). Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed. Res. Int., 135048. doi:doi.org/10.1155/2014/135048
  • Jamwal, K., Bhattacharya, S., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants., 9, 26-38. doi:doi.org/10.1016/j.jarmap.2017.12.003
  • Surgun, Y., Yilmaz, E., Col, B., Burun, B. (2012) Sixth class of plant hormones: Brassinosteroids. C.B.U. Journal of Science, 8, 27-46.
  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C., Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398-401. doi:doi.org/10.1126/science.272.5260.398
  • Nomura, T., Nakayama, N., Reid, J.B., Takeuchi, Y., Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity cause dwarfism in Pisum sativum. Plant Physiol., 113, 31-37. doi:doi.org/10.1104/pp.113.1.31
  • Sasse, J.M. (2003). Physiological actions of brassinosteroids: An update. J Plant Growth Regul., 22, 276–288. doi:doi.org/10.1007/s00344-003-0062-3
  • Bajguz, A., Hayat, S. (2009). Effect of brassinosteroids on plant responses to environmental stresses. Plant Physiol. Bioch., 47(1), 1 8. doi:doi.org/10.1016/j.plaphy.2008.10.002
  • Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Yu, J.Q. (2013). Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant., 57(1), 154-158. doi:doi.org/10.1007/s10535-012-0128-9
  • Çoban, O., Baydar, N.G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind Crop Prod., 86, 251 258. doi:doi.org/10.1016/j.indcrop.2016.03.049
  • Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., Guo, D., Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol. J., 12, 105-115. doi:doi.org/10.1111/pbi.12121
  • Jain, M., Srivastava, P.L., Verma, M., Ghangal, R., Garg, R. (2016). De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep., 6, 22456. doi:doi.org/10.1038/srep22456
  • Malik, A.H., Ashraf, N. (2017). Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol. Genet. Genomics, 292(3), 619-633. doi:doi.org/10.1007/s00438-017-1295-3
  • Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M., Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess., 185, 7845-7856. doi:doi.org/10.1007/s10661-013-3139-x
  • Lage, M., Cantrell, C.L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic., 121(3), 366 373. doi:doi.org/10.1016/j.scienta.2009.02.017
  • Zeng, Y., Yan, F., Tang, L., Chen, F. (2003). Increased crocin production and induction frequency of stigma-like structure from floral organs of Crocus sativus by precursor feeding. Plant Cell Tissue Organ Cult., 72, 185 191. doi:doi.org/10.1023/A:1022215021613
  • Ghanbari, J., Khajoei-Nejad, G., vanRuth, S.M. (2019). Effect of saffron (Crocus sativus L.) corm provenance on its agro-morphological traits and bioactive compounds. Sci. Hortic., 256, 108605. doi:doi.org/10.1016/j.scienta.2019.108605
  • Siracusa, L., Gresta, F., Avola, G., Lombardo, G.M., Ruberto, G. (2010). Influence of corm provenance and environmental condition on yield and apocarotenoid profiles in saffron (Crocus sativus L.). J. Food Anal., 23(5), 394-400. doi:doi.org/10.1016/j.jfca.2010.02.007
  • Aytekin, A., Açıkgöz, A.O. (2008). Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules, 13(5), 1135-1147. doi:doi.org/10.3390/molecules13051135
  • Parlakova Karagöz, F., Dursun, A., Kotan, R., Ekinci, M., Yildirim, E., Mohammadi, P., (2016). Assessment of the effects of some bacterial isolates and hormones on corm formation and some plant properties in saffron (Crocus sativus L.). Ankara University Journal of Agricultural Sciences, 22(4), 500-511.
  • Yıldırım, M.U., Özdemir, F.A., Kahriz, P.P. (2016). Safran (Crocus sativus L.) bitkisinde farklı hormon ön muamele ve sürelerinin korm çoğaltımı üzerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(2), 301-305.
  • Çavuşoğlu, A. (2017) The effect of exogenously applied plant growth regulators on plant development of saffron (Crocus sativus L.), Iğdır Univ. J. Inst. Sci. & Tech., 7(1), 17–22.
  • Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A. (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot., 62(2), 153-159. doi:doi.org/10.1016/j.envexpbot.2007.07.014
  • Arora, N., Bhradwaj, R., Sharma, P., Arora, H.K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant., 30, 833-839. doi:doi.org/10.1007/s11738-008-0188-9
  • Müssig, C., Altmann, T. (1999). Physiology and molecular mode of action of brassinosteroids. Plant Physiol. Biochem., 37(5), 757 762. doi:doi.org/10.1016/S0981 928(99)80042-4
  • Müssig, C. (2005). Brassinosteroid promoted growth. Plant Biol., 7(2), 110 117. doi:doi.org/10.1055/s-2005-837493
  • Roddick, J.G., Ikekawa, N. (1992). Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Plant Physiol., 140(1), 70-74. doi:doi.org/10.1016/S0176-1617(11)81060-6
  • Müssig, C., Shin, G.H., Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiol., 133, 1261-1271. doi:doi.org/10.1104/pp.103.028662
  • Yokota, T., Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., Takatsuto, S. (2001). Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry, 58(2), 233-238. doi:doi.org/10.1016/S0031-9422(01)00237-0
  • Samira, I., Dridi-Mouhandes, M.H., Ben, B., Denden, M. (2012). 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl) on pepper (Capsicum annuum L.). J Stress Physiol Biochem., 8(1), 232-240.
  • Sagar, A., Kaur, I., Mathur, P., Mukherjee, A., Dhama S., Singh, V., Kaur, J. (2019). A new concept in organic farming: Efficacy of brassinosteroids as foliar spray to ameliorate growth of marigold plants. Environ. We Int. J. Sci. Tech., 14, 25-36.
  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J.G.D., Kaneta, T., Kamiya, W., Szekeres, M., Bishop, G.R. (2005). Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J., 42, 262 269. doi:doi.org/10.1111/j.1365 313X.2005.02376.x
  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol., 140, 150-158. doi:doi.org/10.1104/pp.105.070706
  • Rao, S.R., Ravishankar, G.A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv., 20, 101-153. doi:doi.org/10.1016/S0734-9750(02)00007-1
  • Escribano, J., Alonso, L.G., Prados, C.M., Fernandez, A.J. (1995). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100 (1-2), 23-90. doi:doi.org/10.1016/0304-3835(95)04067-6
  • Ali, B. (2017). Practical applications of brassinosteroids in horticulture-some field perspectives. Sci. Hort., 225, 15-21. doi:doi.org/10.1016/j.scienta.2017.06.051
  • Xue, L., Zhigang, G., Ruizhi, L. (2002). Effects of culture conditions, carbon source and regulators on saffron callus growth and crocin accumulation in the callus. Tsinghua Sci. Technol., 7(5), 448-453.
  • Shahabzadeh, Z., Heidari, B., Dadkhodaie, A. (2013). Regenerating salt tolerant saffron (Crocus sativus) using tissue culture with increased pharmaceutical ingredients. J Crop Sci Biotechnol., 16, 209-217. doi:doi.org/10.1007/s12892-013-0031-8
  • Aşçı, Ö.A., Deveci, H., Erdeğer, A., Özdemir, K.N., Demirci, T., Baydar, N.G. (2018). The effects of brassinosteroid applications on growth and secondary metabolite production in Lavandula angustifolia ‘Munstead’. Turkish Journal of Agriculture-Food Science and Technology, 6(10), 1448-1454. doi:doi.org/10.24925/turjaf.v6i10.1448-1454.2072
  • Kim, T.W., Wang, Z.Y. (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol., 61, 681 704. doi:doi.org/10.1146/annurev.arplant.043008.092057

The Effect of 24-Epibrassinolide Treatments at Different Concentrations on Some Growth Parameters and Crocin Level in Saffron (Crocus sativus L.)

Year 2020, , 109 - 118, 13.06.2020
https://doi.org/10.21448/ijsm.699292

Abstract

Brassinosteroids (BRs) are steroid phyotohormones that play roles in plant growth, secondary metabolite accumulation, stress response, and adaptation. Saffron (Crocus sativus L.) is an important plant with significant pharmacological effects due to its rich phytochemical content. Crocin, the main pigment of the saffron stigma, is a natural food colorant and has anti-cancer activity. In this study, the effects of 24-Epibrassinolide (EBL) at different concentrations (10-6, 10-7, 10-8 and 10-9 M) on corm (mother corm) and aerial part related parameters as well as the level of crocin in saffron were investigated. The experiment was conducted in a plant growth cabinet as randomized plots design with 3 replications. 24-Epibrassinolide treatments did not affect the rates of shoot emergence from saffron corms, while 10-8 and 10-9 M EBL treatments increased the number of active nodium and cormlet (daughter corm) as compared to control. All the applied EBL concentrations significantly increased the root and shoot lengths of saffron plants. The maximum number of flowers per plant was observed as a result of the 10-8 M EBL treatment. Exogenous treatment of 10-9 M EBL enhanced the crocin level by 96.0% compared to the control. This is the first study to evaluate the effects of BRs in saffron.

References

  • Çınar, A.S., Önder, A. (2019). Anadolu’nun kültürel mirası: Crocus sativus L. (Safran). FABAD J Pharm Sci., 44(1), 79-88.
  • Chen, S.A., Wang, X., Zhao, B., Yuan, X., Wang, Y. (2003). Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett., 25, 1235-1238. doi:doi.org/10.1023/A:1025036729160
  • Molina, R.V., Valero, M., Navarro, Y., Guardiola, J.L., Garcıa-Luis, A. (2005). Temperature effects on flower formation in saffron (Crocus sativus L.). Sci Hortic., 103(3), 361-379. doi:doi.org/10.1016/j.scienta.2004.06.005
  • Fernandez, J.A. (2004). Biology, biotechnology and biomedicine of saffron. Recent. Res. Dev. Plant Sci., 2, 127-159.
  • Gismondi, A., Serio, M., Canuti, L., Canini, A. (2012). Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant Sci., 3, 1573-1580. doi:doi.org/10.4236/ajps.2012.311190
  • Abdullaev, F.I. (2002). Cancer chemo preventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med., 227(1), 20-25. doi:doi.org/10.1177/153537020222700104
  • Pitsikas, N. (2016). Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules, 21(3), 303. doi:doi.org/10.3390/molecules21030303
  • Khorasanchi, Z., Shafiee, M., Kermanshahi, F., Khazaei, M., Ryzhikov, M., Parizadeh, M. R., Kermanshahi, B., Ferns, G.A., Avan, A., Hassanian, S.M. (2018). Crocus sativus a natura food coloring and flavoring has potent anti‐tumor properties. Phytomedicine, 43, 21-27. doi:doi.org/10.1016/j.phymed.2018.03.041
  • Sun, Y., Xu, H.J., Zhao, Y.X., Wang, L.Z., Sun, L.R., Wang, Z., Sun, X.F. (2013). Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid-Based Complementary Altern. Med., 690164. doi:doi.org/10.1155/2013/690164
  • Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., Qiu, X. (2015). Antitumor effects of crocin on human breast cancer cells. Int. J. Clin. Exp. Med., 8, 20316-20322.
  • Chen, S., Zhao, S., Wang, X., Zhang, L., Jiang, E., Gu, Y., Shangguan, A.J., Zhao, H., Lv, T., Yu, Z. (2015). Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res., 4(6), 775-783. doi:doi.org/10.3978/j.issn.2218-6751.2015.11.03
  • Festuccia, C., Mancini, A., Gravina, G.L., Scarsella, L., Llorens, S., Alonso, G.L., Tatone, C., Di Cesare, E., Jannini, E.A., Lenzi, A., D’Alessandro, A.M., Carmona, M. (2014). Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed. Res. Int., 135048. doi:doi.org/10.1155/2014/135048
  • Jamwal, K., Bhattacharya, S., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants., 9, 26-38. doi:doi.org/10.1016/j.jarmap.2017.12.003
  • Surgun, Y., Yilmaz, E., Col, B., Burun, B. (2012) Sixth class of plant hormones: Brassinosteroids. C.B.U. Journal of Science, 8, 27-46.
  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C., Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398-401. doi:doi.org/10.1126/science.272.5260.398
  • Nomura, T., Nakayama, N., Reid, J.B., Takeuchi, Y., Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity cause dwarfism in Pisum sativum. Plant Physiol., 113, 31-37. doi:doi.org/10.1104/pp.113.1.31
  • Sasse, J.M. (2003). Physiological actions of brassinosteroids: An update. J Plant Growth Regul., 22, 276–288. doi:doi.org/10.1007/s00344-003-0062-3
  • Bajguz, A., Hayat, S. (2009). Effect of brassinosteroids on plant responses to environmental stresses. Plant Physiol. Bioch., 47(1), 1 8. doi:doi.org/10.1016/j.plaphy.2008.10.002
  • Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Yu, J.Q. (2013). Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant., 57(1), 154-158. doi:doi.org/10.1007/s10535-012-0128-9
  • Çoban, O., Baydar, N.G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind Crop Prod., 86, 251 258. doi:doi.org/10.1016/j.indcrop.2016.03.049
  • Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., Guo, D., Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol. J., 12, 105-115. doi:doi.org/10.1111/pbi.12121
  • Jain, M., Srivastava, P.L., Verma, M., Ghangal, R., Garg, R. (2016). De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep., 6, 22456. doi:doi.org/10.1038/srep22456
  • Malik, A.H., Ashraf, N. (2017). Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol. Genet. Genomics, 292(3), 619-633. doi:doi.org/10.1007/s00438-017-1295-3
  • Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M., Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess., 185, 7845-7856. doi:doi.org/10.1007/s10661-013-3139-x
  • Lage, M., Cantrell, C.L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic., 121(3), 366 373. doi:doi.org/10.1016/j.scienta.2009.02.017
  • Zeng, Y., Yan, F., Tang, L., Chen, F. (2003). Increased crocin production and induction frequency of stigma-like structure from floral organs of Crocus sativus by precursor feeding. Plant Cell Tissue Organ Cult., 72, 185 191. doi:doi.org/10.1023/A:1022215021613
  • Ghanbari, J., Khajoei-Nejad, G., vanRuth, S.M. (2019). Effect of saffron (Crocus sativus L.) corm provenance on its agro-morphological traits and bioactive compounds. Sci. Hortic., 256, 108605. doi:doi.org/10.1016/j.scienta.2019.108605
  • Siracusa, L., Gresta, F., Avola, G., Lombardo, G.M., Ruberto, G. (2010). Influence of corm provenance and environmental condition on yield and apocarotenoid profiles in saffron (Crocus sativus L.). J. Food Anal., 23(5), 394-400. doi:doi.org/10.1016/j.jfca.2010.02.007
  • Aytekin, A., Açıkgöz, A.O. (2008). Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules, 13(5), 1135-1147. doi:doi.org/10.3390/molecules13051135
  • Parlakova Karagöz, F., Dursun, A., Kotan, R., Ekinci, M., Yildirim, E., Mohammadi, P., (2016). Assessment of the effects of some bacterial isolates and hormones on corm formation and some plant properties in saffron (Crocus sativus L.). Ankara University Journal of Agricultural Sciences, 22(4), 500-511.
  • Yıldırım, M.U., Özdemir, F.A., Kahriz, P.P. (2016). Safran (Crocus sativus L.) bitkisinde farklı hormon ön muamele ve sürelerinin korm çoğaltımı üzerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(2), 301-305.
  • Çavuşoğlu, A. (2017) The effect of exogenously applied plant growth regulators on plant development of saffron (Crocus sativus L.), Iğdır Univ. J. Inst. Sci. & Tech., 7(1), 17–22.
  • Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A. (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot., 62(2), 153-159. doi:doi.org/10.1016/j.envexpbot.2007.07.014
  • Arora, N., Bhradwaj, R., Sharma, P., Arora, H.K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant., 30, 833-839. doi:doi.org/10.1007/s11738-008-0188-9
  • Müssig, C., Altmann, T. (1999). Physiology and molecular mode of action of brassinosteroids. Plant Physiol. Biochem., 37(5), 757 762. doi:doi.org/10.1016/S0981 928(99)80042-4
  • Müssig, C. (2005). Brassinosteroid promoted growth. Plant Biol., 7(2), 110 117. doi:doi.org/10.1055/s-2005-837493
  • Roddick, J.G., Ikekawa, N. (1992). Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Plant Physiol., 140(1), 70-74. doi:doi.org/10.1016/S0176-1617(11)81060-6
  • Müssig, C., Shin, G.H., Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiol., 133, 1261-1271. doi:doi.org/10.1104/pp.103.028662
  • Yokota, T., Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., Takatsuto, S. (2001). Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry, 58(2), 233-238. doi:doi.org/10.1016/S0031-9422(01)00237-0
  • Samira, I., Dridi-Mouhandes, M.H., Ben, B., Denden, M. (2012). 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl) on pepper (Capsicum annuum L.). J Stress Physiol Biochem., 8(1), 232-240.
  • Sagar, A., Kaur, I., Mathur, P., Mukherjee, A., Dhama S., Singh, V., Kaur, J. (2019). A new concept in organic farming: Efficacy of brassinosteroids as foliar spray to ameliorate growth of marigold plants. Environ. We Int. J. Sci. Tech., 14, 25-36.
  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J.G.D., Kaneta, T., Kamiya, W., Szekeres, M., Bishop, G.R. (2005). Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J., 42, 262 269. doi:doi.org/10.1111/j.1365 313X.2005.02376.x
  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol., 140, 150-158. doi:doi.org/10.1104/pp.105.070706
  • Rao, S.R., Ravishankar, G.A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv., 20, 101-153. doi:doi.org/10.1016/S0734-9750(02)00007-1
  • Escribano, J., Alonso, L.G., Prados, C.M., Fernandez, A.J. (1995). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100 (1-2), 23-90. doi:doi.org/10.1016/0304-3835(95)04067-6
  • Ali, B. (2017). Practical applications of brassinosteroids in horticulture-some field perspectives. Sci. Hort., 225, 15-21. doi:doi.org/10.1016/j.scienta.2017.06.051
  • Xue, L., Zhigang, G., Ruizhi, L. (2002). Effects of culture conditions, carbon source and regulators on saffron callus growth and crocin accumulation in the callus. Tsinghua Sci. Technol., 7(5), 448-453.
  • Shahabzadeh, Z., Heidari, B., Dadkhodaie, A. (2013). Regenerating salt tolerant saffron (Crocus sativus) using tissue culture with increased pharmaceutical ingredients. J Crop Sci Biotechnol., 16, 209-217. doi:doi.org/10.1007/s12892-013-0031-8
  • Aşçı, Ö.A., Deveci, H., Erdeğer, A., Özdemir, K.N., Demirci, T., Baydar, N.G. (2018). The effects of brassinosteroid applications on growth and secondary metabolite production in Lavandula angustifolia ‘Munstead’. Turkish Journal of Agriculture-Food Science and Technology, 6(10), 1448-1454. doi:doi.org/10.24925/turjaf.v6i10.1448-1454.2072
  • Kim, T.W., Wang, Z.Y. (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol., 61, 681 704. doi:doi.org/10.1146/annurev.arplant.043008.092057
There are 50 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Yonca Surgun Acar 0000-0002-8684-329X

Publication Date June 13, 2020
Submission Date March 5, 2020
Published in Issue Year 2020

Cite

APA Surgun Acar, Y. (2020). The Effect of 24-Epibrassinolide Treatments at Different Concentrations on Some Growth Parameters and Crocin Level in Saffron (Crocus sativus L.). International Journal of Secondary Metabolite, 7(2), 109-118. https://doi.org/10.21448/ijsm.699292
International Journal of Secondary Metabolite

e-ISSN: 2148-6905