Research Article
BibTex RIS Cite

Formononetin Production by Large-Scale Cell Suspension Cultures of Medicago sativa L.

Year 2021, , 49 - 58, 08.03.2021
https://doi.org/10.21448/ijsm.725512

Abstract

In this study, calli of Medicago sativa L. cv. Elçi (alfalfa Elçi) were inoculated in cell suspension culture and analyzed for aggregate assay, cell viability test, total phenolic content assay, DPPH free radical scavenging activity and formononetin assay by means of High-Performance Liquid Chromatography (HPLC). Hypocotyl, cotyledon and apical meristem explants were taken from 15-day-old aseptic seedlings and germinated in MS medium. 10 g calli were grown for each explant and then transferred into cell suspension culture. The highest cell viability rate, which was 75%, and the highest DPPH free radical scavenging activity with 51.36% was measured in 1000 mL cell suspension culture, while the highest total phenolic content, i.e. 40.2 mg/g, was quantified in 250 mL cell suspension culture. In accordance with the findings of the study, the production of formononetin was higher in the calli derived from cell suspension cultures than in herb samples of M. sativa. Moreover, in 1000 mL cell suspension culture, 4.99 mg/g of formononetin concentration was quantified, which scored the highest. In large-scale cell suspension cultures of M. sativa, it was possible to increase the production of formononetin production. Hence, due to its medicinal significance, a method has been tested to obtain higher amounts of this compound.

References

  • Birman, H. (2012). Bioactivities of plant flavonoids and the possible action mechanisms. Journal of İstanbul Faculty of Medicine, 75, 3.
  • Bora, K.S. & Sharma, A. (2010). In Vitro Antioxidant and Free Radical Scavenging Potential of Medicago sativa Linn. J Pharm Res., 3(6), 1206-1210.
  • Coronado, C., Angelo, J., Zuanazzi, S., Sallaud, C., Quirion, J.C., Esnault, R., Husson, H.P., Kondorosi, A. & Ratet, P. (1995). Alfalfa Root Flavonoid Production 1s Nitrogen Regulated. Plant Physiol., 108, 533-542.
  • Çölgeçen, H., Koca, U.Ç., Kartal, M., & Büyükkartal, H.N. (2014). Comprehensive evaluation of phytoestrogen accumulation in plants and in vitro cultures of Medicago sativa L. ‘Elçi’ and natural tetraploid Trifolium pratense L. Turkish Jour of Bio., 38, 619-627. https://doi.org/10.3906/biy-1310-17
  • Dakora, F.D., Joseph, C.M., & Phillips, D.A. (1993). Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol., 101, 819-824.
  • Erişen, S. (2006). Plant Regeneration Through Somatic Embryogenesis in Alfalfa (Medicago sativa L.). Journal of Agricultural Sciences, 11(3), 311 315. https://doi.org/10.1501/Tarimbil_0000000570
  • Evcimen, M. & Aslan, R. (2015). Physiological Effects of Commonly Used Medicinal and Aromatic Plant's Antioxidant Phytochemicals. Kocatepe Veterinary Journal, 8(2), 65-78. https://doi.org/02199320009640
  • Franciscis, P., Colacurci, N., Riemma, G., Conte, A., Pittana, E., Guida, M., & Schiattarella, A.A. (2019). A Nutraceutical Approach to Menopausal Complaints. Medicina (Kaunas), 55(9), 544. https://doi.org/10.3390/medicina55090544
  • Gülen, S. (2013). In vitro Antioxidant Properties of Vine and Clover leaves. [Master’s thesis, Trakya University], Edirne, Turkey.
  • He, X.Z., Reddy, J.T., & Dixon, R.A. (1998). Stress responses in alfalfa (Medicago sativa L.) Cdna cloning and characterization of an elicitor inducible isoflavone 7-O-methyltransferase. Plant Mol. Bio., 36, 43-54. https://doi.org/10.1023/A:1005938121453
  • Ismail, H.I., Chan, K.W., Mariod, A.A. & Ismail, M. (2010). Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chem., 119(2), 643-647. https://doi.org/10.1016/j.foodchem.2009.07.023
  • Işık, F.E. (2005). Phytochemical investigation of Trifolium resopinatum L. var. microcephalum plant grows in Edirne zone. [Doctoral Thesis, Trakya University], Edirne, Turkey.
  • Kahraman, A., Serteser, M., & Köken, T. (2002). Flavonoids. The Medical Journal of Kocatepe, 3, 1-8.
  • Karimi, E., Oskoueian, E., Oskoueian, A., Omidvar, V., Hendra, R., & Nazeran, H. (2013). Insight Into the Functional and Medicinal Properties of Medicago sativa (Alfalfa) Leaves Extract. J Med Plant Res., 7(7), 290-297. https://doi.org/10.5897/JMPR11.1663
  • Krakowska, A., Rafińska, K., Walczak, J. & Buszewski, B. (2018). Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Industrial Crops and Products, 124, 931 940. https://doi.org/10.1016/j.indcrop.2018.08.004
  • Martin, L.M., Castilho, M.C., Silveira, M.I., & Abreu, J.M. (2006). Liquid Chromatographic Validation of a Quantitation Method for Phytoestrogens, Biochanin-A, Coumestrol, Daidzein, Formononetin, and Genistein, in Lucerne. J Liq Chromatogr R T., 29, 2875-2884. https://doi.org/10.1080/10826070600961076
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum, 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Patel, S., Gheewala, N., Suthar, A., & Shah, A. (2009). In-Vitro Cytotoxicity Activity of Solanum nigrum Extract Against Hela Cell Line and Vero Cell Line. Int J Pharm., 1(1).
  • Rodrigues, F., Almeida, I., Sarmento, B., Amaral. M.H. & Oliveira, M.B.P.P. (2014). Study of the isoflavone content of different extracts of Medicago spp. as potential active ingredient. Industrial Crops and Products, 57, 110-115. https://doi.org/10.1016/j.indcrop.2014.03.014
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agri., 79, 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1999a). Free radical scavenging capacityand inhibition of wines, grape juices and related polyphenolic constituents. Food Res Int. 32, 407-412. https://doi.org/10.1016/S0963-9969(99)00097-6
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1999b). Free radical scavenging capacity of selected red, rose and white wines. J Sci Food Agri., 79, 1301-1304. https://doi.org/10.1002/(SICI)1097-0010(19990715)79:10<1301::AID-JSFA367>3.0.CO;2-Y
  • Silva, L.R., Pereira, M.J., Azevedo, J., Gonçalves, R.F., Valentão, P., Guedes de Pinho, P., & Andrade, P.B. (2013). Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Res Int., 50. 167-175.
  • Snedecor, G.W., & Cochran, W.G. (1967). In: Snedecor GW, Cochran WG, editors. Statistical methods, 6th ed. USA: Iowa State University Press, pp. 327-329.
  • Steward, N., Martin, R., Engasser, J.M., & Goergen, J.L. (1999). A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep., 19. 171-176, https://doi.org/10.1007/s002990050729
  • Tay, K.C., Tan, L.H., Chan, C.K., Hong, S.L., Chan, K.G., Yap, W.H., Pusparajah, P., & Lee, L.H., Goh, B.H. (2019). Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front Pharmacol., 10, 820. https://doi.org/10.3389/fphar.2019.00820
  • Wang, C.K., & Lee, W.H. (1996). Separation, Characteristics, and Biological Activities of Phenolics in Areca Fruit. J Agric Food Chem., 44, 2014 2019. https://doi.org/10.1021/jf950611o
  • Zincă, G., & Vizireanu, C. (2013). Impact of germination on phenolic compounds content and antioxidant activity of alfalfa seeds (Medicago sativa L.). J Agroaliment Processes Technol., 19(1), 105-110.

Formononetin Production by Large-Scale Cell Suspension Cultures of Medicago sativa L.

Year 2021, , 49 - 58, 08.03.2021
https://doi.org/10.21448/ijsm.725512

Abstract

In this study, calli of Medicago sativa L. cv. Elçi (alfalfa Elçi) were inoculated in cell suspension culture and analyzed for aggregate assay, cell viability test, total phenolic content assay, DPPH free radical scavenging activity and formononetin assay by means of High-Performance Liquid Chromatography (HPLC). Hypocotyl, cotyledon and apical meristem explants were taken from 15-day-old aseptic seedlings and germinated in MS medium. 10 g calli were grown for each explant and then transferred into cell suspension culture. The highest cell viability rate, which was 75%, and the highest DPPH free radical scavenging activity with 51.36% was measured in 1000 mL cell suspension culture, while the highest total phenolic content, i.e. 40.2 mg/g, was quantified in 250 mL cell suspension culture. In accordance with the findings of the study, the production of formononetin was higher in the calli derived from cell suspension cultures than in herb samples of M. sativa. Moreover, in 1000 mL cell suspension culture, 4.99 mg/g of formononetin concentration was quantified, which scored the highest. In large-scale cell suspension cultures of M. sativa, it was possible to increase the production of formononetin production. Hence, due to its medicinal significance, a method has been tested to obtain higher amounts of this compound.

References

  • Birman, H. (2012). Bioactivities of plant flavonoids and the possible action mechanisms. Journal of İstanbul Faculty of Medicine, 75, 3.
  • Bora, K.S. & Sharma, A. (2010). In Vitro Antioxidant and Free Radical Scavenging Potential of Medicago sativa Linn. J Pharm Res., 3(6), 1206-1210.
  • Coronado, C., Angelo, J., Zuanazzi, S., Sallaud, C., Quirion, J.C., Esnault, R., Husson, H.P., Kondorosi, A. & Ratet, P. (1995). Alfalfa Root Flavonoid Production 1s Nitrogen Regulated. Plant Physiol., 108, 533-542.
  • Çölgeçen, H., Koca, U.Ç., Kartal, M., & Büyükkartal, H.N. (2014). Comprehensive evaluation of phytoestrogen accumulation in plants and in vitro cultures of Medicago sativa L. ‘Elçi’ and natural tetraploid Trifolium pratense L. Turkish Jour of Bio., 38, 619-627. https://doi.org/10.3906/biy-1310-17
  • Dakora, F.D., Joseph, C.M., & Phillips, D.A. (1993). Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol., 101, 819-824.
  • Erişen, S. (2006). Plant Regeneration Through Somatic Embryogenesis in Alfalfa (Medicago sativa L.). Journal of Agricultural Sciences, 11(3), 311 315. https://doi.org/10.1501/Tarimbil_0000000570
  • Evcimen, M. & Aslan, R. (2015). Physiological Effects of Commonly Used Medicinal and Aromatic Plant's Antioxidant Phytochemicals. Kocatepe Veterinary Journal, 8(2), 65-78. https://doi.org/02199320009640
  • Franciscis, P., Colacurci, N., Riemma, G., Conte, A., Pittana, E., Guida, M., & Schiattarella, A.A. (2019). A Nutraceutical Approach to Menopausal Complaints. Medicina (Kaunas), 55(9), 544. https://doi.org/10.3390/medicina55090544
  • Gülen, S. (2013). In vitro Antioxidant Properties of Vine and Clover leaves. [Master’s thesis, Trakya University], Edirne, Turkey.
  • He, X.Z., Reddy, J.T., & Dixon, R.A. (1998). Stress responses in alfalfa (Medicago sativa L.) Cdna cloning and characterization of an elicitor inducible isoflavone 7-O-methyltransferase. Plant Mol. Bio., 36, 43-54. https://doi.org/10.1023/A:1005938121453
  • Ismail, H.I., Chan, K.W., Mariod, A.A. & Ismail, M. (2010). Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chem., 119(2), 643-647. https://doi.org/10.1016/j.foodchem.2009.07.023
  • Işık, F.E. (2005). Phytochemical investigation of Trifolium resopinatum L. var. microcephalum plant grows in Edirne zone. [Doctoral Thesis, Trakya University], Edirne, Turkey.
  • Kahraman, A., Serteser, M., & Köken, T. (2002). Flavonoids. The Medical Journal of Kocatepe, 3, 1-8.
  • Karimi, E., Oskoueian, E., Oskoueian, A., Omidvar, V., Hendra, R., & Nazeran, H. (2013). Insight Into the Functional and Medicinal Properties of Medicago sativa (Alfalfa) Leaves Extract. J Med Plant Res., 7(7), 290-297. https://doi.org/10.5897/JMPR11.1663
  • Krakowska, A., Rafińska, K., Walczak, J. & Buszewski, B. (2018). Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Industrial Crops and Products, 124, 931 940. https://doi.org/10.1016/j.indcrop.2018.08.004
  • Martin, L.M., Castilho, M.C., Silveira, M.I., & Abreu, J.M. (2006). Liquid Chromatographic Validation of a Quantitation Method for Phytoestrogens, Biochanin-A, Coumestrol, Daidzein, Formononetin, and Genistein, in Lucerne. J Liq Chromatogr R T., 29, 2875-2884. https://doi.org/10.1080/10826070600961076
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum, 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Patel, S., Gheewala, N., Suthar, A., & Shah, A. (2009). In-Vitro Cytotoxicity Activity of Solanum nigrum Extract Against Hela Cell Line and Vero Cell Line. Int J Pharm., 1(1).
  • Rodrigues, F., Almeida, I., Sarmento, B., Amaral. M.H. & Oliveira, M.B.P.P. (2014). Study of the isoflavone content of different extracts of Medicago spp. as potential active ingredient. Industrial Crops and Products, 57, 110-115. https://doi.org/10.1016/j.indcrop.2014.03.014
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agri., 79, 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1999a). Free radical scavenging capacityand inhibition of wines, grape juices and related polyphenolic constituents. Food Res Int. 32, 407-412. https://doi.org/10.1016/S0963-9969(99)00097-6
  • Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1999b). Free radical scavenging capacity of selected red, rose and white wines. J Sci Food Agri., 79, 1301-1304. https://doi.org/10.1002/(SICI)1097-0010(19990715)79:10<1301::AID-JSFA367>3.0.CO;2-Y
  • Silva, L.R., Pereira, M.J., Azevedo, J., Gonçalves, R.F., Valentão, P., Guedes de Pinho, P., & Andrade, P.B. (2013). Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Res Int., 50. 167-175.
  • Snedecor, G.W., & Cochran, W.G. (1967). In: Snedecor GW, Cochran WG, editors. Statistical methods, 6th ed. USA: Iowa State University Press, pp. 327-329.
  • Steward, N., Martin, R., Engasser, J.M., & Goergen, J.L. (1999). A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep., 19. 171-176, https://doi.org/10.1007/s002990050729
  • Tay, K.C., Tan, L.H., Chan, C.K., Hong, S.L., Chan, K.G., Yap, W.H., Pusparajah, P., & Lee, L.H., Goh, B.H. (2019). Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front Pharmacol., 10, 820. https://doi.org/10.3389/fphar.2019.00820
  • Wang, C.K., & Lee, W.H. (1996). Separation, Characteristics, and Biological Activities of Phenolics in Areca Fruit. J Agric Food Chem., 44, 2014 2019. https://doi.org/10.1021/jf950611o
  • Zincă, G., & Vizireanu, C. (2013). Impact of germination on phenolic compounds content and antioxidant activity of alfalfa seeds (Medicago sativa L.). J Agroaliment Processes Technol., 19(1), 105-110.
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Tayfun Aktaş This is me 0000-0001-5253-1354

Hatice Çölgeçen 0000-0001-8246-4279

Havva Atar 0000-0003-0518-6265

Publication Date March 8, 2021
Submission Date April 22, 2020
Published in Issue Year 2021

Cite

APA Aktaş, T., Çölgeçen, H., & Atar, H. (2021). Formononetin Production by Large-Scale Cell Suspension Cultures of Medicago sativa L. International Journal of Secondary Metabolite, 8(1), 49-58. https://doi.org/10.21448/ijsm.725512
International Journal of Secondary Metabolite

e-ISSN: 2148-6905