Research Article
BibTex RIS Cite

Variation of Phenolic and Pigment Composition Depending on Soil Type in Three Serpentinovag Plant Species

Year 2021, , 1 - 10, 08.03.2021
https://doi.org/10.21448/ijsm.765645

Abstract

Serpentine soils are stressful for plant growth, due to nutrient deficiencies, especially Ca, low water-holding capacity, and high levels of heavy metals and Mg. Determination of biochemical differences of plants grown in serpentine and non-serpentine soil can contribute to understanding tolerance to serpentine soil. In this study, samples of three plant species (Alyssum sibiricum Willd., Salvia absconditiflora (Montbret & Aucher ex Bentham) Greuter & Burdet and Centaurea urvillei DC. subsp. stepposa Wagenitz) were compared in terms of the composition of phenolic compounds and chloroplast pigments. Higher amounts of phenolic compounds were measured in serpentine soil-grown forms of all three species. Total soluble phenolic content, in samples grown in serpentine and non-serpentine soil, respectively, S. absconditiflora 731.8 - 161.7, C. urvillei 121.0-49.7 and A. sibiricum 50.2- 47.3 µg g-1 DW). It was determined that the amount of chlorophyll a was higher in the serpentine soil grown forms of all three species while the amount of chlorophyll b was variable. In plants grown in serpentine soil, β-carotene values are higher than non-serpentine forms. Total xanthophyl values are also parallel with β-carotene findings, but lower. The findings in the present study show that antioxidant compounds such as phenolics and carotenoids may play a role in the stress tolerance of plants growing in serpentine habitats.

References

  • Agati, G., Brinetti C., Ferdinando M.D., Ferrini F., Pollastri S., & Tattini M. (2013). Functional Roles of Flavonoids in Photoprotection: New Evidence, Lessons from the Past. Plant Physiol. Biochem., 72(1), 35-45. https://doi.org/10.1016/j.plaphy.2013.03.014
  • Akman, Y. (2010). İklim ve Biyoiklim. Palme Yayıncılık. 345 s. Ankara. ISBN No: 9786054414468
  • Anacker, B.L. (2014). The Nature of Serpentine Endemism. Am. J. Bot., 101(2), 219-224. https://doi.org/10.3732/ajb.1300349
  • Arnold, B.J., Lahner, B., DaCosta, J.M., Weisman, C.M., Hollister, J.D., Salt, D.E., Bomblies, K. & Yant, L. (2016). Borrowed Alleles and Convergence in Serpentine Adaptation. PNAS, 113(29), 8320–8325. https://doi.org/10.1073/pnas.1600405113
  • Avcı, M. (2005). Diversity and Endemism in Turkey’s Vegetation. İÜ. Ed. Fak. Coğrafya Dergisi, 13(1), 27-55.
  • Batra, N.G., Sharma, V., & Kumari, N. (2014). Drought-induced Changes in Chlorophyll Fluorescence, Photosynthetic Pigments, and Thylakoid Membrane Proteins of Vigna radiata. J. Plant Interact., 9(1), 712-721. https://doi.org/10.1080/17429145.2014.905801
  • Brady, K.U., Kruckeberg, A.R., & Bradshaw, H.D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst., 36(1), 243-266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci., 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Caponio, F., Alloggio, V., & Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chem., 64(2), 203–209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Çekiç, F.Ö., Özdeniz, E., Öktem, M., Kurt, L., & Keleş, Y. (2018). The Role of Biochemical Regulation on the Adaptation of Gypsophile and Gypsovag Species. Biochem. Syst. Ecol., 81(1), 12-16. https://doi.org/10.1016/j.bse.2018.09.007
  • Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant Physiol. Biochem., 72(1), 1-20. https://doi.org/10.1016/j.plaphy.2013.05.009
  • Chishaki, N., & Horiguchi, T. (1997). Responses of Secondary Metabolism in Plants to Nutrient Deficiency, Soil. Sci. Plant Nutr., 43(sup1), 987-991. https://doi.org/10.1080/00380768.1997.11863704
  • Choudhury, N., & Behera, R. (2001). Photoinhibition of Photosynthesis: Role of Carotenoids in Photoprotection of Chloroplast Constituents. Photosynthetica, 39(4), 481-488. https://doi.org/10.1023/A:1015647708360
  • Davis, P.H. (1965). Flora of Turkey and The East Agean Islands, Vol.1, dinburgh Univ. Press.
  • Davis, P.H. (1975). Flora of Turkey and The East Agean Islands, Vol.5 Edinburgh Univ. Press.
  • Davis, P.H. (1982). Flora of Turkey and The East Agean Islands, Vol.7, Edinburgh Univ. Press.
  • Gülcemal, D., Alankuş-Çalıskan, Ö., Karaalp, C., Örs, A.U., Ballar, P., & Bedir, E. (2010) Phenolic Glycosides with Antiproteasomal Activity from Centaurea urvillei DC. subsp. urvillei. Carbohydrate Res., 345(17), 2529–2533. https://doi.org/10.1016/j.carres.2010.09.002
  • Guo-Xiong H., Takano, A., Drew, B.T., Liu, E-D., Soltis, D.E., Soltis, P.S., Peng, H., & Xiang, C.L. (2018). Phylogeny and Staminal Evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia, Annals Bot., 122(4), 649–668.https://doi.org/10.1093/aob/mcy104
  • Harrison, S.P., & Rajakaruna, N. (2011). Serpentine: Evolution and Ecology in a Model System. Rhodora, 113(956), 523-526. https://doi.org/10.3119/0035-4902-113.956.523
  • Keleş, Y., & Öncel, I. (2002). Response of Antioxidative Defence System to Temperature and Water Stress Combinations in Wheat Seedlings. Plant Sci., 163(4), 783–790. https://doi.org/10.1016/S0168-9452(02)00213-3
  • Kim, D.O., & Lee, C.Y. (2004). Comprehensive Study on Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Various Polyphenolics in Scavenging a Free Radical and Its Structural Relationship. Crit. Rev. Food. Sci. Nutr., 44(4), 253–273. https://doi.org/10.1080/10408690490464960
  • Kruckeberg, A.R. (1951). Intraspecific Variability in the Response of Certain Native Plant Species to Serpentine Soil. Am J Bot., 38(1), 408–419.
  • Kurt, L., Ozbey, B.G., Kurt, F., Ozdeniz, E., & Bolukbasi, A. (2013). Serpentine Flora of Turkey. Biological Diversity Conservation, 6(1), 134-152.
  • Li, Y., Kong, Y., Zhang, Z., Yin, Y., Liu, B., Lv, G., & Wang, X. (2014). Phylogeny and Biogeography of Alyssum (Brassicaceae) Based on Nuclear Ribosomal ITS DNA Sequences. J. Genetics, 93(2), 313-323. https://doi.org/10.1007/s12041-014-0362-3
  • Moore T.C. (1974). Research Experiences in Plant Physiology. Springer-Verlag, New-York.
  • Nagaresh, K., & Rahiminejad, M.R. (2018). A Revision of Centaurea sect. Cynaroides (Asteraceae, Cardueae-Centaureinae). Phytotaxa, 363(1), 1-131. https://doi.org/10.11646/phytotaxa.363.1.1
  • Öncel, I., Keles Y., & Üstün, A.S. (2000). Interactive Effects of Temperature and Heavy Metal Stress on the Growth and Some Biochemical Compounds in Wheat Seedlings, Environ. Pollut., 107(3), 315 -320. https://doi.org/10.1016/s0269-7491(99)00177-3
  • Oncel, I., Yurdakulol E., Keles Y., Kurt L., & Yıldız A. (2004). Role of Oxidative Defense System and Biochemical Adaptation on Stress Tolerance of High Mountain and Steppe Plants. Acta Oecol., 26(3), 211-218. https://doi.org/10.1016/j.actao.2004.04.004
  • Özbey, B.G, Özdeniz, E., Bolukbaşı, A., Öktem, M., Keleş, Y., & Kurt, L. (2017). The Role of Free Proline and Soluble Carbonhydrates in Serpentine Stress on Some Serpetinophyte and Serpentinovag Plants. Acta Biol Turcica, 30(4), 146-151.
  • Petukhov, A.S., Khritokhin, N.A., Petukhova, G.A., & Kremleva, T.A. (2019). Phenolic Plant Defense System Under Conditions of Environment Pollution by Heavy Metals in Tyumen. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 161(1), 93–107. (In Russian). https://doi.org/10.26907/2542-064X. 2019.1.93-107
  • Porra, R.J., Thompson, W.A., & Kriedemann, P.E. (1989). Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochem. Biophys. Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
  • Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.L., & Havaux, M. (2012). Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol., 158(3), 1267-1278. https://doi.org/10.1104/pp.111.182394
  • Ruamrungsri, S., Ohyama, T., Konno, T., & Ikarashi, T. (1996). Deficiency of N, P, K, Ca, Mg, or Fe Mineral Nutrients in Narcissus cv. “Garden Giant”. Soil Sci. Plant Nutr., 42(4), 809-820. https://doi.org/ 10.1080/00380768.1996.10416628
  • Sağır, C., Everest, Z.A., & Keleş, Y. (2018). The Comparative Investigation of the Antioxidant Activities of Some Species Belonging to the Lamiaceae and Poaceae Families. Anatolian J. Bot., 2(2), 52-59. https://doi.org/10.30616/ajb.397590
  • Sharmila, P., & Pardha Saradhi, P. (2002). Proline Accumulation in Heavy Metal Stressed Plants: An Adaptive Strategy. In: Prasad M.N.V., Strzałka K. (eds) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. pp, 179-199 Springer, Dordrecht. Printed ISBN: 978-90-481-5952-9, Online ISBN: 978-94-017-2660-3 https://doi.org/10.1007/978-94-017-2660-3_7
  • Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem., 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038

Variation of Phenolic and Pigment Composition Depending on Soil Type in Three Serpentinovag Plant Species

Year 2021, , 1 - 10, 08.03.2021
https://doi.org/10.21448/ijsm.765645

Abstract

Serpentine soils are stressful for plant growth, due to nutrient deficiencies, especially Ca, low water-holding capacity, and high levels of heavy metals and Mg. Determination of biochemical differences of plants grown in serpentine and non-serpentine soil can contribute to understanding tolerance to serpentine soil. In this study, samples of three plant species (Alyssum sibiricum Willd., Salvia absconditiflora (Montbret & Aucher ex Bentham) Greuter & Burdet and Centaurea urvillei DC. subsp. stepposa Wagenitz) were compared in terms of the composition of phenolic compounds and chloroplast pigments. Higher amounts of phenolic compounds were measured in serpentine soil-grown forms of all three species. Total soluble phenolic content, in samples grown in serpentine and non-serpentine soil, respectively, S. absconditiflora 731.8 - 161.7, C. urvillei 121.0-49.7 and A. sibiricum 50.2- 47.3 µg g-1 DW). It was determined that the amount of chlorophyll a was higher in the serpentine soil grown forms of all three species while the amount of chlorophyll b was variable. In plants grown in serpentine soil, β-carotene values are higher than non-serpentine forms. Total xanthophyl values are also parallel with β-carotene findings, but lower. The findings in the present study show that antioxidant compounds such as phenolics and carotenoids may play a role in the stress tolerance of plants growing in serpentine habitats.

References

  • Agati, G., Brinetti C., Ferdinando M.D., Ferrini F., Pollastri S., & Tattini M. (2013). Functional Roles of Flavonoids in Photoprotection: New Evidence, Lessons from the Past. Plant Physiol. Biochem., 72(1), 35-45. https://doi.org/10.1016/j.plaphy.2013.03.014
  • Akman, Y. (2010). İklim ve Biyoiklim. Palme Yayıncılık. 345 s. Ankara. ISBN No: 9786054414468
  • Anacker, B.L. (2014). The Nature of Serpentine Endemism. Am. J. Bot., 101(2), 219-224. https://doi.org/10.3732/ajb.1300349
  • Arnold, B.J., Lahner, B., DaCosta, J.M., Weisman, C.M., Hollister, J.D., Salt, D.E., Bomblies, K. & Yant, L. (2016). Borrowed Alleles and Convergence in Serpentine Adaptation. PNAS, 113(29), 8320–8325. https://doi.org/10.1073/pnas.1600405113
  • Avcı, M. (2005). Diversity and Endemism in Turkey’s Vegetation. İÜ. Ed. Fak. Coğrafya Dergisi, 13(1), 27-55.
  • Batra, N.G., Sharma, V., & Kumari, N. (2014). Drought-induced Changes in Chlorophyll Fluorescence, Photosynthetic Pigments, and Thylakoid Membrane Proteins of Vigna radiata. J. Plant Interact., 9(1), 712-721. https://doi.org/10.1080/17429145.2014.905801
  • Brady, K.U., Kruckeberg, A.R., & Bradshaw, H.D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst., 36(1), 243-266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci., 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Caponio, F., Alloggio, V., & Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chem., 64(2), 203–209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Çekiç, F.Ö., Özdeniz, E., Öktem, M., Kurt, L., & Keleş, Y. (2018). The Role of Biochemical Regulation on the Adaptation of Gypsophile and Gypsovag Species. Biochem. Syst. Ecol., 81(1), 12-16. https://doi.org/10.1016/j.bse.2018.09.007
  • Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant Physiol. Biochem., 72(1), 1-20. https://doi.org/10.1016/j.plaphy.2013.05.009
  • Chishaki, N., & Horiguchi, T. (1997). Responses of Secondary Metabolism in Plants to Nutrient Deficiency, Soil. Sci. Plant Nutr., 43(sup1), 987-991. https://doi.org/10.1080/00380768.1997.11863704
  • Choudhury, N., & Behera, R. (2001). Photoinhibition of Photosynthesis: Role of Carotenoids in Photoprotection of Chloroplast Constituents. Photosynthetica, 39(4), 481-488. https://doi.org/10.1023/A:1015647708360
  • Davis, P.H. (1965). Flora of Turkey and The East Agean Islands, Vol.1, dinburgh Univ. Press.
  • Davis, P.H. (1975). Flora of Turkey and The East Agean Islands, Vol.5 Edinburgh Univ. Press.
  • Davis, P.H. (1982). Flora of Turkey and The East Agean Islands, Vol.7, Edinburgh Univ. Press.
  • Gülcemal, D., Alankuş-Çalıskan, Ö., Karaalp, C., Örs, A.U., Ballar, P., & Bedir, E. (2010) Phenolic Glycosides with Antiproteasomal Activity from Centaurea urvillei DC. subsp. urvillei. Carbohydrate Res., 345(17), 2529–2533. https://doi.org/10.1016/j.carres.2010.09.002
  • Guo-Xiong H., Takano, A., Drew, B.T., Liu, E-D., Soltis, D.E., Soltis, P.S., Peng, H., & Xiang, C.L. (2018). Phylogeny and Staminal Evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia, Annals Bot., 122(4), 649–668.https://doi.org/10.1093/aob/mcy104
  • Harrison, S.P., & Rajakaruna, N. (2011). Serpentine: Evolution and Ecology in a Model System. Rhodora, 113(956), 523-526. https://doi.org/10.3119/0035-4902-113.956.523
  • Keleş, Y., & Öncel, I. (2002). Response of Antioxidative Defence System to Temperature and Water Stress Combinations in Wheat Seedlings. Plant Sci., 163(4), 783–790. https://doi.org/10.1016/S0168-9452(02)00213-3
  • Kim, D.O., & Lee, C.Y. (2004). Comprehensive Study on Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Various Polyphenolics in Scavenging a Free Radical and Its Structural Relationship. Crit. Rev. Food. Sci. Nutr., 44(4), 253–273. https://doi.org/10.1080/10408690490464960
  • Kruckeberg, A.R. (1951). Intraspecific Variability in the Response of Certain Native Plant Species to Serpentine Soil. Am J Bot., 38(1), 408–419.
  • Kurt, L., Ozbey, B.G., Kurt, F., Ozdeniz, E., & Bolukbasi, A. (2013). Serpentine Flora of Turkey. Biological Diversity Conservation, 6(1), 134-152.
  • Li, Y., Kong, Y., Zhang, Z., Yin, Y., Liu, B., Lv, G., & Wang, X. (2014). Phylogeny and Biogeography of Alyssum (Brassicaceae) Based on Nuclear Ribosomal ITS DNA Sequences. J. Genetics, 93(2), 313-323. https://doi.org/10.1007/s12041-014-0362-3
  • Moore T.C. (1974). Research Experiences in Plant Physiology. Springer-Verlag, New-York.
  • Nagaresh, K., & Rahiminejad, M.R. (2018). A Revision of Centaurea sect. Cynaroides (Asteraceae, Cardueae-Centaureinae). Phytotaxa, 363(1), 1-131. https://doi.org/10.11646/phytotaxa.363.1.1
  • Öncel, I., Keles Y., & Üstün, A.S. (2000). Interactive Effects of Temperature and Heavy Metal Stress on the Growth and Some Biochemical Compounds in Wheat Seedlings, Environ. Pollut., 107(3), 315 -320. https://doi.org/10.1016/s0269-7491(99)00177-3
  • Oncel, I., Yurdakulol E., Keles Y., Kurt L., & Yıldız A. (2004). Role of Oxidative Defense System and Biochemical Adaptation on Stress Tolerance of High Mountain and Steppe Plants. Acta Oecol., 26(3), 211-218. https://doi.org/10.1016/j.actao.2004.04.004
  • Özbey, B.G, Özdeniz, E., Bolukbaşı, A., Öktem, M., Keleş, Y., & Kurt, L. (2017). The Role of Free Proline and Soluble Carbonhydrates in Serpentine Stress on Some Serpetinophyte and Serpentinovag Plants. Acta Biol Turcica, 30(4), 146-151.
  • Petukhov, A.S., Khritokhin, N.A., Petukhova, G.A., & Kremleva, T.A. (2019). Phenolic Plant Defense System Under Conditions of Environment Pollution by Heavy Metals in Tyumen. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 161(1), 93–107. (In Russian). https://doi.org/10.26907/2542-064X. 2019.1.93-107
  • Porra, R.J., Thompson, W.A., & Kriedemann, P.E. (1989). Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochem. Biophys. Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
  • Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.L., & Havaux, M. (2012). Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol., 158(3), 1267-1278. https://doi.org/10.1104/pp.111.182394
  • Ruamrungsri, S., Ohyama, T., Konno, T., & Ikarashi, T. (1996). Deficiency of N, P, K, Ca, Mg, or Fe Mineral Nutrients in Narcissus cv. “Garden Giant”. Soil Sci. Plant Nutr., 42(4), 809-820. https://doi.org/ 10.1080/00380768.1996.10416628
  • Sağır, C., Everest, Z.A., & Keleş, Y. (2018). The Comparative Investigation of the Antioxidant Activities of Some Species Belonging to the Lamiaceae and Poaceae Families. Anatolian J. Bot., 2(2), 52-59. https://doi.org/10.30616/ajb.397590
  • Sharmila, P., & Pardha Saradhi, P. (2002). Proline Accumulation in Heavy Metal Stressed Plants: An Adaptive Strategy. In: Prasad M.N.V., Strzałka K. (eds) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. pp, 179-199 Springer, Dordrecht. Printed ISBN: 978-90-481-5952-9, Online ISBN: 978-94-017-2660-3 https://doi.org/10.1007/978-94-017-2660-3_7
  • Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem., 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038
There are 36 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Fazilet Cekic 0000-0002-5434-0081

Ebru Özdeniz This is me 0000-0003-4082-3071

Latif Kurt This is me 0000-0001-9096-3895

Yüksel Keleş 0000-0001-8651-8385

Publication Date March 8, 2021
Submission Date July 7, 2020
Published in Issue Year 2021

Cite

APA Cekic, F., Özdeniz, E., Kurt, L., Keleş, Y. (2021). Variation of Phenolic and Pigment Composition Depending on Soil Type in Three Serpentinovag Plant Species. International Journal of Secondary Metabolite, 8(1), 1-10. https://doi.org/10.21448/ijsm.765645
International Journal of Secondary Metabolite

e-ISSN: 2148-6905