Research Article
BibTex RIS Cite

Alleviation Effects of Diosmetin on H2O2-Induced Oxidative Damage in Human Erythrocytes

Year 2021, , 31 - 39, 08.03.2021
https://doi.org/10.21448/ijsm.793336

Abstract

Free radicals (FRs) are formed in the high amounts result of the metabolic imbalance in cells and tissue. These radicals-induced oxidative damages constitute the basis of many diseases. Organisms have antioxidant defence systems (ADS) to eliminate the destructive effects of the oxidative damage. In addition to these antioxidant systems, dietary flavonoids have the antioxidant effect and the protective role against oxidative damage. In the present study, it was investigated whether a flavonoid derived diosmetin (10, 50, and 100 µM) have the elimination potential on hydrogen peroxide (H2O2)-induced oxidative damage in erythrocyte culture by using biomarkers such as lipid peroxidation (LP) level, catalase (CAT), total superoxide dismutase (SOD) activity and changes of SOD isozymes containing the manganese SOD (Mn SOD) and the cupper-zinc SOD (CuZn SOD). CAT, total SOD, Mn SOD and CuZn SOD activities showed a serious decline with H2O2 treatment, but diosmetin addition significantly increased their activities. While the H2O2 application critically increased LP products in erythrocytes, diosmetin considerably reduced these oxidative damage products. In conclusion, it has been determined that diosmetin can moderate oxidative damage in human erythrocytes by activating or protecting the ADS.

Thanks

The authors thank the Agri Ibrahim Cecen University Central Research and Application Laboratory for providing their laboratory facilities.

References

  • Adžić, M., Nićiforović, A., Filipović, D., Vučić, V., Nešković-Konstantinović, Z., & Radojčić, M.B. (2004). Manganese Superoxid Dismutase Level in Blood Cells of Patients with Breast Cancer. Fifth Yugoslav Nuclear Society Conference YUNSC, 391-397.
  • Aebi, H. (1984). Catalase in vitro. Method Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Alugoju, P.A, Jestadib, D.B., & Periyasamy, L. (2015). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem., 30(1),11-26. https://doi.org/10.1007/s12291-014-0446-0
  • An, F., Wang, S., Yuan, D., Gong, Y., & Wang, S. (2016). Attenuation of Oxidative Stress of Erythrocytes by Plant-Derived Flavonoids, Orientin and Luteolin. Evid Based Compl Alt., Article ID 3401269, 1-8. https://doi.org/10.1155/2016/3401269
  • Atmaca, E.B., & Aksoy, A. (2009). Oxidative DNA Damage and its Chromatographic Determination. Van Vet. J., 20(2), 79-83.
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem., 44, 276–287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Becker, L.B. (2003). New concepts in Reactive Oxygen Species and cardiovascular reperfusion physiology. Cardiovasc. Res., 61(3), 461-470. https://doi.org/10.1016/j.cardiores.2003.10.025
  • Brigelius-Flohe, R., & Traber, M. (1999). Vitamin E: Function and metabolism. FASEB J. 13, 1145–55. https://doi.org/10.1096/fasebj.13.10.1145
  • Cemeli, E., Baumgartner, A., & Anderson, D. (2009). Antioxidants and the Comet assay. Mutat Res., 681, 51–67. https://doi.org/10.1016/j.mrrev.2008.05.002
  • Chang, D., Zhang, X., Rong, S., Sha, Q., Liu, P., Han, T., & Pan, H. (2013). Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients. Hindawi Publishing Corporation. Oxid Med Cell Longev., 587826. https://doi.org/10.1155/2013/587826
  • Ge, A., Liu, Y., Zeng, X., Kong, H., Ma, Y., Zhang, J., Bai, F., & Huang, M. (2015). Effect of diosmetin on airway remodeling in a murine model of chronic asthma. ABBS, 47(8), 604-611. https://doi.org/10.1093/abbs/gmv052
  • Laemmli, D.K. (1970). Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature, 227, 680. https://doi.org/10.1038/227680a0
  • Libregts, S.F., Gutiérrez, L., de Bruin, A.M., Wensveen, F.M., Papadopoulos, P., van Ijcken, W., Ozgur, Z., Philipsen, S., & Nolte, M.A. (2011). Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF 1/PU. 1axis. Blood, Hematol Am. Soc., 118(9), 2578 2588. https://doi.org/10.1182/blood-2010-10-315218
  • Memişoğulları, R. (2005). The Role of Free Radıcals and the Effect of Antioxidants in Diabetes. Duzce Med. J., 7(3), 30-39.
  • Mo, G., He, Y., Zhang, X., Lei, X., & Luo, Q. (2020). Diosmetin exerts cardioprotective effect on myocardial ischaemia injury in neonatal rats by decreasing oxidative stress and myocardial apoptosis. Clin Exp Pharmacol Physiol., 1-10. https://doi.org/10.1111/1440-1681.13309
  • Moore, G.E, Gerner, R.E., & Franklin, H.A. (1967). Culture of normal human leukocytes. JAMA. 199(8), 519-524. https://doi.org/10.1001/jama.1967.03120080053007
  • Morabito, R., Romano, O., Spada, G.L., & Marino, A. (2016). H2O2-Induced Oxidative Stress Affects SO4 Transport in Human Erythrocytes. PloS one., 11(1), 1-16. https://doi.org/10.1371/journal.pone.0146485
  • Noroozi, M., Angerson, W.J., & Lean, M.E.J. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am. J. Clin. Nutr., 67(6), 1210-1218. https://doi.org/10.1093/ajcn/67.6.1210
  • Özşahin, A.D., Yılmaz, Ö., & Tuzcu, M. (2011). The Protective Role of Composites of Fruit Phenolic on The Occuring of Lipid Peroxidation in Erythrocyte of Rats Sustained Oxidative Stress. F. Ü. Sağ. Bil. Vet. Derg., 25(1), 37-41.
  • Pellegrini, N., Miglio, C., Del Rio, D., Salvatore, S., Serafini, M., & Brighenti, F. (2009). Effect of domestic cooking methods on the total antioxidant capacity of vegetables. Int J Food Sci Nutr., 60(2), 12–22. https://doi.org/10.1080/09637480802175212
  • Ratnam, D.V., Ankola, A.A., Bhardwaj, V., Sahana, D.K., & Kumar, M.N.V.R. (2006). Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control Release., 113, 189–207. https://doi.org/10.1016/j.jconrel.2006.04.015
  • Sánchez-Gallego, J.I., López-Revuelta, A., Sardina, J.L., Hernández-Hernández, A., Sánchez-Yagüe, J., & Lianillo, M. (2010). Membrane cholesterol contents modify the protective effects of quercetin and rutin on integrity and cellular viability in oxidized erythrocytes. Free Radic Biol Med, 48(10), 1444-1454. https://doi.org/10.1016/j.freeradbiomed.2010.02.034
  • Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Curr Bio., 24(10), 453-462.https://doi.org/10.1016/j.cub.2014.03.034
  • Smith, J.E. (1987). Erythrocyte Membrane: Structure, Function and Pathophysiology. Vet. Pathol., 24(6), 471-476. https://doi.org/10.1177/030098588702400601
  • Wang, W., Zhang, S., Yang, F., Xie, J., Chen, J., & Li, Z. (2020). Diosmetin alleviates acute kidney injury by promoting the TUG1/Nrf2/HO-1 pathway in sepsis rats. Int Immunopharmacol., 88, 106965.https://doi.org/10.1016/j.intimp.2020.106965
  • Weydert, C.J., & Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 5(1), 51-66. https://doi.org/10.1038/nprot.2009.197
  • Wong, H.W.G., Elwell, J.H., Oberley, L.W., & Goeddel, D.V. (1989). Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell, 58, 923-931.https://doi.org/10.1016/0092-8674(89)90944-6
  • Yang, B., Kotani, A., Arai, K., & Kusu, F. (2001). Estimation of the Antioxidant Activities of Flavonoids from Their Oxidation Potentials. Anal. Sci., 17(5), 599-604. https://doi.org/10.2116/analsci.17.599
  • Yang, K., Wei-Fang, L., & Jun-Feng, Y. (2017). Diosmetin Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice. J. Surg. Res., 214, 69-78. https://doi.org/10.1016/j.jss.2017.02.067
  • Yee, C.D.T., & Liu, T.Z. (1997). Free radical and oxidative damage in human blood cells. J. Biomed Sci., 94, 256-259. https://doi.org/10.1007/BF02253426

Alleviation Effects of Diosmetin on H2O2-Induced Oxidative Damage in Human Erythrocytes

Year 2021, , 31 - 39, 08.03.2021
https://doi.org/10.21448/ijsm.793336

Abstract

Free radicals (FRs) are formed in the high amounts result of the metabolic imbalance in cells and tissue. These radicals-induced oxidative damages constitute the basis of many diseases. Organisms have antioxidant defence systems (ADS) to eliminate the destructive effects of the oxidative damage. In addition to these antioxidant systems, dietary flavonoids have the antioxidant effect and the protective role against oxidative damage. In the present study, it was investigated whether a flavonoid derived diosmetin (10, 50, and 100 µM) have the elimination potential on hydrogen peroxide (H2O2)-induced oxidative damage in erythrocyte culture by using biomarkers such as lipid peroxidation (LP) level, catalase (CAT), total superoxide dismutase (SOD) activity and changes of SOD isozymes containing the manganese SOD (Mn SOD) and the cupper-zinc SOD (CuZn SOD). CAT, total SOD, Mn SOD and CuZn SOD activities showed a serious decline with H2O2 treatment, but diosmetin addition significantly increased their activities. While the H2O2 application critically increased LP products in erythrocytes, diosmetin considerably reduced these oxidative damage products. In conclusion, it has been determined that diosmetin can moderate oxidative damage in human erythrocytes by activating or protecting the ADS.

References

  • Adžić, M., Nićiforović, A., Filipović, D., Vučić, V., Nešković-Konstantinović, Z., & Radojčić, M.B. (2004). Manganese Superoxid Dismutase Level in Blood Cells of Patients with Breast Cancer. Fifth Yugoslav Nuclear Society Conference YUNSC, 391-397.
  • Aebi, H. (1984). Catalase in vitro. Method Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Alugoju, P.A, Jestadib, D.B., & Periyasamy, L. (2015). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem., 30(1),11-26. https://doi.org/10.1007/s12291-014-0446-0
  • An, F., Wang, S., Yuan, D., Gong, Y., & Wang, S. (2016). Attenuation of Oxidative Stress of Erythrocytes by Plant-Derived Flavonoids, Orientin and Luteolin. Evid Based Compl Alt., Article ID 3401269, 1-8. https://doi.org/10.1155/2016/3401269
  • Atmaca, E.B., & Aksoy, A. (2009). Oxidative DNA Damage and its Chromatographic Determination. Van Vet. J., 20(2), 79-83.
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem., 44, 276–287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Becker, L.B. (2003). New concepts in Reactive Oxygen Species and cardiovascular reperfusion physiology. Cardiovasc. Res., 61(3), 461-470. https://doi.org/10.1016/j.cardiores.2003.10.025
  • Brigelius-Flohe, R., & Traber, M. (1999). Vitamin E: Function and metabolism. FASEB J. 13, 1145–55. https://doi.org/10.1096/fasebj.13.10.1145
  • Cemeli, E., Baumgartner, A., & Anderson, D. (2009). Antioxidants and the Comet assay. Mutat Res., 681, 51–67. https://doi.org/10.1016/j.mrrev.2008.05.002
  • Chang, D., Zhang, X., Rong, S., Sha, Q., Liu, P., Han, T., & Pan, H. (2013). Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients. Hindawi Publishing Corporation. Oxid Med Cell Longev., 587826. https://doi.org/10.1155/2013/587826
  • Ge, A., Liu, Y., Zeng, X., Kong, H., Ma, Y., Zhang, J., Bai, F., & Huang, M. (2015). Effect of diosmetin on airway remodeling in a murine model of chronic asthma. ABBS, 47(8), 604-611. https://doi.org/10.1093/abbs/gmv052
  • Laemmli, D.K. (1970). Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature, 227, 680. https://doi.org/10.1038/227680a0
  • Libregts, S.F., Gutiérrez, L., de Bruin, A.M., Wensveen, F.M., Papadopoulos, P., van Ijcken, W., Ozgur, Z., Philipsen, S., & Nolte, M.A. (2011). Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF 1/PU. 1axis. Blood, Hematol Am. Soc., 118(9), 2578 2588. https://doi.org/10.1182/blood-2010-10-315218
  • Memişoğulları, R. (2005). The Role of Free Radıcals and the Effect of Antioxidants in Diabetes. Duzce Med. J., 7(3), 30-39.
  • Mo, G., He, Y., Zhang, X., Lei, X., & Luo, Q. (2020). Diosmetin exerts cardioprotective effect on myocardial ischaemia injury in neonatal rats by decreasing oxidative stress and myocardial apoptosis. Clin Exp Pharmacol Physiol., 1-10. https://doi.org/10.1111/1440-1681.13309
  • Moore, G.E, Gerner, R.E., & Franklin, H.A. (1967). Culture of normal human leukocytes. JAMA. 199(8), 519-524. https://doi.org/10.1001/jama.1967.03120080053007
  • Morabito, R., Romano, O., Spada, G.L., & Marino, A. (2016). H2O2-Induced Oxidative Stress Affects SO4 Transport in Human Erythrocytes. PloS one., 11(1), 1-16. https://doi.org/10.1371/journal.pone.0146485
  • Noroozi, M., Angerson, W.J., & Lean, M.E.J. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am. J. Clin. Nutr., 67(6), 1210-1218. https://doi.org/10.1093/ajcn/67.6.1210
  • Özşahin, A.D., Yılmaz, Ö., & Tuzcu, M. (2011). The Protective Role of Composites of Fruit Phenolic on The Occuring of Lipid Peroxidation in Erythrocyte of Rats Sustained Oxidative Stress. F. Ü. Sağ. Bil. Vet. Derg., 25(1), 37-41.
  • Pellegrini, N., Miglio, C., Del Rio, D., Salvatore, S., Serafini, M., & Brighenti, F. (2009). Effect of domestic cooking methods on the total antioxidant capacity of vegetables. Int J Food Sci Nutr., 60(2), 12–22. https://doi.org/10.1080/09637480802175212
  • Ratnam, D.V., Ankola, A.A., Bhardwaj, V., Sahana, D.K., & Kumar, M.N.V.R. (2006). Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control Release., 113, 189–207. https://doi.org/10.1016/j.jconrel.2006.04.015
  • Sánchez-Gallego, J.I., López-Revuelta, A., Sardina, J.L., Hernández-Hernández, A., Sánchez-Yagüe, J., & Lianillo, M. (2010). Membrane cholesterol contents modify the protective effects of quercetin and rutin on integrity and cellular viability in oxidized erythrocytes. Free Radic Biol Med, 48(10), 1444-1454. https://doi.org/10.1016/j.freeradbiomed.2010.02.034
  • Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Curr Bio., 24(10), 453-462.https://doi.org/10.1016/j.cub.2014.03.034
  • Smith, J.E. (1987). Erythrocyte Membrane: Structure, Function and Pathophysiology. Vet. Pathol., 24(6), 471-476. https://doi.org/10.1177/030098588702400601
  • Wang, W., Zhang, S., Yang, F., Xie, J., Chen, J., & Li, Z. (2020). Diosmetin alleviates acute kidney injury by promoting the TUG1/Nrf2/HO-1 pathway in sepsis rats. Int Immunopharmacol., 88, 106965.https://doi.org/10.1016/j.intimp.2020.106965
  • Weydert, C.J., & Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 5(1), 51-66. https://doi.org/10.1038/nprot.2009.197
  • Wong, H.W.G., Elwell, J.H., Oberley, L.W., & Goeddel, D.V. (1989). Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell, 58, 923-931.https://doi.org/10.1016/0092-8674(89)90944-6
  • Yang, B., Kotani, A., Arai, K., & Kusu, F. (2001). Estimation of the Antioxidant Activities of Flavonoids from Their Oxidation Potentials. Anal. Sci., 17(5), 599-604. https://doi.org/10.2116/analsci.17.599
  • Yang, K., Wei-Fang, L., & Jun-Feng, Y. (2017). Diosmetin Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice. J. Surg. Res., 214, 69-78. https://doi.org/10.1016/j.jss.2017.02.067
  • Yee, C.D.T., & Liu, T.Z. (1997). Free radical and oxidative damage in human blood cells. J. Biomed Sci., 94, 256-259. https://doi.org/10.1007/BF02253426
There are 30 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Mucip Genişel 0000-0002-9339-9334

Fatma Yıldızoğlu This is me 0000-0002-2508-5034

Publication Date March 8, 2021
Submission Date September 10, 2020
Published in Issue Year 2021

Cite

APA Genişel, M., & Yıldızoğlu, F. (2021). Alleviation Effects of Diosmetin on H2O2-Induced Oxidative Damage in Human Erythrocytes. International Journal of Secondary Metabolite, 8(1), 31-39. https://doi.org/10.21448/ijsm.793336
International Journal of Secondary Metabolite

e-ISSN: 2148-6905