Research Article
BibTex RIS Cite

An Investigation of The Biological Activity of Monofloral Honey Produced in South-Western Anatolia

Year 2021, , 300 - 311, 26.12.2021
https://doi.org/10.21448/ijsm.909460

Abstract

In this study, monofloral honeys (chaste, thyme, citrus, and heather) which were obtained from different sources from members of Beekeeping Associations in South-West Anatolia were studied for their antioxidant capacity, total phenolic amounts, total flavonoid amounts, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and urease inhibition activities.
Antioxidant capacity of honey samples was determined by β-carotene, DPPH, ABTS+ and CUPRAC activity methods. In honey samples, the highest antioxidant activity was found in citrus honey with β-carotene/Linoleic acid color opening with IC50: 7.99 mg/mL, and DPPH free radical removal activity with IC50: 5.28 mg/mL in thyme honey. In CUPRAC activity, it was determined that the highest activity was found in heather honey with IC50: 1.69 mg/mL, in terms of ABTS+ removal activity IC50: 2.80 mg/mL in chaste honey, and metal chelating activity IC50: 1.56 mg/mL in thyme honey.
The total phenolic and flavonoids amounts of honeys ranged from 2.31 and 27.15 (μg PEs/mg) to 4.95 and 25.24 (µg QEs/mg), respectively. In addition, AChE inhibition IC50: 24.25 mg/mL in thyme honey, BChE inhibition IC50: 27.93 mg/mL in thyme honey, and urease inhibition IC50: 34.89 mg/mL with citrus honey were determined concerning the highest activity, consecutively.

Supporting Institution

Selcuk University

Project Number

SUBAP-Grant Number 2009/09101036

References

  • Al-Mamary, M., Al-Meeri, A., & Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutr. Res. Rev., 22(9), 1041 1047. https://doi.org/10.1016/S0271-5317(02)00406-2
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem., 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
  • Badiou, A., Meled, M., & Belzunces, L. P. (2008). Honeybee Apis mellifera acetylcholinesterase biomarker to detect deltamethrin exposure. Ecotoxicol. Environ. Saf., 69(2), 246–253. https://doi.org/10.1016/j.ecoenv.2006.11.020
  • Bertoncelj, J., Doberšek, U., Jamnik, M., & Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem., 105(2), 822–828. https://doi.org/10.1016/j.foodchem.2007.01.060
  • Boily, M., Sarrasin, B., De Blois, C., Aras, P., & Chagnon M. (2013). Acetylcholinesterase in honey bees (Apis mellifera) exposedto neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res., 20, 5603 5614. https://doi.org/10.1007/s11356-013-1568-2
  • Burits, M., Asres, K., & Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytother. Res., 15(2), 03-108. https://doi.org/10.1002/ptr.691
  • Deveci, E., Tel-Çayan, G., & Duru, M. E. (2018). Phenolic profile, antioxidant, anticholinesterase and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. Int. J. Food Prop., 21(1), 771 783. https://doi.org/10.1080/10942912.2018.1431660
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. A. (1961). New and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7(2), 88-90. https://doi.org/10.1016/0006-2952(61)90145-9
  • Ertürk, Ö., Şahin, H., Kolaylı, S., & Ayvaz, M. Ç. (2014). Antioxidant and antimicrobial activity of East Black Sea Region honeys. Turk J. Biochem., 39(1), 99 106. https://doi.org/10.5505/tjb.2014.77487
  • Escuredo, O., Seijo, M. C., Salvador, J., & González-Martín, M. I. (2013). Near infrared spectroscopy for prediction of antioxidant compounds in the honey. Food Chem., 141, 3409-3414. https://doi.org/10.1016/j.foodchem.2013.06.066
  • Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., & Walker, R. B. (2010). Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agr. Food Chem., 58(14), 8139 8144. https://doi.org/10.1021/jf1005935
  • Habib, H. M., Al-Meqbali, F. T., Kamal, H., Souka, U. D., & Ibrahim, W. H. (2014). Physicochemical and biochemical properties of honeys from arid regions. Food Chem., 153, 35-43. https://doi.org/10.1016/j.foodchem.2013.12.048
  • Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T., & Tatematsu, M. (1986). Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food and Chem. Toxicol., 24(10-11), 1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7
  • Karatas, S., Aktumsek, A., & Duru, M. E. (2019). Investigation of physicochemical compositions of some monofloral honeys produced in South Western Anatolia. Int. J. Sec. Metabolite., 6(3), 251-262. https://doi.org/10.21448/ijsm.623262
  • Kaygusuz, H., Tezcan, F., Erim, F. B., Yildiz, O., Sahin, H., Can, Z., & Kolayli, S. (2016). Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT Food Sci. Technol., 68, 273 279. https://doi.org/10.31467/uluaricilik.602906
  • Khan, K. M., Iqbal, S., Lodhi, M. A., Maharvi, G. M., Choudhary, M. I., & Perveen, S. (2004). Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 12(8), 1963-1968. https://doi.org/10.1016/j.bmc.2004.01.010
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem., 91, 571 577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • Moreno, M. I. N., Isla, M. I., Sampietro, A. R., & Vattuone, M. A. (2000). Comparison of free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71(1), 109-114. https://doi.org/10.1016/s0378-8741(99)00189-0
  • Nayik, G. A. & Nanda, V. A. (2016). Chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT Food Sci. Technol., 74, 504 513. https://doi.org/10.1016/j.lwt.2016.08.016
  • Nicholls, J. & Miraglio, A. M. (2003). Honey and healthy diets. Cereal foods world., 48(3), 116-119.
  • Orhan, G., Orhan, I., & Sener, B. (2006). Recent developments in natural and synthetic drug research for alzheimer's disease. Lett. Drug Des. Discov., 3(4), 268 274. https://doi.org/10.2174/157018006776743215
  • Öztürk, M., Aydoğmuş-Öztürk, F., Duru, M. E., & Topçu, G. (2007). Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chem., 103(2), 623-630. https://doi.org/10.1016/j.foodchem.2006.09.005
  • Philip, Y., & Mohd Fadzelly, A. B. (2015). Antioxidative and acetylcholinesterase inhibitor potential of selected honey of sabah, Malaysian Borneo. Int. Food Res. J., 22(5), 1953-1960. https://doi.org/10.3923/pjn.2017.888.894
  • Prior, R. L., & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience., 35, 588-592.
  • Pyrzynska, K., & Biesaga, M. (2009). Analysis of phenolic acids and flavonoids in honey. Trac-Trend Anal. Chem., 28(7), 893-902. https://doi.org/10.1016/j.trac.2009.03.015
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Serrano, S., Espejo, R., Villarejo, M., & Jodral, M. L. (2007). Diastase and invertase activities in Andalusian honeys. Int. J. Food Sci. Tech., 42(1), 76-79. https://doi.org/10.1111/j.1365-2621.2006.01213.x
  • Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P., & Andrade, P. B. (2009). Honey from Luso Region (Portugal): Physicochemical characteristics and mineral contents. Microchem. J., 93, 73-77. https://doi.org/10.1016/j.microc.2009.05.005
  • Sökmen, A., Sökmen, M., Daferera, D., Polissiou, M., Candan, F., Ünlü, M., & Akpulat, H. A. (2004). The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of achillea biebersteini afan (Asteraceae). Phytother. Res., 18(6), 451-456. https://doi.org/10.1002/ptr.1438
  • Ulusoy, E., Kolaylı, S., & Sarıkaya, A. O. (2010). Antioxidant and antimicrobial activity of different floral origin honeys from Türkiye. J. Food Biochem., 34, 321 335. https://doi.org/10.1111/j.1745-4514.2009.00332.x
  • Uzun, U. (2011). Investigation of antioxidant, anticholinesterase enzyme activities and active ingredients of different origin honey, [master thesis, Mugla University Institute of Science].
  • Vinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 109(2), 359 363. https://doi.org/10.1016/j.jep.2006.06.014
  • Vitaglione, P., Morisco, F., Caporaso, N., & Fogliano, V. (2005). Dietary antioxidant compounds and liver health. Crit. Rev. Food Sci. Nutr., 44, 575 586. https://doi.org/0.1080/10408690490911701
  • Wang, X., Sankarapandian, K., Cheng, Y., Woo, S. O., Kwon, H. W., Perumalsamy, H., & Ahn, Y. J. (2016). Relationship between total phenolic contents and biological properties of propolis from 20 different regions in South Korea. BMC Complem. Altern. Med., 16(1), 65. https://doi.org/10.1186/s12906-016-1043-y
  • Wong, S. P., Leong, L. P., & Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chem., 99, 775 783. https://doi.org/10.1016/j.foodchem.2005.07.058
  • Zaidi, H., Ouchemoukha, S., Amessis-Ouchemoukhb, N., Debbachea, N., Pacheco, R., Serralheiro, M. L., & Araujo, M. E. (2019). Biological properties of phenolic compound extracts in selected Algerian honeys-the inhibition of acetylcholinesterase and α-glucosidase activities. Eur. J. Integr. Med., 25, 77-84. https://doi.org/10.1016/j.eujim.2018.11.008

An Investigation of The Biological Activity of Monofloral Honey Produced in South-Western Anatolia

Year 2021, , 300 - 311, 26.12.2021
https://doi.org/10.21448/ijsm.909460

Abstract

In this study, monofloral honeys (chaste, thyme, citrus, and heather) which were obtained from different sources from members of Beekeeping Associations in South-West Anatolia were studied for their antioxidant capacity, total phenolic amounts, total flavonoid amounts, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and urease inhibition activities.
Antioxidant capacity of honey samples was determined by β-carotene, DPPH, ABTS+ and CUPRAC activity methods. In honey samples, the highest antioxidant activity was found in citrus honey with β-carotene/Linoleic acid color opening with IC50: 7.99 mg/mL, and DPPH free radical removal activity with IC50: 5.28 mg/mL in thyme honey. In CUPRAC activity, it was determined that the highest activity was found in heather honey with IC50: 1.69 mg/mL, in terms of ABTS+ removal activity IC50: 2.80 mg/mL in chaste honey, and metal chelating activity IC50: 1.56 mg/mL in thyme honey.
The total phenolic and flavonoids amounts of honeys ranged from 2.31 and 27.15 (μg PEs/mg) to 4.95 and 25.24 (µg QEs/mg), respectively. In addition, AChE inhibition IC50: 24.25 mg/mL in thyme honey, BChE inhibition IC50: 27.93 mg/mL in thyme honey, and urease inhibition IC50: 34.89 mg/mL with citrus honey were determined concerning the highest activity, consecutively.

Project Number

SUBAP-Grant Number 2009/09101036

References

  • Al-Mamary, M., Al-Meeri, A., & Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutr. Res. Rev., 22(9), 1041 1047. https://doi.org/10.1016/S0271-5317(02)00406-2
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem., 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
  • Badiou, A., Meled, M., & Belzunces, L. P. (2008). Honeybee Apis mellifera acetylcholinesterase biomarker to detect deltamethrin exposure. Ecotoxicol. Environ. Saf., 69(2), 246–253. https://doi.org/10.1016/j.ecoenv.2006.11.020
  • Bertoncelj, J., Doberšek, U., Jamnik, M., & Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem., 105(2), 822–828. https://doi.org/10.1016/j.foodchem.2007.01.060
  • Boily, M., Sarrasin, B., De Blois, C., Aras, P., & Chagnon M. (2013). Acetylcholinesterase in honey bees (Apis mellifera) exposedto neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res., 20, 5603 5614. https://doi.org/10.1007/s11356-013-1568-2
  • Burits, M., Asres, K., & Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytother. Res., 15(2), 03-108. https://doi.org/10.1002/ptr.691
  • Deveci, E., Tel-Çayan, G., & Duru, M. E. (2018). Phenolic profile, antioxidant, anticholinesterase and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. Int. J. Food Prop., 21(1), 771 783. https://doi.org/10.1080/10942912.2018.1431660
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. A. (1961). New and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7(2), 88-90. https://doi.org/10.1016/0006-2952(61)90145-9
  • Ertürk, Ö., Şahin, H., Kolaylı, S., & Ayvaz, M. Ç. (2014). Antioxidant and antimicrobial activity of East Black Sea Region honeys. Turk J. Biochem., 39(1), 99 106. https://doi.org/10.5505/tjb.2014.77487
  • Escuredo, O., Seijo, M. C., Salvador, J., & González-Martín, M. I. (2013). Near infrared spectroscopy for prediction of antioxidant compounds in the honey. Food Chem., 141, 3409-3414. https://doi.org/10.1016/j.foodchem.2013.06.066
  • Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., & Walker, R. B. (2010). Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agr. Food Chem., 58(14), 8139 8144. https://doi.org/10.1021/jf1005935
  • Habib, H. M., Al-Meqbali, F. T., Kamal, H., Souka, U. D., & Ibrahim, W. H. (2014). Physicochemical and biochemical properties of honeys from arid regions. Food Chem., 153, 35-43. https://doi.org/10.1016/j.foodchem.2013.12.048
  • Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T., & Tatematsu, M. (1986). Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food and Chem. Toxicol., 24(10-11), 1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7
  • Karatas, S., Aktumsek, A., & Duru, M. E. (2019). Investigation of physicochemical compositions of some monofloral honeys produced in South Western Anatolia. Int. J. Sec. Metabolite., 6(3), 251-262. https://doi.org/10.21448/ijsm.623262
  • Kaygusuz, H., Tezcan, F., Erim, F. B., Yildiz, O., Sahin, H., Can, Z., & Kolayli, S. (2016). Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT Food Sci. Technol., 68, 273 279. https://doi.org/10.31467/uluaricilik.602906
  • Khan, K. M., Iqbal, S., Lodhi, M. A., Maharvi, G. M., Choudhary, M. I., & Perveen, S. (2004). Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 12(8), 1963-1968. https://doi.org/10.1016/j.bmc.2004.01.010
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem., 91, 571 577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • Moreno, M. I. N., Isla, M. I., Sampietro, A. R., & Vattuone, M. A. (2000). Comparison of free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71(1), 109-114. https://doi.org/10.1016/s0378-8741(99)00189-0
  • Nayik, G. A. & Nanda, V. A. (2016). Chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT Food Sci. Technol., 74, 504 513. https://doi.org/10.1016/j.lwt.2016.08.016
  • Nicholls, J. & Miraglio, A. M. (2003). Honey and healthy diets. Cereal foods world., 48(3), 116-119.
  • Orhan, G., Orhan, I., & Sener, B. (2006). Recent developments in natural and synthetic drug research for alzheimer's disease. Lett. Drug Des. Discov., 3(4), 268 274. https://doi.org/10.2174/157018006776743215
  • Öztürk, M., Aydoğmuş-Öztürk, F., Duru, M. E., & Topçu, G. (2007). Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chem., 103(2), 623-630. https://doi.org/10.1016/j.foodchem.2006.09.005
  • Philip, Y., & Mohd Fadzelly, A. B. (2015). Antioxidative and acetylcholinesterase inhibitor potential of selected honey of sabah, Malaysian Borneo. Int. Food Res. J., 22(5), 1953-1960. https://doi.org/10.3923/pjn.2017.888.894
  • Prior, R. L., & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience., 35, 588-592.
  • Pyrzynska, K., & Biesaga, M. (2009). Analysis of phenolic acids and flavonoids in honey. Trac-Trend Anal. Chem., 28(7), 893-902. https://doi.org/10.1016/j.trac.2009.03.015
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Serrano, S., Espejo, R., Villarejo, M., & Jodral, M. L. (2007). Diastase and invertase activities in Andalusian honeys. Int. J. Food Sci. Tech., 42(1), 76-79. https://doi.org/10.1111/j.1365-2621.2006.01213.x
  • Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P., & Andrade, P. B. (2009). Honey from Luso Region (Portugal): Physicochemical characteristics and mineral contents. Microchem. J., 93, 73-77. https://doi.org/10.1016/j.microc.2009.05.005
  • Sökmen, A., Sökmen, M., Daferera, D., Polissiou, M., Candan, F., Ünlü, M., & Akpulat, H. A. (2004). The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of achillea biebersteini afan (Asteraceae). Phytother. Res., 18(6), 451-456. https://doi.org/10.1002/ptr.1438
  • Ulusoy, E., Kolaylı, S., & Sarıkaya, A. O. (2010). Antioxidant and antimicrobial activity of different floral origin honeys from Türkiye. J. Food Biochem., 34, 321 335. https://doi.org/10.1111/j.1745-4514.2009.00332.x
  • Uzun, U. (2011). Investigation of antioxidant, anticholinesterase enzyme activities and active ingredients of different origin honey, [master thesis, Mugla University Institute of Science].
  • Vinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 109(2), 359 363. https://doi.org/10.1016/j.jep.2006.06.014
  • Vitaglione, P., Morisco, F., Caporaso, N., & Fogliano, V. (2005). Dietary antioxidant compounds and liver health. Crit. Rev. Food Sci. Nutr., 44, 575 586. https://doi.org/0.1080/10408690490911701
  • Wang, X., Sankarapandian, K., Cheng, Y., Woo, S. O., Kwon, H. W., Perumalsamy, H., & Ahn, Y. J. (2016). Relationship between total phenolic contents and biological properties of propolis from 20 different regions in South Korea. BMC Complem. Altern. Med., 16(1), 65. https://doi.org/10.1186/s12906-016-1043-y
  • Wong, S. P., Leong, L. P., & Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chem., 99, 775 783. https://doi.org/10.1016/j.foodchem.2005.07.058
  • Zaidi, H., Ouchemoukha, S., Amessis-Ouchemoukhb, N., Debbachea, N., Pacheco, R., Serralheiro, M. L., & Araujo, M. E. (2019). Biological properties of phenolic compound extracts in selected Algerian honeys-the inhibition of acetylcholinesterase and α-glucosidase activities. Eur. J. Integr. Med., 25, 77-84. https://doi.org/10.1016/j.eujim.2018.11.008
There are 36 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Şükrü Karataş 0000-0003-0348-1076

Abdurrahman Aktümsek 0000-0002-5151-2650

Mehmet Emin Duru 0000-0001-7252-4880

Project Number SUBAP-Grant Number 2009/09101036
Publication Date December 26, 2021
Submission Date April 4, 2021
Published in Issue Year 2021

Cite

APA Karataş, Ş., Aktümsek, A., & Duru, M. E. (2021). An Investigation of The Biological Activity of Monofloral Honey Produced in South-Western Anatolia. International Journal of Secondary Metabolite, 8(4), 300-311. https://doi.org/10.21448/ijsm.909460
International Journal of Secondary Metabolite

e-ISSN: 2148-6905