Research Article
BibTex RIS Cite

Achievements in Genetic Engineering of Amaranthus L. Representatives

Year 2021, , 172 - 185, 15.06.2021
https://doi.org/10.21448/ijsm.925737

Abstract

Despite the fact that in the modern world more than a thousand edible plants are used for food, only 3 staple cereal crops are grown worldwide: wheat, rice, and maize. Growing a limited number of crops often causes many problems: ranging from the loss of biodiversity, due to the constant cultivation of the same monocultures in the same areas, to the deterioration of soil quality. A way out of this situation is the selection of new untraditional and neglected plants that could grow in a wide range of temperatures, produce high yields and at the same time have a balanced amino acid composition. Pseudocereals of the genus Amaranthus L. meet these criteria. Amaranth grain and plant raw materials are used in many industries: food, medicine, cosmetics.
Modern technologies do not stand still. Along with traditional methods of plant breeding, the rapid pace of development involves genetic engineering of plants, which allows the process of creating improved plants to be speeded up several times.
The purpose of this study is to analyze and systematize the achievements in the field of regeneration and genetic transformation of representatives of the Amaranthus genus. The results can be used for a practical application: the genetic transformation of species of the genus Amaranthus and other close genera of plants.

References

  • Amin, M.A.M., Hasbullah, N. A., Azis, N. A., Daud, N.F., Rasad, F.M., Lassim, M.M. (2015). Morphogenesis studies on Amaranthus gangeticus in vitro: International Conference on Agricultural, Ecological and Medical Sciences (AEMS 2015). 22 24. http://dx.doi.org/10.15242/IICBE.C0415024
  • Arya, I. D., Chakravarty, T. N., Sopory, S. K. (1993). Development of secondary inflorescenses and in vitro plantlets from inflorescence cultures of Amaranthus paniculatus. Plant Cell Reports, 12, 286-288. https://doi.org/10.1007/BF00237137
  • Bagga, S., Venkateswarlu, K., Sopory, S.K. (1987). In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus. Plant Сell Rep., 6, 183-184. https://doi.org/10.1007/BF00268473
  • Bennici, A., Grifoni, T., Schiff, S., Bovelli, R. (1997). Studies on callus growth and morphogenesis in several species and lines of Amaranthus. Plant Cell Tiss. Organ Cult., 49, 29-33. https://doi.org/10.1023/A:1005882322044
  • Bennici, A., Schiff, S. (1992). In vitro culture of species and varietes of four Amaranthus L. species. Euphytica., 62, 181-186. https://doi.org/10.1007/BF00041752
  • Bent, A. Arabidopsis thaliana floral dip transformation method. (2006). Agrobacterium protocols. Methods in Molecular Biology, 343, 87-104. https://doi.org/10.1385/1-59745-130-4:87
  • Biswas, M., Das, S.S., Dey, S. (2013). Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci. Biotechnol., 22, 22 30. https://doi.org/10.1007/s10068-013-0041-9
  • Bui van Le, B., Do My, N. T., Jeanneau, M., Sadik, S., Shanjun, T. J., Vidal, K., Than Van, T. (1998). Rapid plant regeneration of a C4 dicot species: Amaranthus edulis. Plant Science, 132, 45-54. https://doi.org/10.1016/S0168-9452(97)00262-8
  • Burd, N. B. (2006). Pharmacognostic study of some species of Amaranth genus plants. Manuscript / Thesis for the candidate of pharmaceutical science degree in speciality 15.00.02 – pharmaceutical chemistry and pharmacognosy. National University of Pharmacy, Kharkov.
  • Castellanos-Arévalo, A., Estrada-Luna, A., Cabrera-Ponce, J., Valencia-Lozano, E., Herrera-Ubaldo, H., de Folter, S. et al. (2020). Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Reports, 39(9), 1143-1160. https://doi.org/10.1007/s00299-020-02553-9
  • Clough, S. J., Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant Journal., 16(6), 735 743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  • Curtis, I.S. (2005). Production of transgenic crops by floral-dip method. Methods in Molecular Biology, 286, 103-109.
  • De Cleene, M., De Ley, J. (1976). The host range of crown gall. Bot. Rev., 42, 389-466. https://doi.org/10.1007/BF02860827
  • Fang, F., Oliva, M., Ehi-Eromosele, S., Zaccai, M., Arazi, T., Oren-Shamir, M. (2018). Successful floral-dipping transformation of post-anthesis lisianthus (Eustoma grandiflorum) flowers. The Plant Journal, 96(4), 869 879. https://doi.org/10.1111/tpj.14076
  • Flores, H. E., Teutonico, R. A. (1986). Amaranths (Amaranthus spp.): Potential grain and vegetable crops. In: Bajaj Y. P. S. (Ed.). Biotechnology in agriculture and forestry, Springer-Verlag, Berlin, Heidelberg, 2, Crops I, 568 577. https://link.springer.com/chapter/10.1007/978-3-642-61625-9_32
  • Flores, H. E., Their A., Galston A. W. (1982). In vitro culture of grain and vegetable Amaranths (spp.). Amer. J. Bot., 69 (7), 1049-1054. https://doi.org/10.2307/2443080
  • Gajdosova, A. A., Libiakova, G., Fejer, J. (2007). Improvement of selected Amaranthus cultivars by means of mutation induction and biotechnological approaches. Breeding of Neglected and Under-Utilized Crops, Spices and Herbs. Science Publishers., 151-169. researchgate.net/publication/325550233_Improvement_of_Selected_Amaranthus_Cultivars_by_Means_of_Mutation_Induction_and_Biotechnological_Approaches (accessed on 08.08.2020).
  • Gajdosova, A., Libiaková, G., Iliev, I., Hricová, A. (2013). Adventitious shoots induction of Amaranthus cruentus L. Propagation of Ornamental Plants., 13(1), 33-39.
  • Harrison S. J., Mott E. K., Parsley K., Aspinall S., Gray J. C. Cottage. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods., 2(19). https://doi.org/10.1186/1746-4811-2-19
  • Hu, D., Bent, A., Hou, X., Li, Y. (2019). Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1843-6
  • Jofre-Garfias, A. E., Villegas-Sepúlveda, Cabrera-Ponce, J. L., Adam e-Alvarez, R. M., Herrera-Estrella, L., Simpson, J. (1997). Agrobacterium - mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Reports, 16, 847 852. https://doi.org/10.1007/s002990050332
  • Kuluev, B. R., Mikhaylova, E. V., Taipova, R. M., Chemeris, A. V. (2017). Changes in phenotype of transgenic amaranth Amaranthus retroflexus L., overexpressing ARGOS-LIKE gene. Russian Journal of Genetics, 53(1), 67 75. https://doi.org/10.1134/S1022795416120061
  • Martins, P. K., Nakayama, T. J., Ribeiro, A. P., Badbd, C., Nepomuceno, A. L., Harmon, F. G. (2015). Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep. (Amst.)., 6, 61 63. https://doi.org/10.1016/j.btre.2015.02.006
  • Mayavan, S., Subramanyam, K., Jaganath, B., Sathish, D., Manickavasagam, M., Ganapathi, A. (2015). Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Reports, 34(10), 1835-1848. https://doi.org/10.1007/s00299-015-1831-8
  • Munusamy, U., Abdullah, S. N. A., Aziz, M. A., Khazaai, H. (2013). Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation, Advances in Bioscience and Biotechnology, 4(2), 188-192. http://dx.doi.org/10.4236/abb.2013.42027
  • Murugan, S. B., Sathishkumar, R. (2016). Establishment of high frequency callus induction and genetic transformation in neglected leafy vegetable Amaranthus trisis. Austin J. Biotechnol Bioeng. 3(1). 1058.
  • Pal, A., Swain, S. S., Das, A. B., Mukherjee, A. K., Chand, P. K. (2013 a). Stable germ line transformation a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens, In Vitro Cell. Dev. Biol. Plant., 49, 114 128. https://doi.org/10.1007/s11627-013-9489-9
  • Pal, A., Swain, S. S., Mukherjee, A. K., Chand, P. K. (2013 b). Agrobacterium pRi TL-DNA rolB and TR-DNA opine genes transferred to the spiny amaranth (Amaranthus spinosus L.) – A Nutraceutical Crop. Food Technology and Biotechnology., 51(1), 26 35. https://hrcak.srce.hr/99744
  • Ratanasut, K., Rod-In, W., Sujipuli, K. (2017). In planta Agrobacterium - mediated transformation of rice. Rice Science, 24 (3), 181 186. https://doi.org/10.1016/j.rsci.2016.11.001
  • Saha, P., Blumwald, E. (2016). Spike-dip transformation of Setaria viridis. The Plant Journal, 86 (1), 89-101. https://doi.org/10.1111/tpj.13148
  • Sharada, M., Kumari, A., Pandey, A., Sharma, S., Sharma, P., Sreelakshmi, Y., Sharma, R. (2017). Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell, Tissue and Organ Culture (PCTOC), 129(2), 299 312. https://doi.org/10.1007/s11240-017-1178-7
  • Sood, P., Prasad, M. (2017). Genetic transformation of Setaria: A new perspective. Compendium of Plant Genomes., 105-121. https://doi.org/10.1007/978-3-319-65617-5_9
  • Swain, S.S., Sahu, L., Barik, D.P., Chand, P.K. (2009). Genetic transformation of Amaranthus tricolor L. using Ri plasmid vectors. In: Bastia, AK. and Mohapatra UB. (eds.) Recent trends in monitoring and bioremediation of mine and industrial environment. Proc. Natl. Sem., North Orissa University, Orissa, 109-116.
  • Swain, S. S., Sahu, L., Barik, D. P., Chand, P. K. (2010). Agrobacterium plant factors influencing transformation of “Joseph’s coat” (Amaranthus tricolor L.). Scientia Horticulturae, 125, 461-468. https://doi.org/10.1016/j.scienta.2010.04.034
  • Taipova, R. M., Kuluev, B. R. (2015). Amaranth features of culture, prospects of cultivation in Russia and generation of transgenic Russian varieties/Амарант: особенности культуры, применение, перспективы возделывания в России и создание трансгенных отечественных сортов [in Russian]. Biomika, 7(4), 284-299.
  • Taipova, R., Musin, K., Kuluev, B. (2019 a). Obtaining hairy roots of Amaranthus cruenthus L. and evaluation of their growth indicators. Ekobioteh., 2(4), 574-581. https://doi.org/10.31163/2618-964X-2019-2-4-574-581
  • Taipova, R., Musin, K., K., Kuluev, B. (2019 b). Agrobacterium-mediated transformation of Amaranthus cruentus L. Epicotils. Journal of Siberian Federal University. Biology, 13(2), 1-9. https://doi.org/10.17516/1997-1389-0292
  • Taipova, R., Kuluev, B. (2018). Introduction to in vitro culture and regeneration of shoots from epicotyl explants of Amaranthus cruentus/ Введение в культуру и регенерация побегов из эксплантов эпикотилей амаранта Amaranthus cruentus. Vesnik Biotehnologii, 14(1), 64-66.
  • Tisserat, B., Galletta, P. D. (1988). In vitro flowering in Amaranthus. HortScience, 23, 210-212.
  • Van Eck, J. (2018). The status of Setaria viridis transformation: Agrobacterium-mediated to floral dip. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00652
  • Van Eck, J., Swartwood, K. (2015). Setaria viridis. Methods in Molecular Biology, 1223, 57-67. https://doi.org/10.1007/978-1-4939-1695-5_5
  • Wang, G., Pantha, P., Tran, K., Oh, D., Dassanayake, M. (2019). Plant growth and Agrobacterium-mediated floral-dip transformation of the extremophyte Schrenkiella Parvula. J. Vis. Exp., 143. https://doi.org/10.3791/58544
  • Yaacob J. S, Hwei L. C., Taha R. M. (2012). Pigment analysis and tissue culture of Amaranthus cruentus L.. Acta Horticulturae, 54 64. https://doi.org/10.17660/ActaHortic.2012.958.20
  • Yaroshko, O., Vasylenko, M., Gajdošová, A., Morgun, B., Khrystan, O., Velykozhon, L., Kuchuk, M. (2018). “Floral-dip” transformation of Amaranthus caudatus L. and hybrids A. caudatus A. paniculatus L. Biologija, 64(4), 321 330. https://doi.org/10.6001/biologija.v64i4.3904
  • Yaroshko, O. M., Kuchuk, M. V. (2018). Agrobacterium – caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. x A. paniculatus L. International Journal of Secondary Metabolite, 5(4), 312-318. https://doi.org/10.21448/ijsm.478267
  • Zhang, X., Henriques, R., Lin, S. S., Niu, Q., Chua, N. H. (2006). Agrobacterium mediated transformation Arabidopsis thaliana of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1, 1-6. https://doi.org/10.1038/nprot.2006.97

Achievements in Genetic Engineering of Amaranthus L. Representatives

Year 2021, , 172 - 185, 15.06.2021
https://doi.org/10.21448/ijsm.925737

Abstract

Despite the fact that in the modern world more than a thousand edible plants are used for food, only 3 staple cereal crops are grown worldwide: wheat, rice, and maize. Growing a limited number of crops often causes many problems: ranging from the loss of biodiversity, due to the constant cultivation of the same monocultures in the same areas, to the deterioration of soil quality. A way out of this situation is the selection of new untraditional and neglected plants that could grow in a wide range of temperatures, produce high yields and at the same time have a balanced amino acid composition. Pseudocereals of the genus Amaranthus L. meet these criteria. Amaranth grain and plant raw materials are used in many industries: food, medicine, cosmetics.
Modern technologies do not stand still. Along with traditional methods of plant breeding, the rapid pace of development involves genetic engineering of plants, which allows the process of creating improved plants to be speeded up several times.
The purpose of this study is to analyze and systematize the achievements in the field of regeneration and genetic transformation of representatives of the Amaranthus genus. The results can be used for a practical application: the genetic transformation of species of the genus Amaranthus and other close genera of plants.

References

  • Amin, M.A.M., Hasbullah, N. A., Azis, N. A., Daud, N.F., Rasad, F.M., Lassim, M.M. (2015). Morphogenesis studies on Amaranthus gangeticus in vitro: International Conference on Agricultural, Ecological and Medical Sciences (AEMS 2015). 22 24. http://dx.doi.org/10.15242/IICBE.C0415024
  • Arya, I. D., Chakravarty, T. N., Sopory, S. K. (1993). Development of secondary inflorescenses and in vitro plantlets from inflorescence cultures of Amaranthus paniculatus. Plant Cell Reports, 12, 286-288. https://doi.org/10.1007/BF00237137
  • Bagga, S., Venkateswarlu, K., Sopory, S.K. (1987). In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus. Plant Сell Rep., 6, 183-184. https://doi.org/10.1007/BF00268473
  • Bennici, A., Grifoni, T., Schiff, S., Bovelli, R. (1997). Studies on callus growth and morphogenesis in several species and lines of Amaranthus. Plant Cell Tiss. Organ Cult., 49, 29-33. https://doi.org/10.1023/A:1005882322044
  • Bennici, A., Schiff, S. (1992). In vitro culture of species and varietes of four Amaranthus L. species. Euphytica., 62, 181-186. https://doi.org/10.1007/BF00041752
  • Bent, A. Arabidopsis thaliana floral dip transformation method. (2006). Agrobacterium protocols. Methods in Molecular Biology, 343, 87-104. https://doi.org/10.1385/1-59745-130-4:87
  • Biswas, M., Das, S.S., Dey, S. (2013). Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci. Biotechnol., 22, 22 30. https://doi.org/10.1007/s10068-013-0041-9
  • Bui van Le, B., Do My, N. T., Jeanneau, M., Sadik, S., Shanjun, T. J., Vidal, K., Than Van, T. (1998). Rapid plant regeneration of a C4 dicot species: Amaranthus edulis. Plant Science, 132, 45-54. https://doi.org/10.1016/S0168-9452(97)00262-8
  • Burd, N. B. (2006). Pharmacognostic study of some species of Amaranth genus plants. Manuscript / Thesis for the candidate of pharmaceutical science degree in speciality 15.00.02 – pharmaceutical chemistry and pharmacognosy. National University of Pharmacy, Kharkov.
  • Castellanos-Arévalo, A., Estrada-Luna, A., Cabrera-Ponce, J., Valencia-Lozano, E., Herrera-Ubaldo, H., de Folter, S. et al. (2020). Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Reports, 39(9), 1143-1160. https://doi.org/10.1007/s00299-020-02553-9
  • Clough, S. J., Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant Journal., 16(6), 735 743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  • Curtis, I.S. (2005). Production of transgenic crops by floral-dip method. Methods in Molecular Biology, 286, 103-109.
  • De Cleene, M., De Ley, J. (1976). The host range of crown gall. Bot. Rev., 42, 389-466. https://doi.org/10.1007/BF02860827
  • Fang, F., Oliva, M., Ehi-Eromosele, S., Zaccai, M., Arazi, T., Oren-Shamir, M. (2018). Successful floral-dipping transformation of post-anthesis lisianthus (Eustoma grandiflorum) flowers. The Plant Journal, 96(4), 869 879. https://doi.org/10.1111/tpj.14076
  • Flores, H. E., Teutonico, R. A. (1986). Amaranths (Amaranthus spp.): Potential grain and vegetable crops. In: Bajaj Y. P. S. (Ed.). Biotechnology in agriculture and forestry, Springer-Verlag, Berlin, Heidelberg, 2, Crops I, 568 577. https://link.springer.com/chapter/10.1007/978-3-642-61625-9_32
  • Flores, H. E., Their A., Galston A. W. (1982). In vitro culture of grain and vegetable Amaranths (spp.). Amer. J. Bot., 69 (7), 1049-1054. https://doi.org/10.2307/2443080
  • Gajdosova, A. A., Libiakova, G., Fejer, J. (2007). Improvement of selected Amaranthus cultivars by means of mutation induction and biotechnological approaches. Breeding of Neglected and Under-Utilized Crops, Spices and Herbs. Science Publishers., 151-169. researchgate.net/publication/325550233_Improvement_of_Selected_Amaranthus_Cultivars_by_Means_of_Mutation_Induction_and_Biotechnological_Approaches (accessed on 08.08.2020).
  • Gajdosova, A., Libiaková, G., Iliev, I., Hricová, A. (2013). Adventitious shoots induction of Amaranthus cruentus L. Propagation of Ornamental Plants., 13(1), 33-39.
  • Harrison S. J., Mott E. K., Parsley K., Aspinall S., Gray J. C. Cottage. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods., 2(19). https://doi.org/10.1186/1746-4811-2-19
  • Hu, D., Bent, A., Hou, X., Li, Y. (2019). Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1843-6
  • Jofre-Garfias, A. E., Villegas-Sepúlveda, Cabrera-Ponce, J. L., Adam e-Alvarez, R. M., Herrera-Estrella, L., Simpson, J. (1997). Agrobacterium - mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Reports, 16, 847 852. https://doi.org/10.1007/s002990050332
  • Kuluev, B. R., Mikhaylova, E. V., Taipova, R. M., Chemeris, A. V. (2017). Changes in phenotype of transgenic amaranth Amaranthus retroflexus L., overexpressing ARGOS-LIKE gene. Russian Journal of Genetics, 53(1), 67 75. https://doi.org/10.1134/S1022795416120061
  • Martins, P. K., Nakayama, T. J., Ribeiro, A. P., Badbd, C., Nepomuceno, A. L., Harmon, F. G. (2015). Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep. (Amst.)., 6, 61 63. https://doi.org/10.1016/j.btre.2015.02.006
  • Mayavan, S., Subramanyam, K., Jaganath, B., Sathish, D., Manickavasagam, M., Ganapathi, A. (2015). Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Reports, 34(10), 1835-1848. https://doi.org/10.1007/s00299-015-1831-8
  • Munusamy, U., Abdullah, S. N. A., Aziz, M. A., Khazaai, H. (2013). Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation, Advances in Bioscience and Biotechnology, 4(2), 188-192. http://dx.doi.org/10.4236/abb.2013.42027
  • Murugan, S. B., Sathishkumar, R. (2016). Establishment of high frequency callus induction and genetic transformation in neglected leafy vegetable Amaranthus trisis. Austin J. Biotechnol Bioeng. 3(1). 1058.
  • Pal, A., Swain, S. S., Das, A. B., Mukherjee, A. K., Chand, P. K. (2013 a). Stable germ line transformation a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens, In Vitro Cell. Dev. Biol. Plant., 49, 114 128. https://doi.org/10.1007/s11627-013-9489-9
  • Pal, A., Swain, S. S., Mukherjee, A. K., Chand, P. K. (2013 b). Agrobacterium pRi TL-DNA rolB and TR-DNA opine genes transferred to the spiny amaranth (Amaranthus spinosus L.) – A Nutraceutical Crop. Food Technology and Biotechnology., 51(1), 26 35. https://hrcak.srce.hr/99744
  • Ratanasut, K., Rod-In, W., Sujipuli, K. (2017). In planta Agrobacterium - mediated transformation of rice. Rice Science, 24 (3), 181 186. https://doi.org/10.1016/j.rsci.2016.11.001
  • Saha, P., Blumwald, E. (2016). Spike-dip transformation of Setaria viridis. The Plant Journal, 86 (1), 89-101. https://doi.org/10.1111/tpj.13148
  • Sharada, M., Kumari, A., Pandey, A., Sharma, S., Sharma, P., Sreelakshmi, Y., Sharma, R. (2017). Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell, Tissue and Organ Culture (PCTOC), 129(2), 299 312. https://doi.org/10.1007/s11240-017-1178-7
  • Sood, P., Prasad, M. (2017). Genetic transformation of Setaria: A new perspective. Compendium of Plant Genomes., 105-121. https://doi.org/10.1007/978-3-319-65617-5_9
  • Swain, S.S., Sahu, L., Barik, D.P., Chand, P.K. (2009). Genetic transformation of Amaranthus tricolor L. using Ri plasmid vectors. In: Bastia, AK. and Mohapatra UB. (eds.) Recent trends in monitoring and bioremediation of mine and industrial environment. Proc. Natl. Sem., North Orissa University, Orissa, 109-116.
  • Swain, S. S., Sahu, L., Barik, D. P., Chand, P. K. (2010). Agrobacterium plant factors influencing transformation of “Joseph’s coat” (Amaranthus tricolor L.). Scientia Horticulturae, 125, 461-468. https://doi.org/10.1016/j.scienta.2010.04.034
  • Taipova, R. M., Kuluev, B. R. (2015). Amaranth features of culture, prospects of cultivation in Russia and generation of transgenic Russian varieties/Амарант: особенности культуры, применение, перспективы возделывания в России и создание трансгенных отечественных сортов [in Russian]. Biomika, 7(4), 284-299.
  • Taipova, R., Musin, K., Kuluev, B. (2019 a). Obtaining hairy roots of Amaranthus cruenthus L. and evaluation of their growth indicators. Ekobioteh., 2(4), 574-581. https://doi.org/10.31163/2618-964X-2019-2-4-574-581
  • Taipova, R., Musin, K., K., Kuluev, B. (2019 b). Agrobacterium-mediated transformation of Amaranthus cruentus L. Epicotils. Journal of Siberian Federal University. Biology, 13(2), 1-9. https://doi.org/10.17516/1997-1389-0292
  • Taipova, R., Kuluev, B. (2018). Introduction to in vitro culture and regeneration of shoots from epicotyl explants of Amaranthus cruentus/ Введение в культуру и регенерация побегов из эксплантов эпикотилей амаранта Amaranthus cruentus. Vesnik Biotehnologii, 14(1), 64-66.
  • Tisserat, B., Galletta, P. D. (1988). In vitro flowering in Amaranthus. HortScience, 23, 210-212.
  • Van Eck, J. (2018). The status of Setaria viridis transformation: Agrobacterium-mediated to floral dip. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00652
  • Van Eck, J., Swartwood, K. (2015). Setaria viridis. Methods in Molecular Biology, 1223, 57-67. https://doi.org/10.1007/978-1-4939-1695-5_5
  • Wang, G., Pantha, P., Tran, K., Oh, D., Dassanayake, M. (2019). Plant growth and Agrobacterium-mediated floral-dip transformation of the extremophyte Schrenkiella Parvula. J. Vis. Exp., 143. https://doi.org/10.3791/58544
  • Yaacob J. S, Hwei L. C., Taha R. M. (2012). Pigment analysis and tissue culture of Amaranthus cruentus L.. Acta Horticulturae, 54 64. https://doi.org/10.17660/ActaHortic.2012.958.20
  • Yaroshko, O., Vasylenko, M., Gajdošová, A., Morgun, B., Khrystan, O., Velykozhon, L., Kuchuk, M. (2018). “Floral-dip” transformation of Amaranthus caudatus L. and hybrids A. caudatus A. paniculatus L. Biologija, 64(4), 321 330. https://doi.org/10.6001/biologija.v64i4.3904
  • Yaroshko, O. M., Kuchuk, M. V. (2018). Agrobacterium – caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. x A. paniculatus L. International Journal of Secondary Metabolite, 5(4), 312-318. https://doi.org/10.21448/ijsm.478267
  • Zhang, X., Henriques, R., Lin, S. S., Niu, Q., Chua, N. H. (2006). Agrobacterium mediated transformation Arabidopsis thaliana of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1, 1-6. https://doi.org/10.1038/nprot.2006.97
There are 46 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Olha Yaroshko 0000-0003-2517-4472

Publication Date June 15, 2021
Submission Date April 22, 2021
Published in Issue Year 2021

Cite

APA Yaroshko, O. (2021). Achievements in Genetic Engineering of Amaranthus L. Representatives. International Journal of Secondary Metabolite, 8(2), 172-185. https://doi.org/10.21448/ijsm.925737
International Journal of Secondary Metabolite

e-ISSN: 2148-6905