Chemical composition and antimicrobial and antioxidant activities of essential oils of Polytrichum commune (Hedw.) and Antitrichia curtipendula (Hedw.) Brid. grown in Turkey
Year 2021,
, 272 - 282, 10.09.2021
Tayyibe Beyza Yücel
Abstract
The aim of this study is to analyze the volatile composition and antimicrobial and antioxidant activities of the essential oils of Polytrichum commune and Antitrichia curtipendula. The essential oils obtained by hydro-distillation (HD) from each species were identified by GC-MS/FID. The main components were biformene (13.06%), α-pinene (6.53%), and bornyl acetate (8.10%) in P. commune. Nonanal and tetradecanal as major compounds were 19.96% and 20.23% in A. curtipendula essential oils, respectively. Antioxidant activity of obtained essential oils was evaluated using in-vitro antioxidant models. There was no significant difference within the groups according to DPPH activity. Also, the essential oil from P. commune showed higher metal-ion chelating activities than that of the essential oil of A. curtipendula. Metal-ion chelating activities varied between 4.1% and 67.4% at the 800 µg/mL concentration, respectively. The antimicrobial activity was tested by a minimal inhibition concentration test. Each moss species showed good antimicrobial activity against microorganisms according to the results of minimal inhibition concentration experiments.
Thanks
The author thanks Assoc. Dr. Nevzat Batan for characterization of moss materials and Ass. Amasya University Research Laboratory for antimicrobial and antioxidant activity. Declaration of Conflicting Interests and Ethics
References
- Asakawa, Y. (1995). Chemical constituents of the bryophytes. In: Progress in the Chemistry of Organic Natural products. Herz, W., Kirby, W.B., Moore, R.E., Steglich, W., Tamm, Ch. (Eds.), Springer, Vienna, Volume 65, pp. 1-618.
- Asakawa, Y., & Ludwiczuk, A. (2018). Chemical constituents of bryophytes: structures and biological activity. J. Nat. Prod., 81(3), 641 660. http://dx.doi:10.1021/acs.jnatprod.6b01046
- Asakawa, Y., Ludwiczuk, A., & Nagashima, F. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry, 91, 52-80. https://doi.org/10.1016/j.phytochem.2012.04.012
- Asakawa, Y. (2007). Biologically active compounds from bryophytes. Pure Appl. Chem., 79(4), 557-580. https://doi.org/10.1351/pac200779040557
- Bayaz, M. (2014) (In Turkish). Esansiyel yağlar: antimikrobiyal, antioksidan ve antimutajenik aktiviteleri. Academic Food Journal, 12(3), 45-53.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol., 28(1), 25 30. http://dx.doi.org/10.1016/S0023-6438(95)80008-5
- Chandra, S., Chandra, D., Barh, A., Pankaj, Pandey, R.K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. J. Tradit. Complement Med., 7(1), 94-98. http://dx.doi.org/10.1016/j.jtcme.2016.01.007
- Chen, F., Ludwiczuk, A., Wei, G., Chen, X., C. Stotler, B., & Bowman, J. L. (2018). Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Crit. Rev. Plant Sci., 37(2 3), 210 231. https://doi.org/10.1080/07352689.2018.1482397
- Cheng, X., Xiao, Y., Wang, P., Wang, X., Zhou, Y., Yan, H., & Liu, Q. (2013). The ethyl acetate fraction of Polytrichum commune L. ex Hedw. induced cell apoptosis via reactive oxygen species in L1210 cells. J. Ethnopharmacol., 148(3), 926 933. https://doi.org/10.1016/j.jep.2013.05.045
- Clinical and Labarotory Standarts Instıtute (CLSI). (2012). Twenty-second informational supplement. Tech. Rep. Fort Wayne, Ind, USA. M100- S22.
- Costa, J. P., Ferreira, P. B., D. Sousa, D. P., Jordan, J., & Freitas, R. M. (2012). Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci. Lett., 523(2), 115-118. https://doi.org/10.1016/j.neulet.2012.06.055
- Costa, J. P., Oliveira, G. A. L., Almeida, A. A. C., Islam, M. T., Sousa, D. P., & Freitas, R. M. (2014). Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. Brain Res., 1547, 34-42. https://doi.org/10.1016/j.brainres.2013.12.003
- Decker, E.A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 38(3), 674-677. https://doi.org/10.1021/jf00093a019
- Demetzos, C., Dimas, K., Hatziantoniou, S., Anastasaki, T., & Angelopoulou, D. (2001). Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Med., 67(07), 614-618. https://doi.org/10.1055/s-2001-17362
- Dey, A., & De, N.J. (2012). Antioxidative potential of bryophytes: Stress tolerance and commercial perspectives: A Review. Pharmacologia, 3(6), 151 159. https://doi.org/10.5567/pharmacologia.2012.151.159
- Dragomanova, S., Tancheva, L., & Georgieva, M. (2018). A review: Biological activity of myrtenal and some myrtenal containing medicinal plant essential oils. Scr. Sci. Pharm., 5(2), 22–33. https://doi.org/10.14748/ssp.v5i2.5614
- Fu, P., Lin, S., Shan, L., Lu, M., Shen, Y.H., Tang, J., Liu, R.H., Zhang, X., Zhu, R.L., & Zhang, W.D. (2009). Constituents of the moss Polytrichum commune. J. Nat. Prod., 72(7), 1335-1357. https://doi.org/10.1021/np800830v
- Glime, J.M. (2007). Economic and ethnic uses of bryophytes: in Flora of North America (North Mexico), edited by Flora of North America Editorial Committee. Vol.27, Bryophyta, Part I. Oxford University Press. New York, pp. 14-41.
- Greeshma, G.M., & Murugan K. (2018). Comparison of antimicrobial potentiality of the purified terpenoids from two moss species Thuidium tamariscellum (C. Muell.) Bosch. & Sande-Lac and Brachythecium buchananii (Hook.) A. Jaeger. J. Anal. Pharm. Res., 7(5), 530‒538. https://doi.org/10.15406/japlr.2018.07.00279
- Hallingback, T., & Hodgetts, N. (2000). World Conservation Union; Mosses, Liverworts, and Hornworts. Status Survey and Conservation Action Plan for Bryophytes. IUCN Publication.
- Harmens, H., Norris, D.A., Koerber, G.R., Buse, A., Steinnes, E., & Rühling, A. (2007). Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmos. Environ. 41(31), 6673-6687. https://doi.org/10.1016/j.atmosenv.2007.03.062
- Ichikawa, T., Namikawa, M., Yamada, K., Sakai, K., & Kondo, K. (1983). Novel cyclopentenonyl fatty acids from mosses, Dicranum scoporium and Dicranum japonicum. Tetrahedron Lett., 24(32), 3337-3340. https://doi.org/10.1016/S0040-4039(00)86263-2
- Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2-3), 65-87. https://doi.org/10.1016/j.tox.2011.03.001
- Kozioł, A., Stryjewska, A., Librowski, T., Sałat, K., Gaweł, M., Moniczewski, A., & Lochynski, S. (2014). An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev. Med. Chem., 14(14), 1156–1168. https://doi.org/10.2174/1389557514666141127145820
- Klavina, L., Springe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (Moss Phytochemistry). Molecules, 20(9), 17221-17243. https://doi.org/10.3390/molecules200917221
- Lahlou, S., Correia, C. A., Santos, M. V., David, J. M., David, J. P., Duarte, G. P., & Magalhães, P. J. C. (2007). Mechanisms underlying the cardiovascular effects of a labdenic diterpene isolated from Moldenhawera nutans in normotensive rats. Vascul. Pharmacol., 46(1), 60-66. https://doi.org/10.1016/j.vph.2006.06.010
- Mártinez-Abaigar, J., & Núňez-Olivera, E. (2001). The legend and procession of the moss men from Béjar (Salamanca, Spain). J. Bryol., 23, 264 266. https://doi.org/10.1179/jbr.2001.23.3.264
- Métoyer, B., Lebouvier, N., Hnawia, E., Herbette, G., Thouvenot, L., Asakawa, Y., & Raharivelomanana, P. (2018). Chemotypes and biomarkers of seven species of new caledonian liverworts from the bazzanioideae subfamily. Molecules, 23(6), 1353-1360. https://doi.org/10.3390/molecules23061353
- Mishra, R., Pandey, V.K., & Chandra, R. (2014). Potential of bryophytes as therapeutics. Int. J. Pharm. Sci. Res., 5(9), 3584-3593. https://doi.org/10.13040/IJPSR.0975-8232.5(9).3584-93
- Morteza-Semnani, K., Saeedi, M., & Akbarzadeh, M. (2012). Chemical composition and antimicrobial activity of the essential oil of Verbascum thapsus L.. J. Essent. Oil-Bear. Plants, 15(3), 373-379. https://doi.org/10.1080/0972060X.2012.10644063
- Nikolajeva V., Liepina, L., Petrina, Z., Krumina, G., Grube, M., & Muiznieks, I. (2012). Antibacterial activity of extracts from some bryophytes. Adv. Microbiol, 2(3), 345-353. https://doi.org/10.4236/aim.2012.23042
- Öztürk, A., & Özbek, H. (2005). The anti-inflammatory activity of Eugenia caryophyllata essential oil: an animal model of anti-inflammatory activity. Eur. J. Gen. Med., 2(4), 159-163. https://doi.org/10.29333/ejgm/82334
- Öztürk, M. (2008). Analysis of antioxidant compounds in Micromeria cilicica and M. juliana by HPLC and elucidation of their structures. Doctoral Thesis, Institute of Health Science, İstanbul University, İstanbul, Turkey.
- Öztürk, M., Kolak, U., Duru, M.E., & Harmandar, M. (2009). GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity. Nat. Prod. Commun., 4(9), 1271-1275. https://doi.org/10.1177/1934578X0900400923
- Pirbalouti, A. G., Mirbagheri, H., Hamedi, B., & Rahimi, E. (2014). Antibacterial activity of the essential oils of myrtle leaves against Erysipelothrix rhusiopathiae. Asian Pac. J. Trop. Biomed., 4(1), 505-509. https://doi.org/10.12980/APJTB.4.2014B1168
- Renda, G., Özel, A., Barut, B., Korkmaz, B., & Yaylı, N. (2019). The volatile chemical compositions of the essential oil/spme and enzyme inhibitory and radical scavenging activities of solvent extracts and the essential oils from Coronilla orientalis Miller and C. varia L. grows in Turkey. Iran. J. Pharm. Sci., 18(4), 1831 1842. https://doi.org/10.22037/ijpr.2019.1100802
- Russell, M.D. (2010). Antibiotic activity of extracts from some bryophytes in South Western British Columbia, Med. Stud. J. Aust., 2(1), 9-14.
- Sevim, E., Baş, Y., Çelik, G., Pınarbaş, M., Bozdeveci, A., Özdemir, T., & A. Karaoğlu, Ş. (2017). Antibacterial activity of bryophyte species against Paenibacillus larvae isolates. Turk. J. Vet. Anim. Sci., 41(4), 521-531. https://doi.org/10.3906/vet-1611-70
- Smith, A.J.E. (2004). The Moss flora of Britain and Ireland, Cambridge University Press, edn 2.
- Şahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., & Özer, H. (2004). Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food control, 15(7), 549-557. https://doi.org/10.1016/j.foodcont.2003.08.009
- Tedone, L., Komala, I., Ludwiczuk, A., Nagashima, F., Ito, T., Mondero, L., & Asakawa, Y. (2011). Volatile components of selected Japanese and Indonesian liverworts. 55th Symposium on the Chemistry of Terpenes; Essential Oils and Aromatics, Tsukuba, Japan, p. 272−274.
- Tonguç-Yayıntas, Ö., Yılmaz, S., & Sökmen, M. (2019). Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale Turkey). Indian J. Tradit. Knowl., 18(2), 395-401. http://nopr.niscair.res.in/handle/123456789/47066
- Tonguç-Yayıntas, Ö., & İrkim, L. (2017). Secret Beauty of Freshwater: ''Aquarium Mosses''. J. Aware., 2(3), 523-540. https://journals.gen.tr/joa/article/view/284
- Wang, X., Cao, J., Dai, X., Xiao, J., Wu, Y., & Wang, Q. (2017). Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): Phylogeny and ecological factors. PloS One., 12(3), 1-10. https://doi.org/10.1371/journal.pone.0173003
- Zielinska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci., 21(19), 7078-7116. https://doi.org/10.3390/ijms21197078
- Zhonghua, B. (1999). State administration of traditional chinese medicine of the people’s repuclic of China, Shanghai Science Technology Press, Shanghai. pp 22–23, 1999. (in Chinese).
Chemical composition and antimicrobial and antioxidant activities of essential oils of Polytrichum commune (Hedw.) and Antitrichia curtipendula (Hedw.) Brid. grown in Turkey
Year 2021,
, 272 - 282, 10.09.2021
Tayyibe Beyza Yücel
Abstract
The aim of this study is to analyze the volatile composition and antimicrobial and antioxidant activities of the essential oils of Polytrichum commune and Antitrichia curtipendula. The essential oils obtained by hydro-distillation (HD) from each species were identified by GC-MS/FID. The main components were biformene (13.06%), α-pinene (6.53%), and bornyl acetate (8.10%) in P. commune. Nonanal and tetradecanal as major compounds were 19.96% and 20.23% in A. curtipendula essential oils, respectively. Antioxidant activity of obtained essential oils was evaluated using in-vitro antioxidant models. There was no significant difference within the groups according to DPPH activity. Also, the essential oil from P. commune showed higher metal-ion chelating activities than that of the essential oil of A. curtipendula. Metal-ion chelating activities varied between 4.1% and 67.4% at the 800 µg/mL concentration, respectively. The antimicrobial activity was tested by a minimal inhibition concentration test. Each moss species showed good antimicrobial activity against microorganisms according to the results of minimal inhibition concentration experiments.
References
- Asakawa, Y. (1995). Chemical constituents of the bryophytes. In: Progress in the Chemistry of Organic Natural products. Herz, W., Kirby, W.B., Moore, R.E., Steglich, W., Tamm, Ch. (Eds.), Springer, Vienna, Volume 65, pp. 1-618.
- Asakawa, Y., & Ludwiczuk, A. (2018). Chemical constituents of bryophytes: structures and biological activity. J. Nat. Prod., 81(3), 641 660. http://dx.doi:10.1021/acs.jnatprod.6b01046
- Asakawa, Y., Ludwiczuk, A., & Nagashima, F. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry, 91, 52-80. https://doi.org/10.1016/j.phytochem.2012.04.012
- Asakawa, Y. (2007). Biologically active compounds from bryophytes. Pure Appl. Chem., 79(4), 557-580. https://doi.org/10.1351/pac200779040557
- Bayaz, M. (2014) (In Turkish). Esansiyel yağlar: antimikrobiyal, antioksidan ve antimutajenik aktiviteleri. Academic Food Journal, 12(3), 45-53.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol., 28(1), 25 30. http://dx.doi.org/10.1016/S0023-6438(95)80008-5
- Chandra, S., Chandra, D., Barh, A., Pankaj, Pandey, R.K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. J. Tradit. Complement Med., 7(1), 94-98. http://dx.doi.org/10.1016/j.jtcme.2016.01.007
- Chen, F., Ludwiczuk, A., Wei, G., Chen, X., C. Stotler, B., & Bowman, J. L. (2018). Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Crit. Rev. Plant Sci., 37(2 3), 210 231. https://doi.org/10.1080/07352689.2018.1482397
- Cheng, X., Xiao, Y., Wang, P., Wang, X., Zhou, Y., Yan, H., & Liu, Q. (2013). The ethyl acetate fraction of Polytrichum commune L. ex Hedw. induced cell apoptosis via reactive oxygen species in L1210 cells. J. Ethnopharmacol., 148(3), 926 933. https://doi.org/10.1016/j.jep.2013.05.045
- Clinical and Labarotory Standarts Instıtute (CLSI). (2012). Twenty-second informational supplement. Tech. Rep. Fort Wayne, Ind, USA. M100- S22.
- Costa, J. P., Ferreira, P. B., D. Sousa, D. P., Jordan, J., & Freitas, R. M. (2012). Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci. Lett., 523(2), 115-118. https://doi.org/10.1016/j.neulet.2012.06.055
- Costa, J. P., Oliveira, G. A. L., Almeida, A. A. C., Islam, M. T., Sousa, D. P., & Freitas, R. M. (2014). Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. Brain Res., 1547, 34-42. https://doi.org/10.1016/j.brainres.2013.12.003
- Decker, E.A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 38(3), 674-677. https://doi.org/10.1021/jf00093a019
- Demetzos, C., Dimas, K., Hatziantoniou, S., Anastasaki, T., & Angelopoulou, D. (2001). Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Med., 67(07), 614-618. https://doi.org/10.1055/s-2001-17362
- Dey, A., & De, N.J. (2012). Antioxidative potential of bryophytes: Stress tolerance and commercial perspectives: A Review. Pharmacologia, 3(6), 151 159. https://doi.org/10.5567/pharmacologia.2012.151.159
- Dragomanova, S., Tancheva, L., & Georgieva, M. (2018). A review: Biological activity of myrtenal and some myrtenal containing medicinal plant essential oils. Scr. Sci. Pharm., 5(2), 22–33. https://doi.org/10.14748/ssp.v5i2.5614
- Fu, P., Lin, S., Shan, L., Lu, M., Shen, Y.H., Tang, J., Liu, R.H., Zhang, X., Zhu, R.L., & Zhang, W.D. (2009). Constituents of the moss Polytrichum commune. J. Nat. Prod., 72(7), 1335-1357. https://doi.org/10.1021/np800830v
- Glime, J.M. (2007). Economic and ethnic uses of bryophytes: in Flora of North America (North Mexico), edited by Flora of North America Editorial Committee. Vol.27, Bryophyta, Part I. Oxford University Press. New York, pp. 14-41.
- Greeshma, G.M., & Murugan K. (2018). Comparison of antimicrobial potentiality of the purified terpenoids from two moss species Thuidium tamariscellum (C. Muell.) Bosch. & Sande-Lac and Brachythecium buchananii (Hook.) A. Jaeger. J. Anal. Pharm. Res., 7(5), 530‒538. https://doi.org/10.15406/japlr.2018.07.00279
- Hallingback, T., & Hodgetts, N. (2000). World Conservation Union; Mosses, Liverworts, and Hornworts. Status Survey and Conservation Action Plan for Bryophytes. IUCN Publication.
- Harmens, H., Norris, D.A., Koerber, G.R., Buse, A., Steinnes, E., & Rühling, A. (2007). Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmos. Environ. 41(31), 6673-6687. https://doi.org/10.1016/j.atmosenv.2007.03.062
- Ichikawa, T., Namikawa, M., Yamada, K., Sakai, K., & Kondo, K. (1983). Novel cyclopentenonyl fatty acids from mosses, Dicranum scoporium and Dicranum japonicum. Tetrahedron Lett., 24(32), 3337-3340. https://doi.org/10.1016/S0040-4039(00)86263-2
- Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2-3), 65-87. https://doi.org/10.1016/j.tox.2011.03.001
- Kozioł, A., Stryjewska, A., Librowski, T., Sałat, K., Gaweł, M., Moniczewski, A., & Lochynski, S. (2014). An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev. Med. Chem., 14(14), 1156–1168. https://doi.org/10.2174/1389557514666141127145820
- Klavina, L., Springe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (Moss Phytochemistry). Molecules, 20(9), 17221-17243. https://doi.org/10.3390/molecules200917221
- Lahlou, S., Correia, C. A., Santos, M. V., David, J. M., David, J. P., Duarte, G. P., & Magalhães, P. J. C. (2007). Mechanisms underlying the cardiovascular effects of a labdenic diterpene isolated from Moldenhawera nutans in normotensive rats. Vascul. Pharmacol., 46(1), 60-66. https://doi.org/10.1016/j.vph.2006.06.010
- Mártinez-Abaigar, J., & Núňez-Olivera, E. (2001). The legend and procession of the moss men from Béjar (Salamanca, Spain). J. Bryol., 23, 264 266. https://doi.org/10.1179/jbr.2001.23.3.264
- Métoyer, B., Lebouvier, N., Hnawia, E., Herbette, G., Thouvenot, L., Asakawa, Y., & Raharivelomanana, P. (2018). Chemotypes and biomarkers of seven species of new caledonian liverworts from the bazzanioideae subfamily. Molecules, 23(6), 1353-1360. https://doi.org/10.3390/molecules23061353
- Mishra, R., Pandey, V.K., & Chandra, R. (2014). Potential of bryophytes as therapeutics. Int. J. Pharm. Sci. Res., 5(9), 3584-3593. https://doi.org/10.13040/IJPSR.0975-8232.5(9).3584-93
- Morteza-Semnani, K., Saeedi, M., & Akbarzadeh, M. (2012). Chemical composition and antimicrobial activity of the essential oil of Verbascum thapsus L.. J. Essent. Oil-Bear. Plants, 15(3), 373-379. https://doi.org/10.1080/0972060X.2012.10644063
- Nikolajeva V., Liepina, L., Petrina, Z., Krumina, G., Grube, M., & Muiznieks, I. (2012). Antibacterial activity of extracts from some bryophytes. Adv. Microbiol, 2(3), 345-353. https://doi.org/10.4236/aim.2012.23042
- Öztürk, A., & Özbek, H. (2005). The anti-inflammatory activity of Eugenia caryophyllata essential oil: an animal model of anti-inflammatory activity. Eur. J. Gen. Med., 2(4), 159-163. https://doi.org/10.29333/ejgm/82334
- Öztürk, M. (2008). Analysis of antioxidant compounds in Micromeria cilicica and M. juliana by HPLC and elucidation of their structures. Doctoral Thesis, Institute of Health Science, İstanbul University, İstanbul, Turkey.
- Öztürk, M., Kolak, U., Duru, M.E., & Harmandar, M. (2009). GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity. Nat. Prod. Commun., 4(9), 1271-1275. https://doi.org/10.1177/1934578X0900400923
- Pirbalouti, A. G., Mirbagheri, H., Hamedi, B., & Rahimi, E. (2014). Antibacterial activity of the essential oils of myrtle leaves against Erysipelothrix rhusiopathiae. Asian Pac. J. Trop. Biomed., 4(1), 505-509. https://doi.org/10.12980/APJTB.4.2014B1168
- Renda, G., Özel, A., Barut, B., Korkmaz, B., & Yaylı, N. (2019). The volatile chemical compositions of the essential oil/spme and enzyme inhibitory and radical scavenging activities of solvent extracts and the essential oils from Coronilla orientalis Miller and C. varia L. grows in Turkey. Iran. J. Pharm. Sci., 18(4), 1831 1842. https://doi.org/10.22037/ijpr.2019.1100802
- Russell, M.D. (2010). Antibiotic activity of extracts from some bryophytes in South Western British Columbia, Med. Stud. J. Aust., 2(1), 9-14.
- Sevim, E., Baş, Y., Çelik, G., Pınarbaş, M., Bozdeveci, A., Özdemir, T., & A. Karaoğlu, Ş. (2017). Antibacterial activity of bryophyte species against Paenibacillus larvae isolates. Turk. J. Vet. Anim. Sci., 41(4), 521-531. https://doi.org/10.3906/vet-1611-70
- Smith, A.J.E. (2004). The Moss flora of Britain and Ireland, Cambridge University Press, edn 2.
- Şahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., & Özer, H. (2004). Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food control, 15(7), 549-557. https://doi.org/10.1016/j.foodcont.2003.08.009
- Tedone, L., Komala, I., Ludwiczuk, A., Nagashima, F., Ito, T., Mondero, L., & Asakawa, Y. (2011). Volatile components of selected Japanese and Indonesian liverworts. 55th Symposium on the Chemistry of Terpenes; Essential Oils and Aromatics, Tsukuba, Japan, p. 272−274.
- Tonguç-Yayıntas, Ö., Yılmaz, S., & Sökmen, M. (2019). Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale Turkey). Indian J. Tradit. Knowl., 18(2), 395-401. http://nopr.niscair.res.in/handle/123456789/47066
- Tonguç-Yayıntas, Ö., & İrkim, L. (2017). Secret Beauty of Freshwater: ''Aquarium Mosses''. J. Aware., 2(3), 523-540. https://journals.gen.tr/joa/article/view/284
- Wang, X., Cao, J., Dai, X., Xiao, J., Wu, Y., & Wang, Q. (2017). Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): Phylogeny and ecological factors. PloS One., 12(3), 1-10. https://doi.org/10.1371/journal.pone.0173003
- Zielinska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci., 21(19), 7078-7116. https://doi.org/10.3390/ijms21197078
- Zhonghua, B. (1999). State administration of traditional chinese medicine of the people’s repuclic of China, Shanghai Science Technology Press, Shanghai. pp 22–23, 1999. (in Chinese).