Research Article
BibTex RIS Cite

Molecular interactions of some phenolics with 2019-nCoV and related pathway elements

Year 2021, , 246 - 271, 10.09.2021
https://doi.org/10.21448/ijsm.958597

Abstract

As of June 2021, the novel coronavirus disease (SARS-CoV-2) resulted in 180 million cases worldwide and resulted in the death of approximately 4 million people. However, an effective pharmaceutical with low side effects that can be used in the treatment of SARS-CoV-2 infection has not been developed yet. The aim of this computational study was to analyze the interactions of twenty-two hydroxycinnamic acid and hydroxybenzoic acid derivatives with the SARS-CoV-2 receptor binding domain (RBD) and host organism's proteases, transmembrane serine protease 2 (TMPRSS2), and cathepsin B and L (CatB/L). According to the RBCI analysis, the ligands with the highest affinity against 4 enzymes in the molecular docking study were determined as 1-caffeoyl-β-D-glucose, rosmarinic acid, 3-p-coumaroylquinic acid and chlorogenic acid. It has also been observed that these compounds interacted more strongly with spike RBD, CatB and CatL enzymes. Although the top-ranked ligand, 1-caffeoyl-β-D-glucose, violated the drug-likeness criteria at 1 point (NH or OH>5) and ADMET in terms of AMES toxicity, the second top-ranked ligand rosmarinic acid neither violated drug-likeness nor exhibited incompatibility in terms of ADMET. In conclusion, with its anti-inflammatory properties, rosmarinic acid can be considered and further investigated as a plant-based pharmaceutical that can offer a treatment option in SARS-CoV-2 infection. However, our findings should be supported by additional in vitro and in vivo studies.

Supporting Institution

Research Council of Kilis 7 Aralik University

Project Number

2028MAP2

Thanks

The authors would like to thank to the Research Council of Kilis 7 Aralik University for the financial support (Project no: 2028MAP2).

References

  • Adem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A.F., Ali, M., Abdalla, M., Ibrahim, I.M., & Elfiky, A.A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 85, 153310.
  • Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., & Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452.
  • Cano-Avendaño, B.A., Carmona-Hernandez, J.C., Rodriguez, R.E., Taborda-Ocampo, G., & González-Correa, C.H. (2021). Chemical properties of polyphenols: a reviewfocusedonanti-inflammatory and anti-viral medical application. Biomedicine, 41(1), 3-8.
  • Chavez, J.H., Leal, P.C., Yunes, R.A., Nunes, R.J., Barardi, C.R., Pinto, A.R., Simoes, C.M., & Zanetti, C.R. (2006). Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Veterinary Microbiology, 116(1-3), 53-59.
  • Coban, M.A., Morrison, J., Maharjan, S., Hernandez Medina, D.H., Li, W., Zhang, Y.S., Freeman, W.D., Radisky, E.S., Le Roch, K.G., & Weisend, C.M. (2021). Attacking COVID-19 progression using multi-drug therapy for synergetic target engagement. Biomolecules, 11(6), 787.
  • Dong, Y., Tang, D., Zhang, N., Li, Y., Zhang, C., Li, L., & Li, M. (2013). Phytochemicals and biological studies of plants in genus Hedysarum. Chemistry Central Journal, 7(1), 1-13.
  • Fu, Y., Cheng, Y., & Wu, Y. (2020). Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica, 35(3), 266-271.
  • Georgousaki, K., Tsafantakis, N., Gumeni, S., Lambrinidis, G., González-Menéndez, V., Tormo, J.R., Genilloud, O., Trougakos, I.P., & Fokialakis, N. (2020). Biological evaluation and in silico study of benzoic acid derivatives from Bjerkandera adusta targeting proteostasis network modules. Molecules, 25(3), 666.
  • Guan, M., Guo, L., Ma, H., Wu, H., & Fan, X. (2021). Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evidence-Based Complementary and Alternative Medicine, 2021.
  • Guler, H.I., Fulya, A., Zehra, C., Yakup, K., Belduz, A.O., Canakci, S., & Kolayli, S. (2021). Targeting CoV-2 Spike RBD and ACE-2 Interaction with Flavonoids of Anatolian Propolis by in silico and in vitro Studies in terms of possible COVID-19 therapeutics. BioRxiv, https://doi.org/10.1101/2021.02.22.432207.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., & Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.
  • Huang, I.-C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Dermody, T.S., Harrison, S.C., & Dormitzer, P.R. (2006). SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. Journal of Biological Chemistry, 281(6), 3198-3203.
  • Jahan, I., & Onay, A. (2020). Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish Journal of Biology, 44(3), 228-241.
  • Kumar Verma, A., Kumar, V., Singh, S., Goswami, B.C., Camps, I., Sekar, A., Yoon, S., & Lee, K.W. (2021). Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine & Pharmacotherapy, 137, 111356.
  • Lee, J., Jung, E., Kim, Y., Lee, J., Park, J., Hong, S., Hyun, C.-G., Park, D., & Kim, Y.S. (2006). Rosmarinic acid as a downstream inhibitor of IKK-β in TNF-α-induced upregulation of CCL11 and CCR3. British Journal of Pharmacology, 148(3), 366-375.
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562-569.
  • Li, F., Li, W., Farzan, M., & Harrison, S.C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742), 1864-1868.
  • Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., & Greenough, T.C. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454.
  • Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165-169.
  • Maalik, A., Bukhari, S.M., Zaidi, A., Shah, K.H., & Khan, F.A. (2016). Chlorogenic acid: a pharmacologically potent molecule. Acta Poloniae Pharmaceutica, 73(4), 851-854.
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146-157.
  • Mohammad, A., Alshawaf, E., Marafie, S.K., Abu-Farha, M., Al-Mulla, F., & Abubaker, J. (2021). Molecular Simulation-Based Investigation of Highly Potent Natural Products to Abrogate Formation of the nsp10-nsp16 Complex of SARS-CoV-2. Biomolecules, 11(4), https://doi.org/10.3390/biom11040573.
  • Nam, H.-H., Kim, J.S., Lee, J., Seo, Y.H., Kim, H.S., Ryu, S.M., Choi, G., Moon, B.C., & Lee, A.Y. (2020). Pharmacological Effects of Agastache rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules, 10(9), 1298.
  • Piccolella, S., Crescente, G., Faramarzi, S., Formato, M., Pecoraro, M.T., & Pacifico, S. (2020). Polyphenols vs. coronaviruses: how far has research moved forward? Molecules, 25(18), 4103.
  • Ruibo, L., Narita, R., Nishimura, H., Marumoto, S., Yamamoto, S., Ouda, R., Yatagai, M., Fujita, T., & Watanabe, T. (2017). Antiviral Activity of Phenolic Derivatives in Pyroligneous Acid from Hardwood, Softwood, and Bamboo. Sustainable Chemistry & Engineering, 6(1), 119-126.
  • Srivastava, N., Garg, P., Srivastava, P., & Seth, P.K. (2021). A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ, 9, e11171.
  • Sudhan, D.R., & Siemann, D.W. (2015). Cathepsin L targeting in cancer treatment. Pharmacology & Therapeutics, 155, 105-116.
  • Surucic, R., Tubic, B., Stojiljkovic, M.P., Djuric, D.M., Travar, M., Grabez, M., Savikin, K., & Skrbic, R. (2021). Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Molecular and Cellular Biochemistry, 476(2), 1179-1193.
  • Taguchi, R., Hatayama, K., Takahashi, T., Hayashi, T., Sato, Y., Sato, D., Ohta, K., Nakano, H., Seki, C., & Endo, Y. (2017). Structure–activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. European Journal of Medicinal Chemistry, 138, 1066-1075.
  • Worldometers.info. (2021). COVID-19 Coronavirus Pandemic Retrieved 20.06.2021
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., & Wang, J. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27, 325-328.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., & Pei, Y.-Y. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.
  • Wu, Y.H., Zhang, B.Y., Qiu, L.P., Guan, R.F., Ye, Z.H., & Yu, X.P. (2017). Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Current Medicinal Chemistry, 24(38), 4279-4302.
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. Archives of Virology, 162(9), 2539-2551.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., & Lu, R. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421.
  • Chandran, U., Mehendale, N., Tillu, G., & Patwardhan, B. (2015). Network Pharmacology of Ayurveda Formulation Triphala with Special Reference to Anti-Cancer Property. Combinatorial Chemistry & High Throughput Screening, 18(9), 846-854.
  • Colovos, C., & Yeates, T.O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511-1519.
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357-W364.
  • Istifli, E.S., Netz, P.A., Sihoglu Tepe, A., Husunet, M.T., Sarikurkcu, C., & Tepe, B. (2020). In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1840444.
  • Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., & Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486.
  • Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., & Mark, A.E. (2011). An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026-4037.
  • Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer-Aided Molecular Design, 18(3), 167-173.
  • Pires, D.E., Blundell, T.L., & Ascher, D.B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072.
  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173-175.
  • Sanner, M.F. (1999). Python: a programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • Sharma, S. (1995). Applied multivariate techniques. New York, United States: John Wiley & Sons, Inc.

Molecular interactions of some phenolics with 2019-nCoV and related pathway elements

Year 2021, , 246 - 271, 10.09.2021
https://doi.org/10.21448/ijsm.958597

Abstract

As of June 2021, the novel coronavirus disease (SARS-CoV-2) resulted in 180 million cases worldwide and resulted in the death of approximately 4 million people. However, an effective pharmaceutical with low side effects that can be used in the treatment of SARS-CoV-2 infection has not been developed yet. The aim of this computational study was to analyze the interactions of twenty-two hydroxycinnamic acid and hydroxybenzoic acid derivatives with the SARS-CoV-2 receptor binding domain (RBD) and host organism's proteases, transmembrane serine protease 2 (TMPRSS2), and cathepsin B and L (CatB/L). According to the RBCI analysis, the ligands with the highest affinity against 4 enzymes in the molecular docking study were determined as 1-caffeoyl-β-D-glucose, rosmarinic acid, 3-p-coumaroylquinic acid and chlorogenic acid. It has also been observed that these compounds interacted more strongly with spike RBD, CatB and CatL enzymes. Although the top-ranked ligand, 1-caffeoyl-β-D-glucose, violated the drug-likeness criteria at 1 point (NH or OH>5) and ADMET in terms of AMES toxicity, the second top-ranked ligand rosmarinic acid neither violated drug-likeness nor exhibited incompatibility in terms of ADMET. In conclusion, with its anti-inflammatory properties, rosmarinic acid can be considered and further investigated as a plant-based pharmaceutical that can offer a treatment option in SARS-CoV-2 infection. However, our findings should be supported by additional in vitro and in vivo studies.

Project Number

2028MAP2

References

  • Adem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A.F., Ali, M., Abdalla, M., Ibrahim, I.M., & Elfiky, A.A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 85, 153310.
  • Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., & Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452.
  • Cano-Avendaño, B.A., Carmona-Hernandez, J.C., Rodriguez, R.E., Taborda-Ocampo, G., & González-Correa, C.H. (2021). Chemical properties of polyphenols: a reviewfocusedonanti-inflammatory and anti-viral medical application. Biomedicine, 41(1), 3-8.
  • Chavez, J.H., Leal, P.C., Yunes, R.A., Nunes, R.J., Barardi, C.R., Pinto, A.R., Simoes, C.M., & Zanetti, C.R. (2006). Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Veterinary Microbiology, 116(1-3), 53-59.
  • Coban, M.A., Morrison, J., Maharjan, S., Hernandez Medina, D.H., Li, W., Zhang, Y.S., Freeman, W.D., Radisky, E.S., Le Roch, K.G., & Weisend, C.M. (2021). Attacking COVID-19 progression using multi-drug therapy for synergetic target engagement. Biomolecules, 11(6), 787.
  • Dong, Y., Tang, D., Zhang, N., Li, Y., Zhang, C., Li, L., & Li, M. (2013). Phytochemicals and biological studies of plants in genus Hedysarum. Chemistry Central Journal, 7(1), 1-13.
  • Fu, Y., Cheng, Y., & Wu, Y. (2020). Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica, 35(3), 266-271.
  • Georgousaki, K., Tsafantakis, N., Gumeni, S., Lambrinidis, G., González-Menéndez, V., Tormo, J.R., Genilloud, O., Trougakos, I.P., & Fokialakis, N. (2020). Biological evaluation and in silico study of benzoic acid derivatives from Bjerkandera adusta targeting proteostasis network modules. Molecules, 25(3), 666.
  • Guan, M., Guo, L., Ma, H., Wu, H., & Fan, X. (2021). Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evidence-Based Complementary and Alternative Medicine, 2021.
  • Guler, H.I., Fulya, A., Zehra, C., Yakup, K., Belduz, A.O., Canakci, S., & Kolayli, S. (2021). Targeting CoV-2 Spike RBD and ACE-2 Interaction with Flavonoids of Anatolian Propolis by in silico and in vitro Studies in terms of possible COVID-19 therapeutics. BioRxiv, https://doi.org/10.1101/2021.02.22.432207.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., & Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.
  • Huang, I.-C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Dermody, T.S., Harrison, S.C., & Dormitzer, P.R. (2006). SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. Journal of Biological Chemistry, 281(6), 3198-3203.
  • Jahan, I., & Onay, A. (2020). Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish Journal of Biology, 44(3), 228-241.
  • Kumar Verma, A., Kumar, V., Singh, S., Goswami, B.C., Camps, I., Sekar, A., Yoon, S., & Lee, K.W. (2021). Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine & Pharmacotherapy, 137, 111356.
  • Lee, J., Jung, E., Kim, Y., Lee, J., Park, J., Hong, S., Hyun, C.-G., Park, D., & Kim, Y.S. (2006). Rosmarinic acid as a downstream inhibitor of IKK-β in TNF-α-induced upregulation of CCL11 and CCR3. British Journal of Pharmacology, 148(3), 366-375.
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562-569.
  • Li, F., Li, W., Farzan, M., & Harrison, S.C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742), 1864-1868.
  • Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., & Greenough, T.C. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454.
  • Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165-169.
  • Maalik, A., Bukhari, S.M., Zaidi, A., Shah, K.H., & Khan, F.A. (2016). Chlorogenic acid: a pharmacologically potent molecule. Acta Poloniae Pharmaceutica, 73(4), 851-854.
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146-157.
  • Mohammad, A., Alshawaf, E., Marafie, S.K., Abu-Farha, M., Al-Mulla, F., & Abubaker, J. (2021). Molecular Simulation-Based Investigation of Highly Potent Natural Products to Abrogate Formation of the nsp10-nsp16 Complex of SARS-CoV-2. Biomolecules, 11(4), https://doi.org/10.3390/biom11040573.
  • Nam, H.-H., Kim, J.S., Lee, J., Seo, Y.H., Kim, H.S., Ryu, S.M., Choi, G., Moon, B.C., & Lee, A.Y. (2020). Pharmacological Effects of Agastache rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules, 10(9), 1298.
  • Piccolella, S., Crescente, G., Faramarzi, S., Formato, M., Pecoraro, M.T., & Pacifico, S. (2020). Polyphenols vs. coronaviruses: how far has research moved forward? Molecules, 25(18), 4103.
  • Ruibo, L., Narita, R., Nishimura, H., Marumoto, S., Yamamoto, S., Ouda, R., Yatagai, M., Fujita, T., & Watanabe, T. (2017). Antiviral Activity of Phenolic Derivatives in Pyroligneous Acid from Hardwood, Softwood, and Bamboo. Sustainable Chemistry & Engineering, 6(1), 119-126.
  • Srivastava, N., Garg, P., Srivastava, P., & Seth, P.K. (2021). A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ, 9, e11171.
  • Sudhan, D.R., & Siemann, D.W. (2015). Cathepsin L targeting in cancer treatment. Pharmacology & Therapeutics, 155, 105-116.
  • Surucic, R., Tubic, B., Stojiljkovic, M.P., Djuric, D.M., Travar, M., Grabez, M., Savikin, K., & Skrbic, R. (2021). Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Molecular and Cellular Biochemistry, 476(2), 1179-1193.
  • Taguchi, R., Hatayama, K., Takahashi, T., Hayashi, T., Sato, Y., Sato, D., Ohta, K., Nakano, H., Seki, C., & Endo, Y. (2017). Structure–activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. European Journal of Medicinal Chemistry, 138, 1066-1075.
  • Worldometers.info. (2021). COVID-19 Coronavirus Pandemic Retrieved 20.06.2021
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., & Wang, J. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27, 325-328.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., & Pei, Y.-Y. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.
  • Wu, Y.H., Zhang, B.Y., Qiu, L.P., Guan, R.F., Ye, Z.H., & Yu, X.P. (2017). Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Current Medicinal Chemistry, 24(38), 4279-4302.
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. Archives of Virology, 162(9), 2539-2551.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., & Lu, R. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421.
  • Chandran, U., Mehendale, N., Tillu, G., & Patwardhan, B. (2015). Network Pharmacology of Ayurveda Formulation Triphala with Special Reference to Anti-Cancer Property. Combinatorial Chemistry & High Throughput Screening, 18(9), 846-854.
  • Colovos, C., & Yeates, T.O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511-1519.
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357-W364.
  • Istifli, E.S., Netz, P.A., Sihoglu Tepe, A., Husunet, M.T., Sarikurkcu, C., & Tepe, B. (2020). In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1840444.
  • Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., & Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486.
  • Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., & Mark, A.E. (2011). An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026-4037.
  • Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer-Aided Molecular Design, 18(3), 167-173.
  • Pires, D.E., Blundell, T.L., & Ascher, D.B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072.
  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173-175.
  • Sanner, M.F. (1999). Python: a programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • Sharma, S. (1995). Applied multivariate techniques. New York, United States: John Wiley & Sons, Inc.
There are 48 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Erman Salih İstifli 0000-0003-2189-0703

Arzuhan Şıhoğlu Tepe 0000-0001-8290-9880

Cengiz Sarıkürkcü 0000-0001-5094-2520

Bektas Tepe 0000-0001-8982-5188

Project Number 2028MAP2
Publication Date September 10, 2021
Submission Date June 28, 2021
Published in Issue Year 2021

Cite

APA İstifli, E. S., Şıhoğlu Tepe, A., Sarıkürkcü, C., Tepe, B. (2021). Molecular interactions of some phenolics with 2019-nCoV and related pathway elements. International Journal of Secondary Metabolite, 8(3), 246-271. https://doi.org/10.21448/ijsm.958597
International Journal of Secondary Metabolite

e-ISSN: 2148-6905