Research Article
BibTex RIS Cite

Phenolic profile, antioxidant and enzyme inhibitory activity of the ethyl acetate, methanol and water extracts of Capparis spinosa L.

Year 2021, , 337 - 351, 26.12.2021
https://doi.org/10.21448/ijsm.981149

Abstract

In this study, it was aimed to determine the phytochemical compositions and biological activities of ethyl acetate (EtOAc), methanol (MeOH) and water extracts obtained from the aerial parts of Capparis spinosa L. As a result of spectrophotometric analyzes, MeOH extract was found to be richer in terms of both phenolics and flavonoids compared to other extracts [81.45 mg GAEs (gallic acid equivalent)/g and 36.57 mg RE (rutin equivalent)s/g, respectively], while chromatographic analyzes showed that the extract in question contains a significant amount of hepseridin (72927.48 µg/g), quercetin (1335.88 µg/g), hyperoside (1227.73 µg/g), and 4-hydroxybenzoic acid (924.08 µg/g). Phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, Cupric Reducing Antioxidant Power (CUPRAC) and Ferric Reducing Antioxidant Power (FRAP) reducing and ferrous ion chelating activity tests resulted in superiority of MeOH extract [371.0, 44.93, 56.46, 91.77, 52.61 mg TEs (trolox equivalent)/g and 14.85 mg EDTAEs/g, respectively]. On the other hand, EtOAc extract exhibited higher activity than other extracts in acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase inhibitory activity tests [3.29, 2.12 mg GALAEs (galanthamine equivalent)/g, 541.01 and 1584.20 mg ACEs (acarbose equivalent)/g, respectively]. The tyrosinase inhibitory activity test resulted in the superiority of MeOH extract [41.90 mg KAEs (kojic acid equivalent)/g]. A strong correlation was determined between the phenolic and flavonoid contents of the extracts and their antioxidant activities.

References

  • Aggarwal, V., Tuli, H.S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., Pandey, A., Sak, K., Varol, M., Khan, M.A., & Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486-497.
  • Ahmad, I., Aqil, F., & Owais, M. (2006). Modern phytomedicine: Turning medicinal plants into drugs: John Wiley & Sons.
  • Al-Azawi, A.H., Ghaima, K.K., & Salih, H.H. (2018). Phytochemical, antibacterial and antioxidant activities of Capparis spinosa L. Cultivated in iraq. Bioscience Research, 15(3), 2611-2618.
  • Alegbe, E.O., Terali, K., Olofinsan, K.A., Surgun, S., Ogbaga, C.C., & Ajiboye, T.O. (2019). Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. Journal of Food Biochemistry, 43(7).
  • Aliyazicioglu, R., Eyupoglu, O.E., Sahin, H., Yildiz, O., & Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. African Journal of Biotechnology, 12(47), 6643-6649.
  • Amarowicz, R., Karamac, M., & Shahidi, F. (1999). Synergistic activity of capelin protein hydrolysates with synthetic antioxidants in a model system. Journal of Food Lipids, 6(4), 271-275.
  • Anwar, F., Muhammad, G., Hussain, M.A., Zengin, G., Alkharfy, K.M., Ashraf, M., & Gilani, A.H. (2016). Capparis spinosa L.: A Plant with High Potential for Development of Functional Foods and Nutraceuticals/ Pharmaceuticals. International Journal of Pharmacology, 12(3), 201-219.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçaǧ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. [Article]. International Journal of Food Sciences and Nutrition, 57(5-6), 292-304.
  • Athukorala, Y., Lee, K.W., Song, C., Ahn, C.B., Shin, T.S., Cha, Y.J., Shahidi, F., & Jeon, Y.J. (2003). Potential antioxidant activity of marine red alga Grateloupia filicina extracts. Journal of Food Lipids, 10(3), 251-265.
  • Bonina, F., Puglia, C., Ventura, D., Aquino, R., Tortora, S., Sacchi, A., Saija, A., Tomaino, A., Pellegrino, M.L., & de Capariis, P. (2002). In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L. buds. Journal of Cosmetic Science, 53(6), 321-336.
  • Cittan, M., & Çelik, A. (2018). Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. Journal of Chromatographic Science, 56(4), 336-343.
  • Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), 144-148.
  • Duke, J.A., Bogenschutz-Godwin, M.J., duCellier, J., & Duke, P.-A. (2003). CRC Handbook of Medicinal Spices: Boca Raton: CRC Press.
  • Ertas, A., Boga, M., Yilmaz, M.A., Yesil, Y., Hasimi, N., Kaya, M.S., Temel, H., & Kolak, U. (2014). Chemical Compositions by Using LC-MS/MS and GC-MS and Biological Activities of Sedum sediforme (Jacq.) Pau. Journal of Agricultural and Food Chemistry, 62(20), 4601-4609.
  • Fu, X.P., Aisa, H.A., Abdurahim, M., Yili, A., Aripova, S.F., & Tashkhodzhaev, B. (2007). Chemical composition of Capparis spinosa fruit. Chemistry of Natural Compounds, 43(2), 181-183.
  • Fu, X.P., Wu, T., Abdurahim, M., Su, Z., Hou, X.L., Aisa, H.A., & Wu, H. (2008). New spermidine alkaloids from Capparis spinosa roots. Phytochemistry Letters, 1(1), 59-62.
  • Gao, Y.T., Fang, L.Y., Wang, X.X., Lan, R.N., Wang, M.Y., Du, G., Guan, W.Q., Liu, J.F., Brennan, M., Guo, H.X., Brennan, C., & Zhao, H. (2019). Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces cerevisiae as a Model. Molecules, 24(4), 788.
  • Guardia, T., Rotelli, A.E., Juarez, A.O., & Pelzer, L.E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco, 56(9), 683-687.
  • Hao, X.L., Kang, Y., Li, J.K., Li, Q.S., Liu, E.L., & Liu, X.X. (2016). Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells. Molecular Medicine Reports, 14(1), 399-405.
  • He, J.T., Li, H.Q., Li, G.F., & Yang, L. (2019). Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats. Biotechnology & Biotechnological Equipment, 33(1), 798-806.
  • Huang, J.Z., Tong, X., Zhang, L., Zhang, Y., Wang, L., Wang, D.G., Zhang, S.J., & Fan, H. (2020). Hyperoside Attenuates Bleomycin-Induced Pulmonary Fibrosis Development in Mice. Frontiers in Pharmacology, 11, 550955.
  • Hung, T.M., Na, M., Dat, N.T., Ngoc, T.M., Youn, U., Kim, H.J., Min, B.-S., Lee, J., & Bae, K. (2008). Cholinesterase inhibitory and anti-amnesic activity of alkaloids from Corydalis turtschaninovii. Journal of Ethnopharmacology, 119(1), 74-80.
  • Kim, J., Wie, M.B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: a review. Anatomy & Cell Biology, 52(4), 369-377.
  • Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C., & Tepe, B. (2016). Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, 204-212.
  • Ku, S.K., Kwak, S., Kwon, O.J., & Bae, J.S. (2014). Hyperoside Inhibits High-Glucose-Induced Vascular Inflammation In Vitro and In Vivo. Inflammation, 37(5), 1389-1400.
  • Kubo, I., & Kinst-Hori, I. (1999). Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. Journal of Agricultural and Food Chemistry, 47(10), 4121-4125.
  • Kulisic-Bilusic, T., Schmöller, I., Schnäbele, K., Siracusa, L., & Ruberto, G. (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry, 132(1), 261-267.
  • Likhitwitayawuid, K. (2008). Stilbenes with tyrosinase inhibitory activity. Current Science, 94(1), 44-52.
  • Liu, S., Ai, Z., Qu, F., Chen, Y., & Ni, D. (2017). Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chemistry, 234, 168-173.
  • Liyana-Pathirana, C., Dexter, J., & Shahidi, F. (2006). Antioxidant properties of wheat as affected by pearling. Journal of Agricultural and Food Chemistry, 54(17), 6177-6184.
  • Loizzo, M.R., Tundis, R., Conforti, F., Menichini, F., Bonesi, M., Nadjafi, F., Frega, N.G., & Menichini, F. (2010). Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutrition Research, 30(12), 823-830.
  • Maisuthisakul, P., & Gordon, M.H. (2009). Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chemistry, 117(2), 332-341.
  • Manuja, R., Sachdeva, S., Jain, A., & Chaudhary, J. (2013). A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. International Journal of Pharmaceutical Sciences Review and Research, 22(2), 109-115.
  • Matsuyama, K., Villareal, M.O., El Omri, A., Han, J., Kchouk, M., & Isoda, H. (2009). Effect of Tunisian Capparis spinosa L. extract on melanogenesis in B16 murine melanoma cells. Journal of Natural Medicines, 63(4), 468-472.
  • Mekinic, I.G., Simat, V., Ljubenkov, I., Burcul, F., Grga, M., Mihajlovski, M., Loncar, R., Katalinic, V., & Skroza, D. (2018). Influence of the vegetation period on sea fennel, Crithmum maritimum L. (Apiaceae), phenolic composition, antioxidant and anticholinesterase activities. Industrial Crops and Products, 124, 947-953.
  • Mollica, A., Stefanucci, A., Macedonio, G., Locatelli, M., Luisi, G., Novellino, E., & Zengin, G. (2019). Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. South African Journal of Botany, 120, 135-140.
  • Mollica, A., Zengin, G., Locatelli, M., Stefanucci, A., Mocan, A., Macedonio, G., Carradori, S., Onaolapo, O., Onaolapo, A., Adegoke, J., Olaniyan, M., Aktumsek, A., & Novellino, E. (2017). Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. Journal of Functional Foods, 35, 32-42.
  • Musa, A.E., Omyan, G., Esmaely, F., & Shabeeb, D. (2019). Radioprotective Effect of Hesperidin: A Systematic Review. Medicina-Lithuania, 55(7).
  • Nadaroglu, H., Demir, N., & Demir, Y. (2009). Antioxidant and Radical Scavenging Activities of Capsules of Caper (Capparis spinosa). Asian Journal of Chemistry, 21(7), 5123-5134.
  • Ng, Z.X., Kuppusamy, U.R., Tajunisah, I., Fong, K.C.S., & Chua, K.H. (2012). Investigation of SLC2A1 26177A/G gene polymorphism via high resolution melting curve analysis in Malaysian patients with diabetic retinopathy. Journal of Diabetes and its Complications, 26(5), 388-392.
  • Ng, Z.X., Yong, P.H., & Lim, S.Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155, 112815.
  • Ogunwa, T.H., Adeyelu, T.T., & Fasimoye, R.Y. (2017). Exploring the molecular mechanism of interaction and inhibitory potential of Capparis spinosa L. phytoconstituents on diabetes-related targets. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(5), 237-248.
  • Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying technologies: vehicle to high-quality herbs. Food Engineering Reviews, 8(2), 164-180.
  • Ozer, M.S., Kirkan, B., Sarikurkcu, C., Cengiz, M., Ceylan, O., Atilgan, N., & Tepe, B. (2018). Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Industrial Crops and Products, 111, 179-184.
  • Pinho, B.R., Ferreres, F., Valentão, P., & Andrade, P.B. (2013). Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. Journal of Pharmacy and Pharmacology, 65(12), 1681-1700.
  • Rahimi, V.B., Rajabian, A., Rajabi, H., Vosough, E.M., Mirkarimi, H.R., Hasanpour, M., Iranshahi, M., Rakhshandeh, H., & Askari, V.R. (2020). The effects of hydro-ethanolic extract of Capparis spinosa (C. spinosa) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairment: Evidence from in vivo and in vitro studies. Journal of Ethnopharmacology, 256, 112706.
  • Rasouli, H., Hosseini-Ghazvini, S.M.-B., Adibi, H., & Khodarahmi, R. (2017). Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8(5), 1942-1954.
  • Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal Of Food Microbiology, 56(1), 3-12.
  • Romeo, V., Ziino, M., Giuffrida, D., Condurso, C., & Verzera, A. (2007). Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS. Food Chemistry, 101(3), 1272-1278.
  • Saltan, F.Z., Okutucu, B., Canbay, H.S., & Ozel, D. (2017). In vitro alpha-Glucosidase and alpha-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts. Eurasian Journal of Analytical Chemistry, 12(2), 117-126.
  • Samy, J., Sugumaran, M., Lee, K.L.W., & Wong, K.M. (2005). Herbs of Malaysia : an introduction to the medicinal, culinary, aromatic and cosmetic use of herbs. Shah Alam, Selangor: Times Editions.
  • Sarikurkcu, C., Locatelli, M., Mocan, A., Zengin, G., & Kirkan, B. (2020). Phenolic Profile and Bioactivities of Sideritis perfoliata L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Frontiers in Pharmacology, 10, 1642.
  • Selway, J.W.T. (1986). Antiviral activity of flavones and flavans. Progress in Clinical and Biological Research, 213, 521-536.
  • Shahidi, F., & Amarowicz, R. (1996). Antioxidant activity of protein hydrolyzates from aquatic species. Journal of the American Oil Chemists’ Society, 73(9), 1197-1199.
  • Shahidi, F., & Zhong, Y. (2007). Measurement of Antioxidant Activity in Food and Biological Systems Antioxidant Measurement and Applications (Vol. 956, pp. 36-66): American Chemical Society.
  • Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781.
  • Snoussi, M., Najett, M., Boumediene, M., & Abdelallah, M. (2017). In-vitro and In-vivo antifungal activity of Capparis spinosa against eight storage molds, a causal agent of wheat alteration. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(6), 13-18.
  • Stefanucci, A., Zengin, G., Locatelli, M., Macedonio, G., Wang, C.K., Novellino, E., Mahomoodally, M.F., & Mollica, A. (2018). Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food and Chemical Toxicology, 118, 181-189.
  • Sun, T., & Tanumihardjo, S.A. (2007). An integrated approach to evaluate food antioxidant capacity. Journal of Food Science, 72(9), R159-R165.
  • Szwajgier, D., & Borowiec, K. (2012). Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of the Institute of Brewing, 118(1), 40-48.
  • Tan, Y., Chang, S.K.C., & Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259-268.
  • Tepe, B., Sarikurkcu, C., Berk, S., Alim, A., & Akpulat, H.A. (2011). Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Records of Natural Products, 5(3), 208-220.
  • Tlili, N., Elfalleh, W., Saadaoui, E., Khaldi, A., Triki, S., & Nasri, N. (2011). The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia, 82(2), 93-101.
  • Tlili, N., Feriani, A., Saadoui, E., Nasri, N., & Khaldi, A. (2017). Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomedicine & Pharmacotherapy, 87, 171-179.
  • Trombetta, D., Occhiuto, F., Perri, D., Puglia, C., Santagati, N.A., Pasquale, A.D., Saija, A., & Bonina, F. (2005). Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds. Phytotherapy Research, 19(1), 29-33.
  • Williams, R.J., Spencer, J.P.E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine, 36(7), 838-849.
  • Wojdylo, A., Nowicka, P., Grimalt, M., Legua, P., Almansa, M.S., Amoros, A., Carbonell-Barrachina, A.A., & Hernandez, F. (2019). Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants-Basel, 8(12).
  • Yanishlieva, N.V., & Marinova, E.M. (2001). Stabilisation of edible oils with natural antioxidants. European Journal of Lipid Science and Technology, 103(11), 752-767.
  • Yatao, X., Saeed, M., Kamboh, A.A., Arain, M.A., Ahmad, F., Suheryani, I., Abd El-Hack, M.E., Alagawany, M., Shah, Q.A., & Chao, S. (2018). The potentially beneficial effects of supplementation with hesperidin in poultry diets. Worlds Poultry Science Journal, 74(2), 265-276.
  • Yu, L., Yang, J.H., Wang, X., Jiang, B., Sun, Y.X., & Ji, Y.B. (2017). Antioxidant and antitumor activities of Capparis spinosa L. and the related mechanisms. Oncology Reports, 37(1), 357-367.
  • Zengin, G., Uren, M.C., Kocak, M.S., Gungor, H., Locatelli, M., Aktumsek, A., & Sarikurkcu, C. (2017). Antioxidant and Enzyme Inhibitory Activities of Extracts from Wild Mushroom Species from Turkey. International Journal of Medicinal Mushrooms, 19(4), 327-336.
  • Zhang, H., Lei, Z., Tian, R., & Wang, Z. (2018). Polyamidoamine starburst dendrimer-activated chromatography paper-based assay for sensitive detection of telomerase activity. Talanta, 178, 116-121.

Phenolic profile, antioxidant and enzyme inhibitory activity of the ethyl acetate, methanol and water extracts of Capparis spinosa L.

Year 2021, , 337 - 351, 26.12.2021
https://doi.org/10.21448/ijsm.981149

Abstract

In this study, it was aimed to determine the phytochemical compositions and biological activities of ethyl acetate (EtOAc), methanol (MeOH) and water extracts obtained from the aerial parts of Capparis spinosa L. As a result of spectrophotometric analyzes, MeOH extract was found to be richer in terms of both phenolics and flavonoids compared to other extracts [81.45 mg GAEs (gallic acid equivalent)/g and 36.57 mg RE (rutin equivalent)s/g, respectively], while chromatographic analyzes showed that the extract in question contains a significant amount of hepseridin (72927.48 µg/g), quercetin (1335.88 µg/g), hyperoside (1227.73 µg/g), and 4-hydroxybenzoic acid (924.08 µg/g). Phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, Cupric Reducing Antioxidant Power (CUPRAC) and Ferric Reducing Antioxidant Power (FRAP) reducing and ferrous ion chelating activity tests resulted in superiority of MeOH extract [371.0, 44.93, 56.46, 91.77, 52.61 mg TEs (trolox equivalent)/g and 14.85 mg EDTAEs/g, respectively]. On the other hand, EtOAc extract exhibited higher activity than other extracts in acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase inhibitory activity tests [3.29, 2.12 mg GALAEs (galanthamine equivalent)/g, 541.01 and 1584.20 mg ACEs (acarbose equivalent)/g, respectively]. The tyrosinase inhibitory activity test resulted in the superiority of MeOH extract [41.90 mg KAEs (kojic acid equivalent)/g]. A strong correlation was determined between the phenolic and flavonoid contents of the extracts and their antioxidant activities.

References

  • Aggarwal, V., Tuli, H.S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., Pandey, A., Sak, K., Varol, M., Khan, M.A., & Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486-497.
  • Ahmad, I., Aqil, F., & Owais, M. (2006). Modern phytomedicine: Turning medicinal plants into drugs: John Wiley & Sons.
  • Al-Azawi, A.H., Ghaima, K.K., & Salih, H.H. (2018). Phytochemical, antibacterial and antioxidant activities of Capparis spinosa L. Cultivated in iraq. Bioscience Research, 15(3), 2611-2618.
  • Alegbe, E.O., Terali, K., Olofinsan, K.A., Surgun, S., Ogbaga, C.C., & Ajiboye, T.O. (2019). Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. Journal of Food Biochemistry, 43(7).
  • Aliyazicioglu, R., Eyupoglu, O.E., Sahin, H., Yildiz, O., & Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. African Journal of Biotechnology, 12(47), 6643-6649.
  • Amarowicz, R., Karamac, M., & Shahidi, F. (1999). Synergistic activity of capelin protein hydrolysates with synthetic antioxidants in a model system. Journal of Food Lipids, 6(4), 271-275.
  • Anwar, F., Muhammad, G., Hussain, M.A., Zengin, G., Alkharfy, K.M., Ashraf, M., & Gilani, A.H. (2016). Capparis spinosa L.: A Plant with High Potential for Development of Functional Foods and Nutraceuticals/ Pharmaceuticals. International Journal of Pharmacology, 12(3), 201-219.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçaǧ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. [Article]. International Journal of Food Sciences and Nutrition, 57(5-6), 292-304.
  • Athukorala, Y., Lee, K.W., Song, C., Ahn, C.B., Shin, T.S., Cha, Y.J., Shahidi, F., & Jeon, Y.J. (2003). Potential antioxidant activity of marine red alga Grateloupia filicina extracts. Journal of Food Lipids, 10(3), 251-265.
  • Bonina, F., Puglia, C., Ventura, D., Aquino, R., Tortora, S., Sacchi, A., Saija, A., Tomaino, A., Pellegrino, M.L., & de Capariis, P. (2002). In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L. buds. Journal of Cosmetic Science, 53(6), 321-336.
  • Cittan, M., & Çelik, A. (2018). Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. Journal of Chromatographic Science, 56(4), 336-343.
  • Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), 144-148.
  • Duke, J.A., Bogenschutz-Godwin, M.J., duCellier, J., & Duke, P.-A. (2003). CRC Handbook of Medicinal Spices: Boca Raton: CRC Press.
  • Ertas, A., Boga, M., Yilmaz, M.A., Yesil, Y., Hasimi, N., Kaya, M.S., Temel, H., & Kolak, U. (2014). Chemical Compositions by Using LC-MS/MS and GC-MS and Biological Activities of Sedum sediforme (Jacq.) Pau. Journal of Agricultural and Food Chemistry, 62(20), 4601-4609.
  • Fu, X.P., Aisa, H.A., Abdurahim, M., Yili, A., Aripova, S.F., & Tashkhodzhaev, B. (2007). Chemical composition of Capparis spinosa fruit. Chemistry of Natural Compounds, 43(2), 181-183.
  • Fu, X.P., Wu, T., Abdurahim, M., Su, Z., Hou, X.L., Aisa, H.A., & Wu, H. (2008). New spermidine alkaloids from Capparis spinosa roots. Phytochemistry Letters, 1(1), 59-62.
  • Gao, Y.T., Fang, L.Y., Wang, X.X., Lan, R.N., Wang, M.Y., Du, G., Guan, W.Q., Liu, J.F., Brennan, M., Guo, H.X., Brennan, C., & Zhao, H. (2019). Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces cerevisiae as a Model. Molecules, 24(4), 788.
  • Guardia, T., Rotelli, A.E., Juarez, A.O., & Pelzer, L.E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco, 56(9), 683-687.
  • Hao, X.L., Kang, Y., Li, J.K., Li, Q.S., Liu, E.L., & Liu, X.X. (2016). Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells. Molecular Medicine Reports, 14(1), 399-405.
  • He, J.T., Li, H.Q., Li, G.F., & Yang, L. (2019). Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats. Biotechnology & Biotechnological Equipment, 33(1), 798-806.
  • Huang, J.Z., Tong, X., Zhang, L., Zhang, Y., Wang, L., Wang, D.G., Zhang, S.J., & Fan, H. (2020). Hyperoside Attenuates Bleomycin-Induced Pulmonary Fibrosis Development in Mice. Frontiers in Pharmacology, 11, 550955.
  • Hung, T.M., Na, M., Dat, N.T., Ngoc, T.M., Youn, U., Kim, H.J., Min, B.-S., Lee, J., & Bae, K. (2008). Cholinesterase inhibitory and anti-amnesic activity of alkaloids from Corydalis turtschaninovii. Journal of Ethnopharmacology, 119(1), 74-80.
  • Kim, J., Wie, M.B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: a review. Anatomy & Cell Biology, 52(4), 369-377.
  • Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C., & Tepe, B. (2016). Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, 204-212.
  • Ku, S.K., Kwak, S., Kwon, O.J., & Bae, J.S. (2014). Hyperoside Inhibits High-Glucose-Induced Vascular Inflammation In Vitro and In Vivo. Inflammation, 37(5), 1389-1400.
  • Kubo, I., & Kinst-Hori, I. (1999). Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. Journal of Agricultural and Food Chemistry, 47(10), 4121-4125.
  • Kulisic-Bilusic, T., Schmöller, I., Schnäbele, K., Siracusa, L., & Ruberto, G. (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry, 132(1), 261-267.
  • Likhitwitayawuid, K. (2008). Stilbenes with tyrosinase inhibitory activity. Current Science, 94(1), 44-52.
  • Liu, S., Ai, Z., Qu, F., Chen, Y., & Ni, D. (2017). Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chemistry, 234, 168-173.
  • Liyana-Pathirana, C., Dexter, J., & Shahidi, F. (2006). Antioxidant properties of wheat as affected by pearling. Journal of Agricultural and Food Chemistry, 54(17), 6177-6184.
  • Loizzo, M.R., Tundis, R., Conforti, F., Menichini, F., Bonesi, M., Nadjafi, F., Frega, N.G., & Menichini, F. (2010). Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutrition Research, 30(12), 823-830.
  • Maisuthisakul, P., & Gordon, M.H. (2009). Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chemistry, 117(2), 332-341.
  • Manuja, R., Sachdeva, S., Jain, A., & Chaudhary, J. (2013). A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. International Journal of Pharmaceutical Sciences Review and Research, 22(2), 109-115.
  • Matsuyama, K., Villareal, M.O., El Omri, A., Han, J., Kchouk, M., & Isoda, H. (2009). Effect of Tunisian Capparis spinosa L. extract on melanogenesis in B16 murine melanoma cells. Journal of Natural Medicines, 63(4), 468-472.
  • Mekinic, I.G., Simat, V., Ljubenkov, I., Burcul, F., Grga, M., Mihajlovski, M., Loncar, R., Katalinic, V., & Skroza, D. (2018). Influence of the vegetation period on sea fennel, Crithmum maritimum L. (Apiaceae), phenolic composition, antioxidant and anticholinesterase activities. Industrial Crops and Products, 124, 947-953.
  • Mollica, A., Stefanucci, A., Macedonio, G., Locatelli, M., Luisi, G., Novellino, E., & Zengin, G. (2019). Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. South African Journal of Botany, 120, 135-140.
  • Mollica, A., Zengin, G., Locatelli, M., Stefanucci, A., Mocan, A., Macedonio, G., Carradori, S., Onaolapo, O., Onaolapo, A., Adegoke, J., Olaniyan, M., Aktumsek, A., & Novellino, E. (2017). Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. Journal of Functional Foods, 35, 32-42.
  • Musa, A.E., Omyan, G., Esmaely, F., & Shabeeb, D. (2019). Radioprotective Effect of Hesperidin: A Systematic Review. Medicina-Lithuania, 55(7).
  • Nadaroglu, H., Demir, N., & Demir, Y. (2009). Antioxidant and Radical Scavenging Activities of Capsules of Caper (Capparis spinosa). Asian Journal of Chemistry, 21(7), 5123-5134.
  • Ng, Z.X., Kuppusamy, U.R., Tajunisah, I., Fong, K.C.S., & Chua, K.H. (2012). Investigation of SLC2A1 26177A/G gene polymorphism via high resolution melting curve analysis in Malaysian patients with diabetic retinopathy. Journal of Diabetes and its Complications, 26(5), 388-392.
  • Ng, Z.X., Yong, P.H., & Lim, S.Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155, 112815.
  • Ogunwa, T.H., Adeyelu, T.T., & Fasimoye, R.Y. (2017). Exploring the molecular mechanism of interaction and inhibitory potential of Capparis spinosa L. phytoconstituents on diabetes-related targets. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(5), 237-248.
  • Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying technologies: vehicle to high-quality herbs. Food Engineering Reviews, 8(2), 164-180.
  • Ozer, M.S., Kirkan, B., Sarikurkcu, C., Cengiz, M., Ceylan, O., Atilgan, N., & Tepe, B. (2018). Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Industrial Crops and Products, 111, 179-184.
  • Pinho, B.R., Ferreres, F., Valentão, P., & Andrade, P.B. (2013). Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. Journal of Pharmacy and Pharmacology, 65(12), 1681-1700.
  • Rahimi, V.B., Rajabian, A., Rajabi, H., Vosough, E.M., Mirkarimi, H.R., Hasanpour, M., Iranshahi, M., Rakhshandeh, H., & Askari, V.R. (2020). The effects of hydro-ethanolic extract of Capparis spinosa (C. spinosa) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairment: Evidence from in vivo and in vitro studies. Journal of Ethnopharmacology, 256, 112706.
  • Rasouli, H., Hosseini-Ghazvini, S.M.-B., Adibi, H., & Khodarahmi, R. (2017). Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8(5), 1942-1954.
  • Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal Of Food Microbiology, 56(1), 3-12.
  • Romeo, V., Ziino, M., Giuffrida, D., Condurso, C., & Verzera, A. (2007). Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS. Food Chemistry, 101(3), 1272-1278.
  • Saltan, F.Z., Okutucu, B., Canbay, H.S., & Ozel, D. (2017). In vitro alpha-Glucosidase and alpha-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts. Eurasian Journal of Analytical Chemistry, 12(2), 117-126.
  • Samy, J., Sugumaran, M., Lee, K.L.W., & Wong, K.M. (2005). Herbs of Malaysia : an introduction to the medicinal, culinary, aromatic and cosmetic use of herbs. Shah Alam, Selangor: Times Editions.
  • Sarikurkcu, C., Locatelli, M., Mocan, A., Zengin, G., & Kirkan, B. (2020). Phenolic Profile and Bioactivities of Sideritis perfoliata L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Frontiers in Pharmacology, 10, 1642.
  • Selway, J.W.T. (1986). Antiviral activity of flavones and flavans. Progress in Clinical and Biological Research, 213, 521-536.
  • Shahidi, F., & Amarowicz, R. (1996). Antioxidant activity of protein hydrolyzates from aquatic species. Journal of the American Oil Chemists’ Society, 73(9), 1197-1199.
  • Shahidi, F., & Zhong, Y. (2007). Measurement of Antioxidant Activity in Food and Biological Systems Antioxidant Measurement and Applications (Vol. 956, pp. 36-66): American Chemical Society.
  • Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781.
  • Snoussi, M., Najett, M., Boumediene, M., & Abdelallah, M. (2017). In-vitro and In-vivo antifungal activity of Capparis spinosa against eight storage molds, a causal agent of wheat alteration. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(6), 13-18.
  • Stefanucci, A., Zengin, G., Locatelli, M., Macedonio, G., Wang, C.K., Novellino, E., Mahomoodally, M.F., & Mollica, A. (2018). Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food and Chemical Toxicology, 118, 181-189.
  • Sun, T., & Tanumihardjo, S.A. (2007). An integrated approach to evaluate food antioxidant capacity. Journal of Food Science, 72(9), R159-R165.
  • Szwajgier, D., & Borowiec, K. (2012). Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of the Institute of Brewing, 118(1), 40-48.
  • Tan, Y., Chang, S.K.C., & Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259-268.
  • Tepe, B., Sarikurkcu, C., Berk, S., Alim, A., & Akpulat, H.A. (2011). Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Records of Natural Products, 5(3), 208-220.
  • Tlili, N., Elfalleh, W., Saadaoui, E., Khaldi, A., Triki, S., & Nasri, N. (2011). The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia, 82(2), 93-101.
  • Tlili, N., Feriani, A., Saadoui, E., Nasri, N., & Khaldi, A. (2017). Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomedicine & Pharmacotherapy, 87, 171-179.
  • Trombetta, D., Occhiuto, F., Perri, D., Puglia, C., Santagati, N.A., Pasquale, A.D., Saija, A., & Bonina, F. (2005). Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds. Phytotherapy Research, 19(1), 29-33.
  • Williams, R.J., Spencer, J.P.E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine, 36(7), 838-849.
  • Wojdylo, A., Nowicka, P., Grimalt, M., Legua, P., Almansa, M.S., Amoros, A., Carbonell-Barrachina, A.A., & Hernandez, F. (2019). Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants-Basel, 8(12).
  • Yanishlieva, N.V., & Marinova, E.M. (2001). Stabilisation of edible oils with natural antioxidants. European Journal of Lipid Science and Technology, 103(11), 752-767.
  • Yatao, X., Saeed, M., Kamboh, A.A., Arain, M.A., Ahmad, F., Suheryani, I., Abd El-Hack, M.E., Alagawany, M., Shah, Q.A., & Chao, S. (2018). The potentially beneficial effects of supplementation with hesperidin in poultry diets. Worlds Poultry Science Journal, 74(2), 265-276.
  • Yu, L., Yang, J.H., Wang, X., Jiang, B., Sun, Y.X., & Ji, Y.B. (2017). Antioxidant and antitumor activities of Capparis spinosa L. and the related mechanisms. Oncology Reports, 37(1), 357-367.
  • Zengin, G., Uren, M.C., Kocak, M.S., Gungor, H., Locatelli, M., Aktumsek, A., & Sarikurkcu, C. (2017). Antioxidant and Enzyme Inhibitory Activities of Extracts from Wild Mushroom Species from Turkey. International Journal of Medicinal Mushrooms, 19(4), 327-336.
  • Zhang, H., Lei, Z., Tian, R., & Wang, Z. (2018). Polyamidoamine starburst dendrimer-activated chromatography paper-based assay for sensitive detection of telomerase activity. Talanta, 178, 116-121.
There are 72 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Bulent Kirkan This is me 0000-0003-3462-0681

Olcay Ceylan This is me 0000-0002-4371-2126

Cengiz Sarıkürkcü 0000-0001-5094-2520

Bektas Tepe 0000-0001-8982-5188

Publication Date December 26, 2021
Submission Date August 10, 2021
Published in Issue Year 2021

Cite

APA Kirkan, B., Ceylan, O., Sarıkürkcü, C., Tepe, B. (2021). Phenolic profile, antioxidant and enzyme inhibitory activity of the ethyl acetate, methanol and water extracts of Capparis spinosa L. International Journal of Secondary Metabolite, 8(4), 337-351. https://doi.org/10.21448/ijsm.981149
International Journal of Secondary Metabolite

e-ISSN: 2148-6905