Research Article
PDF Mendeley EndNote BibTex Cite

Phenolic Constituents of Vaccinium Species from Both Natural Resources and Micropropagated Plantlets

Year 2018, Volume 5, Issue 4, 304 - 311, 29.12.2018
https://doi.org/10.21448/ijsm.445551

Abstract

Fruits and leaves of Vaccinium species have rich bioactive phytochemicals. These bioactive phytochemicals make these plants particularly valuable for the medical and food industry. This novel approach was designed to determine the phenolic content of Vaccinium species obtained from both micropropagated and naturally growing leaves. An efficient micropropagation protocol was developed to produce tree Vaccinium species plantlets via direct organogenesis. Lateral buds containing one or two leaves were cultured in McCown woody plant medium (WPM), supplemented with zeatin/indole-3-butyric acid (IBA) (1.0/0.1 mg L–1). In conclusion, Protocatechuic acid, Chlorogenic acid, Syringic acid and Routine phenolic compounds were determined in significant amounts. It has been determined that the phenolic compounds of leaves produced in tissue cultures is higher than the phenolic compounds obtained from naturally growing leaves.

References

  • [1] Vučic´, D. M., Petkovic´, M. R., Rodic´ -Grabovac, B. B., Stefanovic´, O. D., Vasic´, S. M. & Cˇomic´, L. R. (2013) Antibacterial and antioxidant activities of bilberry (Vaccinium myrtillus L.) in vitro. African Journal of Microbiology Research, 7(45), 5130–5136.
  • [2] Bujor, O. C., Le Bourvellec, C., Volf, I., Popa, V. I. & Dufour, C. (2016) Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 213, 58-68.
  • [3] Ostrolucká, M. G., Libiaková, G., Ondrušková, E. & Gajdošová, A. (2004) In vitro propagation of Vaccinium species. Acta Universitatis Latviensis ser. Biology, 676, 207-212.
  • [4] Meiners, J., Schwab, M. & Szankowski, I. (2007) Efficient in vitro regeneration systems for Vaccinium Species. Plant Cell, Tissue and Organ Culture, 89, 169-176.
  • [5] Cüce, M. & Sökmen, A. (2015) Micropropagation of Vaccinium myrtillus L. (bilberry) naturally growing in the Turkish flora. Turkish Journal of Biology, 39, 233-240.
  • [6] Cüce, M. & Sökmen, A. (2017a) In vitro production protocol of Vaccinium uliginosum L. (bog bilberry) growing in the Turkish flora. Turkish Journal of Agriculture and Forestry, 41(4), 294-304.
  • [7] Lucchesini, M. & Mensuali-Sodi, A. (2010) Plant tissue culture-An opportunity for the production of nutraceuticals. Advances in Experimental Medicine and Biology, 698, 185-202.
  • [8] Ruffoni B., Pistelli, L., Bertoli, A. & Pistelli, L. (2010) Plant Cell Cultures: Bioreactors for Industrial Production. Advances in Experimental Medicine and Biology, 698, 203-221.
  • [9] Arikat N. A., Jawad F. M., Karam N. S. & Shibli, R. A. (2004) Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Scientia Horticulturae-Amsterdam, 100, 193-202.
  • [10] Pistelli, L., Giovannini, A., Ruffoni, B., Bertoli, A. & Pistelli, L. (2010) Hairy root cultures for secondary metabolites production. Advances in Experimental Medicine and Biology, 698, 167-184.
  • [11] Ma, Y-Q., Chen, J-C., Liu, D-H. & Ye, X-Q. (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16, 57-62.
  • [12] Kim, K-H., Tsao, R., Yang, R., & Cui, S.W. (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95, 466-473.[13] Singleton, V. L. & Rossi, J. A. (1965). Colourimetry of total Phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [14] Cüce, M., Bekircan, T., Laghari, A. H., Sökmen, M., Sökmen, A., Uçar, E. Ö. & Kılıç, A. O (2017b). Antioxidant phenolic constituents, antimicrobial and cytotoxic properties of Stachys annua L. from both natural resources and micropropagated plantlets. Indian Journal of Traditional Knowledge, 16(3), 407-416.
  • [15] Bekircan, T., Yaşar, A., Yıldırım, S., Sökmen, M. & Sökmen, A. (2018). Effect of cytokinins on in vitro multiplication, volatiles composition and rosmarinic acid content of Thymus leucotrichus Hal. shoots. 3 Biotech, 8(3), 180.
  • [16] Ayaz, F. A., Hayirlioglu-Ayaz, S., Gruz, J., Novak, O. & Strnad, M. (2005) Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. Journal of Agricultural and Food Chemistry, 53(21), 8116-8122
  • [17] Colak, N., Torun, H., Gruz, J., Strnad, M., Hermosín-Gutiérrez, I., Hayirlioglu-Ayaz, S. & Ayaz, F. A. (2016). Bog bilberry phenolics, antioxidant capacity and nutrient profile. Food Chemistry, 201, 339-349.[18] DiZhou, G., HanDong, G., MeiYing, G., JunYi, Z. & YunTian, J. (2009) In vitro culture and plant regeneration system of Vaccinium uliginosum, Forest Research, Beijing, 22, 226-229.
  • [19] Litwińczuk, W. 2013. Micropropagation of Vaccinium sp. by in vitro axillary shoot proliferation methods, Molecular Biology, 11013, 63-76.
  • [20] Debnath, S. C. & McRae, K. B. (2001b) In vitro culture of lingonberry (Vaccinium vitis-idaea L.) the influence of cytokinins and media types on propagation. Small Fruits Review, 1(3), 3-19.
  • [21] Ružić, D., Vujović, T., Libiakova, G., Cerović, R. & Gajdošova, A. (2012) Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). Journal of Berry Research, 2, 97-103.
  • [22] Paprštein, F. & Sedlák, J. (2015) In vitro multiplication of lingonberry – short communication. HortScience, 42, 102-106.
  • [23] Cüce, M., Bektaş, E. & Sökmen, A. (2013) Micropropagation of Vaccinium arctostaphylos L. via lateral-bud culture. Turkish Journal of Agriculture and Forestry, 37, 40-44.
  • [24] Lätti, A. K., Kainulainen, P. S., Hayirlioglu-Ayaz, S., Ayaz, F. A. & Riihinen, K. R. (2009) Characterization of anthocyanins in Caucasian blueberries (Vaccinium arctostaphylos L.) native to Turkey. Journal of Agricultural and Food Chemistry, 57(12), 5244-5249.
  • [25] Lee, J. & Finn, C. E. (2012) Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: Anthocyanin and free amino acid composition. Journal of Functional Foods, 4(1), 213-218.
  • [26] Oszmiański, J., Kolniak-Ostek, J., Lachowicz, S., Gorzelany, J. & Matłok, N. (2015) Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Industrial Crops and Products, 77, 658-665.
  • [27] Martz, F., Jaakola, L., Julkunen-Tiitto, R. & Stark, S. (2010) Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. Journal of Chemical Ecology, 36(9), 1017-1028.
  • [28] Wang, L., Xu, H. N., Yao, H., and Zhang, H. (2011). Phenolic composition and radical scavenging capacity of Vaccinium bracteatum Thunb. leaves. International Journal of Food Properties, 14(4), 721-725.
  • [29] Goyali, J. C., Igamberdiev, A. U. & Debnath, S. C. (2013) Morphology, phenolic content and antioxidant capacity of lowbush blueberry (Vaccinium angustifolium Ait.) plants as affected by in vitro and ex vitro propagation methods. Canadian Journal of Plant Science, 93(6), 1001-1008.
  • [30] Contreras, R. A., Köhler, H., Pizarro, M. & Zúiga, G. E. (2015) In vitro cultivars of Vaccinium corymbosum L. (Ericaceae) are a source of antioxidant phenolics. Antioxidants, 4(2), 281-292.

Phenolic Constituents of Vaccinium Species from Both Natural Resources and Micropropagated Plantlets

Year 2018, Volume 5, Issue 4, 304 - 311, 29.12.2018
https://doi.org/10.21448/ijsm.445551

Abstract

Fruits and leaves of Vaccinium species have rich bioactive phytochemicals. These bioactive phytochemicals make these plants particularly valuable for the medical and food industry. This novel approach was designed to determine the phenolic content of Vaccinium species obtained from both micropropagated and naturally growing leaves. An efficient micropropagation protocol was developed to produce tree Vaccinium species plantlets via direct organogenesis. Lateral buds containing one or two leaves were cultured in McCown woody plant medium (WPM), supplemented with zeatin/indole-3-butyric acid (IBA) (1.0/0.1 mg L–1). In conclusion, Protocatechuic acid, Chlorogenic acid, Syringic acid and Routine phenolic compounds were determined in significant amounts. It has been determined that the phenolic compounds of leaves produced in tissue cultures is higher than the phenolic compounds obtained from naturally growing leaves.

References

  • [1] Vučic´, D. M., Petkovic´, M. R., Rodic´ -Grabovac, B. B., Stefanovic´, O. D., Vasic´, S. M. & Cˇomic´, L. R. (2013) Antibacterial and antioxidant activities of bilberry (Vaccinium myrtillus L.) in vitro. African Journal of Microbiology Research, 7(45), 5130–5136.
  • [2] Bujor, O. C., Le Bourvellec, C., Volf, I., Popa, V. I. & Dufour, C. (2016) Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 213, 58-68.
  • [3] Ostrolucká, M. G., Libiaková, G., Ondrušková, E. & Gajdošová, A. (2004) In vitro propagation of Vaccinium species. Acta Universitatis Latviensis ser. Biology, 676, 207-212.
  • [4] Meiners, J., Schwab, M. & Szankowski, I. (2007) Efficient in vitro regeneration systems for Vaccinium Species. Plant Cell, Tissue and Organ Culture, 89, 169-176.
  • [5] Cüce, M. & Sökmen, A. (2015) Micropropagation of Vaccinium myrtillus L. (bilberry) naturally growing in the Turkish flora. Turkish Journal of Biology, 39, 233-240.
  • [6] Cüce, M. & Sökmen, A. (2017a) In vitro production protocol of Vaccinium uliginosum L. (bog bilberry) growing in the Turkish flora. Turkish Journal of Agriculture and Forestry, 41(4), 294-304.
  • [7] Lucchesini, M. & Mensuali-Sodi, A. (2010) Plant tissue culture-An opportunity for the production of nutraceuticals. Advances in Experimental Medicine and Biology, 698, 185-202.
  • [8] Ruffoni B., Pistelli, L., Bertoli, A. & Pistelli, L. (2010) Plant Cell Cultures: Bioreactors for Industrial Production. Advances in Experimental Medicine and Biology, 698, 203-221.
  • [9] Arikat N. A., Jawad F. M., Karam N. S. & Shibli, R. A. (2004) Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Scientia Horticulturae-Amsterdam, 100, 193-202.
  • [10] Pistelli, L., Giovannini, A., Ruffoni, B., Bertoli, A. & Pistelli, L. (2010) Hairy root cultures for secondary metabolites production. Advances in Experimental Medicine and Biology, 698, 167-184.
  • [11] Ma, Y-Q., Chen, J-C., Liu, D-H. & Ye, X-Q. (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16, 57-62.
  • [12] Kim, K-H., Tsao, R., Yang, R., & Cui, S.W. (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95, 466-473.[13] Singleton, V. L. & Rossi, J. A. (1965). Colourimetry of total Phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [14] Cüce, M., Bekircan, T., Laghari, A. H., Sökmen, M., Sökmen, A., Uçar, E. Ö. & Kılıç, A. O (2017b). Antioxidant phenolic constituents, antimicrobial and cytotoxic properties of Stachys annua L. from both natural resources and micropropagated plantlets. Indian Journal of Traditional Knowledge, 16(3), 407-416.
  • [15] Bekircan, T., Yaşar, A., Yıldırım, S., Sökmen, M. & Sökmen, A. (2018). Effect of cytokinins on in vitro multiplication, volatiles composition and rosmarinic acid content of Thymus leucotrichus Hal. shoots. 3 Biotech, 8(3), 180.
  • [16] Ayaz, F. A., Hayirlioglu-Ayaz, S., Gruz, J., Novak, O. & Strnad, M. (2005) Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. Journal of Agricultural and Food Chemistry, 53(21), 8116-8122
  • [17] Colak, N., Torun, H., Gruz, J., Strnad, M., Hermosín-Gutiérrez, I., Hayirlioglu-Ayaz, S. & Ayaz, F. A. (2016). Bog bilberry phenolics, antioxidant capacity and nutrient profile. Food Chemistry, 201, 339-349.[18] DiZhou, G., HanDong, G., MeiYing, G., JunYi, Z. & YunTian, J. (2009) In vitro culture and plant regeneration system of Vaccinium uliginosum, Forest Research, Beijing, 22, 226-229.
  • [19] Litwińczuk, W. 2013. Micropropagation of Vaccinium sp. by in vitro axillary shoot proliferation methods, Molecular Biology, 11013, 63-76.
  • [20] Debnath, S. C. & McRae, K. B. (2001b) In vitro culture of lingonberry (Vaccinium vitis-idaea L.) the influence of cytokinins and media types on propagation. Small Fruits Review, 1(3), 3-19.
  • [21] Ružić, D., Vujović, T., Libiakova, G., Cerović, R. & Gajdošova, A. (2012) Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). Journal of Berry Research, 2, 97-103.
  • [22] Paprštein, F. & Sedlák, J. (2015) In vitro multiplication of lingonberry – short communication. HortScience, 42, 102-106.
  • [23] Cüce, M., Bektaş, E. & Sökmen, A. (2013) Micropropagation of Vaccinium arctostaphylos L. via lateral-bud culture. Turkish Journal of Agriculture and Forestry, 37, 40-44.
  • [24] Lätti, A. K., Kainulainen, P. S., Hayirlioglu-Ayaz, S., Ayaz, F. A. & Riihinen, K. R. (2009) Characterization of anthocyanins in Caucasian blueberries (Vaccinium arctostaphylos L.) native to Turkey. Journal of Agricultural and Food Chemistry, 57(12), 5244-5249.
  • [25] Lee, J. & Finn, C. E. (2012) Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: Anthocyanin and free amino acid composition. Journal of Functional Foods, 4(1), 213-218.
  • [26] Oszmiański, J., Kolniak-Ostek, J., Lachowicz, S., Gorzelany, J. & Matłok, N. (2015) Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Industrial Crops and Products, 77, 658-665.
  • [27] Martz, F., Jaakola, L., Julkunen-Tiitto, R. & Stark, S. (2010) Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. Journal of Chemical Ecology, 36(9), 1017-1028.
  • [28] Wang, L., Xu, H. N., Yao, H., and Zhang, H. (2011). Phenolic composition and radical scavenging capacity of Vaccinium bracteatum Thunb. leaves. International Journal of Food Properties, 14(4), 721-725.
  • [29] Goyali, J. C., Igamberdiev, A. U. & Debnath, S. C. (2013) Morphology, phenolic content and antioxidant capacity of lowbush blueberry (Vaccinium angustifolium Ait.) plants as affected by in vitro and ex vitro propagation methods. Canadian Journal of Plant Science, 93(6), 1001-1008.
  • [30] Contreras, R. A., Köhler, H., Pizarro, M. & Zúiga, G. E. (2015) In vitro cultivars of Vaccinium corymbosum L. (Ericaceae) are a source of antioxidant phenolics. Antioxidants, 4(2), 281-292.

Details

Primary Language English
Subjects Biology
Published Date December
Journal Section Articles
Authors

Mustafa CÜCE (Primary Author)
GİRESUN ÜNİVERSİTESİ
0000-0001-7406-171X
Türkiye


Tuba BEKİRCAN This is me
AVRASYA ÜNİVERSİTESİ
0000-0003-1954-297X
Türkiye


Atalay SÖKMEN This is me
KONYA GIDA VE TARIM ÜNİVERSİTESİ
0000-0002-2206-7906
Türkiye

Publication Date December 29, 2018
Published in Issue Year 2018, Volume 5, Issue 4

Cite

APA Cüce, M. , Bekircan, T. & Sökmen, A. (2018). Phenolic Constituents of Vaccinium Species from Both Natural Resources and Micropropagated Plantlets . International Journal of Secondary Metabolite , 5 (4) , 304-311 . DOI: 10.21448/ijsm.445551

International Journal of Secondary Metabolite (IJSM)

ISSN-e: 2148-6905