Research Article
BibTex RIS Cite

The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)

Year 2019, Volume: 6 Issue: 2, 196 - 204, 15.07.2019
https://doi.org/10.21448/ijsm.499519

Abstract

In
this study, the effects of secondary metabolites on the feeding preference and
growth of generalist caterpillars, Agelastica
alni
L., were investigated. Feeding experiment has been applied with a
total of 11 diet; 6 of which were prepared by adding different concentrations
of gallic acid (1, 3, 5 %) and quinine (0.125, 0.25, 0.5 %) to the control
diet, 3 diet of which prepared by adding different concentrations of gallic
acid and quinine. According to the results, the amount of gallic acid consumed
did not affect the food consumption and the amount of pupa lipids. However, the
amount of gallic acid consumed positively affects the pupal mass and the pupal
crude protein. In addition, the amount of quinine consumed negatively affected
the developmental performance of larvae except for the food consumption. As the
count of secondary metabolites in the diet increases, the pupal mass and the
pupal crude protein decrease. Overall, during the co-evolution processs, A. alni larvae may be able to adapt to
gallotannins. However, quinine, an alkaloid, is a feeding deterrence and growth
suppressor for larvae.

References

  • [1]Ryan, M. F. (2002). Insect Chemoreception Fundamental and Applied, 1st ed.; Kluwer Academic Publishers: Dordrecht, USA, 2002; pp. 28; 1-4020-0270-X. [2] Heflin, L.E., Raubenheimer, D., Simpson, S.J., Watts, S.A. (2016). Balancing macronutrient intake in cultured Lytechinus variegatus. Aquaculture, 450, 295-300.[3] Gall, M.L., Behmer, S.T. (2014). Effects of protein and carbohydrate on an insect herbivore: The vista from a fitness landscape. Integr. Comp. Biol., 54, 942-954. [4] Mattson, W. J. (1980). Herbivory in Relation to Plant Nitrogen Content. Annu. Rev. Ecol. Evol. Syst., 11, 119-161.[5] Hasheminia, S. M., Sendi, J.J., Jahromi, K.T., Moharramipour, S. (2013). Effect of milk thistle, Silybium marianum, extract on toxicity, development, nutrition, and enzyme activities of the small white butterfly, Pieris rapae. J Insect Sci., 13, 146. [6] El-Keredy, A. (2014). Genetic and behavioral influences of quinine and monosodium glutamate on Drosophila melanogaster. Egypt J. Genet. Cytol., 43, 377-391. [7] Bilgener, M. (1988). Chemical Components of Howler Monkeys (Alouatta palliata) Food Choice and Kinetics of Tannin Binding with Natural Polymers. Doctoral Thesis, Boston University, USA, 1988. [8] Hagerman, A.E., Robbins, C.T., Weerasuriya, Y., Wilson, T. C., McArthur, C. (1992). Tannin chemistry in relation to digestion. J. Range Manage, 45, 57-62. [9] He, Q., Shi, B., Yao, K. (2006). Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem, 95, 250-254. [10] Kessler, S., Gonzales, J., Vlimant, M., Glauser, G., Guerin, P.M. (2014). Quinine and artesunate inhibit feeding in the African malaria mosquito Anopheles gambiae: the role of gustatory organs within the mouthparts. Physiol. Entomol, 39, 172-182.[11] Swain, T. (1976). Angiosperm reptile co-evolution. In: Bellairs d'A Cox CB (eds). — Morphology and Biology of Reptiles. A. Linnean Society Symposium Series (3). [12] Levinson, H. Z. (1976). The defensive role of alkaloids in insects and plants. Experientia, 32, 408-411. [13] Tischler, W. (1977). Continuity, Of the biosystems Alder (Alnus) Alder (Agelastica alni). Zeitschrift fuer Angewandte Zoologia, 64, 69-92. [in Germany]. [14] Glendinning, J.I. (2007). How do predators cope with chemically defended foods? Biol. Bull., 213, 252–266.[15] Yamamoto, I. V. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation. J. Ecol. Entomol., 62, 1427-1431. [16] Lee, K.P., Behmer, S. T., Simpson, S. J., Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol., 48, 655–665. [17] Simpson, S.J., Raubenheimer, D. (2001). The geometric analysis of nutrientallelochemical interactions: a case study using locusts. Ecology, 82, 422-439. [18] Yi, L., Lakemonda, C. M. M., Sagisb, L. M. C., Eisner-Schadlerc, V., van Huisd, A., van Boekela, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chem, 141, 3341-3348 [19] Oonincx, D. A. G. B., Van Broekhoven, S., Van Huis, A., Van Loon, J. J. A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20, doi:10.1371/ journal.pone.0144601. [20] Alonso A. M., Guillen D. A., Barroso C. G., Puertas B., Garcia A. (2002). Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food. Chem., 50, 5832-5836. [21] Schoonhoven, L.M., Van Loon, J. J.A., Dicke, M. (2005). Insect-Plant Biology, 2nd ed. Oxford, Oxford University Press, 2005. [22] Barbehenn, R.V., Niewiadomski, J., Pecci, C., Salminen, J.P. (2013). Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecology, 23, 59-70. [23] Lestari, P., Khumaida, N., Sartıamı, D., Mardiningsih, T. L. (2015). Selection criteria of Graptophyllum pictum resistance to Doleschallia bisaltide cramer (Lep: Nymphalidae) attack based on insect feeding preference. Sabrao J. Breed. Genet., 47 (2), 172-184. [24] Karowe, D. N. (1989). Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Oecologia, 80, 507-512. [25] Salminen, J. P., Lempa, K. (2002). Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology, 12, 203-211.[ 26] Ikonen, A., Tahvanainen, J., Roininen H. (2002). Phenolic secondary compounds as determinants of the host plant preferences of the leaf beetle, Agelastica alni. Chemoecology, 12, 125-131. [27] Chown, S. L., Nicholson, S. W. (2004). Insect Physiological Ecology: Mechanism and Patterns. Oxford University Press: Oxford, Great Britain, 2004; pp.34-36; ISBN: 0 19 851549 9 [28] Firidin, B., Mutlu C. (2009). Nitrogen utilization pattern and degradation capability of some plant secondary metabolites by Agelastica alni L. (Coleoptera: Chrysomelidae). J Entomol. Res. Soc., 11 (2), 1-15.[29] Robinson, T. (1974). Metabolism and function of alkaloids in plants. Science, 184: 430-435.[30] Robinson, T. (1979). The evolutionary ecology of alkaloids. In: Rosenthal G. A., Janzen D. H. (eds). Herbivores: their interaction with secondary metabolites. Academic Press: Newyork, USA, 1979. [31] Aniszewski T. 2007: Alkaloids - Secrets of Life. In: Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier. [32] Harborne, J.B. (1994). Introduction to Ecological Biochemistry. Academic Press. [33] Hemming, J. D. C., Lindroth, R.L. (1995). Intraspecific variation in aspen phytochemistry – effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79-88.[34] Villarino, M. P., Ravetta, D. A. (2007). Tolerance to herbivory in lupin genotypes with different alkkaloid concentrations: interspecific differences between Lupinus albus L. and L. angustifolius L. Environ. Exp. Bot., 63, 130- 136. [35] Iaconelli, S., Simmen, B. (2002). Taste thresholds and suprathreshold responses to tannın-rich plant extracts and quinine in a primate species (Microcebus murinus). J. Chem. Ecol., 28, 11, 2315-2326. [36] O’brien, R.L., Olenick, J. G., Hahn, F. E. (1966). Reactions of quinine, chloroquinine and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc. Natl. Acad. Sci. U S A, 1511-1517. [37] Castellanos, I., Espinosa- Garcia, F. J. (1997). Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochem Syst Ecol, 591-602. [38] Moreira, X., Galman, A., Francisko, M., Castagneyrol, B., Abdala-Roberts, L. (2018). Host plant frequency and secondary metabolites are concurrently associated with insect herbivory in a dominant riparian tree. Biology Lett, https://doi.org/10.6084/m9.figshare.c.4320890.v1 [39] Ehrlich, P.R., Raven, P.H. (1964). Butterflies and plants: a study in co evolution. Evolution, 18, 586-608.

The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)

Year 2019, Volume: 6 Issue: 2, 196 - 204, 15.07.2019
https://doi.org/10.21448/ijsm.499519

Abstract

In this study, the effects of secondary metabolites on the feeding preference and growth of generalist caterpillars, Agelastica alni L., were investigated. Feeding experiment has been applied with a total of 11 diet; 6 of which were prepared by adding different concentrations of gallic acid (1, 3, 5 %) and quinine (0.125, 0.25, 0.5 %) to the control diet, 3 diet of which prepared by adding different concentrations of gallic acid and quinine. According to the results, the amount of gallic acid consumed did not affect the food consumption and the amount of pupa lipids. However, the amount of gallic acid consumed positively affects the pupal mass and the pupal crude protein. In addition, the amount of quinine consumed negatively affected the developmental performance of larvae except for the food consumption. As the count of secondary metabolites in the diet increases, the pupal mass and the pupal crude protein decrease. Overall, during the co-evolution processs, A. alni larvae may be able to adapt to gallotannins. However, quinine, an alkaloid, is a feeding deterrence and growth suppressor for larvae.

References

  • [1]Ryan, M. F. (2002). Insect Chemoreception Fundamental and Applied, 1st ed.; Kluwer Academic Publishers: Dordrecht, USA, 2002; pp. 28; 1-4020-0270-X. [2] Heflin, L.E., Raubenheimer, D., Simpson, S.J., Watts, S.A. (2016). Balancing macronutrient intake in cultured Lytechinus variegatus. Aquaculture, 450, 295-300.[3] Gall, M.L., Behmer, S.T. (2014). Effects of protein and carbohydrate on an insect herbivore: The vista from a fitness landscape. Integr. Comp. Biol., 54, 942-954. [4] Mattson, W. J. (1980). Herbivory in Relation to Plant Nitrogen Content. Annu. Rev. Ecol. Evol. Syst., 11, 119-161.[5] Hasheminia, S. M., Sendi, J.J., Jahromi, K.T., Moharramipour, S. (2013). Effect of milk thistle, Silybium marianum, extract on toxicity, development, nutrition, and enzyme activities of the small white butterfly, Pieris rapae. J Insect Sci., 13, 146. [6] El-Keredy, A. (2014). Genetic and behavioral influences of quinine and monosodium glutamate on Drosophila melanogaster. Egypt J. Genet. Cytol., 43, 377-391. [7] Bilgener, M. (1988). Chemical Components of Howler Monkeys (Alouatta palliata) Food Choice and Kinetics of Tannin Binding with Natural Polymers. Doctoral Thesis, Boston University, USA, 1988. [8] Hagerman, A.E., Robbins, C.T., Weerasuriya, Y., Wilson, T. C., McArthur, C. (1992). Tannin chemistry in relation to digestion. J. Range Manage, 45, 57-62. [9] He, Q., Shi, B., Yao, K. (2006). Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem, 95, 250-254. [10] Kessler, S., Gonzales, J., Vlimant, M., Glauser, G., Guerin, P.M. (2014). Quinine and artesunate inhibit feeding in the African malaria mosquito Anopheles gambiae: the role of gustatory organs within the mouthparts. Physiol. Entomol, 39, 172-182.[11] Swain, T. (1976). Angiosperm reptile co-evolution. In: Bellairs d'A Cox CB (eds). — Morphology and Biology of Reptiles. A. Linnean Society Symposium Series (3). [12] Levinson, H. Z. (1976). The defensive role of alkaloids in insects and plants. Experientia, 32, 408-411. [13] Tischler, W. (1977). Continuity, Of the biosystems Alder (Alnus) Alder (Agelastica alni). Zeitschrift fuer Angewandte Zoologia, 64, 69-92. [in Germany]. [14] Glendinning, J.I. (2007). How do predators cope with chemically defended foods? Biol. Bull., 213, 252–266.[15] Yamamoto, I. V. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation. J. Ecol. Entomol., 62, 1427-1431. [16] Lee, K.P., Behmer, S. T., Simpson, S. J., Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol., 48, 655–665. [17] Simpson, S.J., Raubenheimer, D. (2001). The geometric analysis of nutrientallelochemical interactions: a case study using locusts. Ecology, 82, 422-439. [18] Yi, L., Lakemonda, C. M. M., Sagisb, L. M. C., Eisner-Schadlerc, V., van Huisd, A., van Boekela, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chem, 141, 3341-3348 [19] Oonincx, D. A. G. B., Van Broekhoven, S., Van Huis, A., Van Loon, J. J. A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20, doi:10.1371/ journal.pone.0144601. [20] Alonso A. M., Guillen D. A., Barroso C. G., Puertas B., Garcia A. (2002). Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food. Chem., 50, 5832-5836. [21] Schoonhoven, L.M., Van Loon, J. J.A., Dicke, M. (2005). Insect-Plant Biology, 2nd ed. Oxford, Oxford University Press, 2005. [22] Barbehenn, R.V., Niewiadomski, J., Pecci, C., Salminen, J.P. (2013). Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecology, 23, 59-70. [23] Lestari, P., Khumaida, N., Sartıamı, D., Mardiningsih, T. L. (2015). Selection criteria of Graptophyllum pictum resistance to Doleschallia bisaltide cramer (Lep: Nymphalidae) attack based on insect feeding preference. Sabrao J. Breed. Genet., 47 (2), 172-184. [24] Karowe, D. N. (1989). Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Oecologia, 80, 507-512. [25] Salminen, J. P., Lempa, K. (2002). Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology, 12, 203-211.[ 26] Ikonen, A., Tahvanainen, J., Roininen H. (2002). Phenolic secondary compounds as determinants of the host plant preferences of the leaf beetle, Agelastica alni. Chemoecology, 12, 125-131. [27] Chown, S. L., Nicholson, S. W. (2004). Insect Physiological Ecology: Mechanism and Patterns. Oxford University Press: Oxford, Great Britain, 2004; pp.34-36; ISBN: 0 19 851549 9 [28] Firidin, B., Mutlu C. (2009). Nitrogen utilization pattern and degradation capability of some plant secondary metabolites by Agelastica alni L. (Coleoptera: Chrysomelidae). J Entomol. Res. Soc., 11 (2), 1-15.[29] Robinson, T. (1974). Metabolism and function of alkaloids in plants. Science, 184: 430-435.[30] Robinson, T. (1979). The evolutionary ecology of alkaloids. In: Rosenthal G. A., Janzen D. H. (eds). Herbivores: their interaction with secondary metabolites. Academic Press: Newyork, USA, 1979. [31] Aniszewski T. 2007: Alkaloids - Secrets of Life. In: Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier. [32] Harborne, J.B. (1994). Introduction to Ecological Biochemistry. Academic Press. [33] Hemming, J. D. C., Lindroth, R.L. (1995). Intraspecific variation in aspen phytochemistry – effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79-88.[34] Villarino, M. P., Ravetta, D. A. (2007). Tolerance to herbivory in lupin genotypes with different alkkaloid concentrations: interspecific differences between Lupinus albus L. and L. angustifolius L. Environ. Exp. Bot., 63, 130- 136. [35] Iaconelli, S., Simmen, B. (2002). Taste thresholds and suprathreshold responses to tannın-rich plant extracts and quinine in a primate species (Microcebus murinus). J. Chem. Ecol., 28, 11, 2315-2326. [36] O’brien, R.L., Olenick, J. G., Hahn, F. E. (1966). Reactions of quinine, chloroquinine and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc. Natl. Acad. Sci. U S A, 1511-1517. [37] Castellanos, I., Espinosa- Garcia, F. J. (1997). Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochem Syst Ecol, 591-602. [38] Moreira, X., Galman, A., Francisko, M., Castagneyrol, B., Abdala-Roberts, L. (2018). Host plant frequency and secondary metabolites are concurrently associated with insect herbivory in a dominant riparian tree. Biology Lett, https://doi.org/10.6084/m9.figshare.c.4320890.v1 [39] Ehrlich, P.R., Raven, P.H. (1964). Butterflies and plants: a study in co evolution. Evolution, 18, 586-608.
There are 1 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Dilek Yıldız This is me 0000-0001-9219-9122

Nurver Altun 0000-0002-2657-9263

Mahmut Bilgener This is me 0000-0001-7883-6973

Publication Date July 15, 2019
Submission Date December 19, 2018
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Yıldız, D., Altun, N., & Bilgener, M. (2019). The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite, 6(2), 196-204. https://doi.org/10.21448/ijsm.499519
International Journal of Secondary Metabolite

e-ISSN: 2148-6905