Research Article
BibTex RIS Cite

Scenedesmus obliquus: A Potential Natural Source for Cosmetic Industry

Year 2019, Volume: 6 Issue: 2, 129 - 136, 15.07.2019
https://doi.org/10.21448/ijsm.545771

Abstract

Skin is the largest organ of our body and it protects interior organs against several environmental factors. Hyperpigmentation problem occurs as a result of abnormal melanin accumulation in the skin. A considerable amount of world’s population uses skin whitening products. It is known that various algae-derived secondary metabolites play an important role in skin problems. Therefore, the tyrosinase inhibitory activities of S. obliquus ethanol and water extracts were evaluated in the present study. Tyrosinase activity was determined spectrophotometrically at 492 nm. The ethanol extract showed the higher inhibitory activity on tyrosinase enzyme (IC50: 0.0270 g/mL) than water extract (IC50: 0.2882 g/mL). This result may have stemmed from the vanillic, ferulic acid and rutin components that were identified by RP-HPLC only in the ethanol extract.

References

  • [1] Mukherjee, P.K., Biswas, R., Sharma, A., Banerjee, S., Biswas, S., Katiyar, C.K. (2018). Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine, 14, 1–16. Doi: 10.1016/j.hermed.2018.09.002
  • [2] Briganti, S., Camera, E., Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell and Melanoma Research, 16, 101–110. Doi: 10.1034/j.1600-0749.2003.00029.x
  • [3] Mann, T., Gerwat, W., Batzer, J., Eggers, K., Scherner, C., Wenck, H., Stäb, F., Hearing, V.J., Röhm, K.H., Kolbe, L. (2018). Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. Journal of Investigative Dermatology, 138, 1601–1608. Doi: 10.1016/j.jid.2018.01.019
  • [4] Zolghadri, S., Bahrami, A., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., Saboury, A.A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 279–309. Doi: 10.1080/14756366.2018.1545767
  • [5] Scientific Committee on Consumer Products (2008), Opinion on b-arbutin. Retrieved at 21 November 2017 from: http://ec.europa.eu/health/archive/ph_risk/committees/04_sccp/docs/sccp_o_134.pdf
  • [6] Scientific Committee on Consumer Safety (2012), Opinion on kojic acid, Retrieved at 21 November 2017 from http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_098.pdf
  • [7] Gao, H. (2018). Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from Traditional Chinese medicine database. Phytomedicine, 38, 145–157. Doi: 10.1016/j.phymed.2017.11.012
  • [8] Cengiz Sahin, S. (2018). The potential of Arthrospira platensis extract as a tyrosinase inhibitor for pharmaceutical or cosmetic applications. South African Journal of Botany, 119, 236–243. Doi: 10.1016/j.sajb.2018.09.004
  • [9] Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M., Baby, A.R. (2017). Cosmetic attributes of algae - A review. Algal research, 25, 483–487. Doi: 10.1016/j.algal.2017.05.019
  • [10] Wang, H.D., Chen, C.C., Huynh, P., Chang, J.S. (2015). Exploring the potential of using algae in cosmetics Bioresource Technology, 184, 355 362. Doi: 10.1016/j.biortech.2014.12.001
  • [11] Park, Y.D., Lee, J.R., Park, K.H., Hahn, H.S., Hahn, M.J., Yang, J.M. (2003). A new continuous spectrophotometric assay method for DOPA oxidase activity of tyrosinase. Journal of Protein Chemistry, 22, 473–480. Doi: 10.1023/B:JOPC.0000005463.21302.cd
  • [12] Terpinc, P., Čeh, B., Ulrih, N.P., Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210–217. Doi: 10.1016/j.indcrop.2012.02.023
  • [13] Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chemistry, 64, 203–209. Doi: 10.1016/S0308-8146(98)00146-0
  • [14] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28, 25–30. Doi: 10.1016/S0023-6438(95)80008-5
  • [15] Lee, S.Y., Baek, N., Nam, T.G. (2016). Natural, semisynthetic and synthetic tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 1–13. Doi: 10.3109/14756366.2015.1004058
  • [16] Kang, H.S., Kim, H.R., Byun, D.S., Son, B.W., Nam, T.J., Choi, J.S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27, 1226 - 1232. Doi: 10.1007/BF02975886Thomas, N.V., Kim, S.K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146–164. Doi: 10.3390/md11010146
  • [17] Yoon, N.Y., Eom, T.K., Kim, M.M., Kim, S.K. (2009). Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 57, 4124-4129. Doi: 10.1021/jf900006f
  • [18] Heo, S.J., Ko, S.C., Cha, S.H., Kang, D.H., Park, H.S., Choi, Y.U., Kim, D., Jung, W.K., Jeon, Y.J. (2009). Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicology in Vitro, 23, 1123–1130. Doi: 10.1016/j.tiv.2009.05.013
  • [19] Loizzo, M.R., Tundis, R., Menichini, F. (2012). Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety, 11, 378–398. Doi: 10.1111/j.1541-4337.2012.00191.x
  • [20] Pei, C.J., Lee, J., Si, Y.X., Oh, S., Xu, W.A., Yin, S.J., Qian, G.Y., Han, H.Y. (2013). Inhibition of tyrosinase by gastrodin: An integrated kinetic-computational simulation analysis. Process Biochemsitry, 48, 162–168. Doi: 10.1016/j.procbio.2012.11.004
  • [21] Chen, W.C., Tseng, T.S., Hsiao, N.W., Lin, Y.L., Wen, Z.H., Tsai, C.C., Lee, Y.C., Lin, H.H., Tsai, K.C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with Significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep, 5, 7995. Doi: 10.1038/srep07995
  • [22] Zheng, Z.P., Tan, H.Y., Chen, J., Wang, M. (2013). Characterization of tyrosinase inhibitors in th e twigs of Cudrania tricuspidata and their structure–activity relationship study. Fitoterapia, 84, 242–247. Doi: 10.1016/j.fitote.2012.12.006
  • [23] Stoica, R., Velea, S., Ilie, L., Calugareanu, M., Ghimis, S.B., Ion, R.M. (2013). The Influence of Ethanol Concentration on the Total Phenolics and Antioxidant Activity of Scenedesmus Opoliensis Algal Biomass Extracts. Revista de Chimie, 64, 304-306.
  • [24] Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., Öktem, H.A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents. Journal of Applied Phycology. Doi: 10.1007/s10811-018-1726-5
  • [25] Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., Gómez-Pinchetti, J.L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 8 pages. Doi: 10.1155/2017/2924508
  • [26] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., De Cooman, L. (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477–1486. Doi: 10.1007/s10811-012-9804-6
  • [27] Connan, S., Goulard, F., Stiger, V., Deslandes, E., Gall, E.A. (2004). Inter specific and temporal variation in phlorotannin levels in assemblage of brown algae. Botanica Marina, 47, 410–416. Doi: 10.1515/BOT.2004.057
  • [28] Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A., Moreira, W.S. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97, 2402–2406. Doi: 10.1016/j.biortech.2005.10.014
  • [29] Chou, T.H., Ding, H.Y., Hung, W.J., Liang, C.H. (2010). Antioxidative characteristics and inhibition of a-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Experimental Dermatology, 19, 742–750. Doi: 10.1111/j.1600-0625.2010.01091.x
  • [30] Lee, H.S., Shin, K.H., Ryu, G.S., Chi, G.Y., Cho, I.S., Kim, H.Y. (2012). Synthesis of Small Molecule-Peptide Conjugates as Potential Whitening Agents. Bulletin Korean Chemical Society, 33, 3004–3008. Doi: 10.5012/bkcs.2012.33.9.3004
  • [31] Si, Y.X., Yin, S.J., Oh, S., Wang, Z.J., Ye, S., Yan, L., Yang, J.M., Park, Y.D., Lee, J., Qian, G.Y. (2012). An Integrated Study of Tyrosinase Inhibition by Rutin: Progress using a Computational Simulation. Journal of Biomolecular Structure and Dynamics, 29, 999–1012. Doi: 10.1080/073911012010525028
  • [32] Sabeena Farvin, K.H., Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138, 1670–1681. Doi: 10.1016/j.foodchem.2012.10.078

Scenedesmus obliquus: A Potential Natural Source for Cosmetic Industry

Year 2019, Volume: 6 Issue: 2, 129 - 136, 15.07.2019
https://doi.org/10.21448/ijsm.545771

Abstract

Skin is the largest organ of our body and it protects interior organs
against several environmental factors. Hyperpigmentation problem occurs as a
result of abnormal melanin accumulation in the skin. A considerable amount of
world’s population uses skin
whitening products. It is known that various algae-derived secondary metabolites play an
important role in skin problems. Therefore, the tyrosinase inhibitory
activities of S. obliquus ethanol and
water extracts were evaluated in the present study. Tyrosinase activity was
determined spectrophotometrically at 492 nm. The ethanol extract showed the
higher inhibitory activity on
tyrosinase enzyme (IC50: 0.0270 g/mL) than water extract (IC50:
0.2882 g/mL).
This
result may have stemmed from the vanillic
, ferulic acid and rutin components that were
identified by RP-HPLC only in the ethanol extract.

References

  • [1] Mukherjee, P.K., Biswas, R., Sharma, A., Banerjee, S., Biswas, S., Katiyar, C.K. (2018). Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine, 14, 1–16. Doi: 10.1016/j.hermed.2018.09.002
  • [2] Briganti, S., Camera, E., Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell and Melanoma Research, 16, 101–110. Doi: 10.1034/j.1600-0749.2003.00029.x
  • [3] Mann, T., Gerwat, W., Batzer, J., Eggers, K., Scherner, C., Wenck, H., Stäb, F., Hearing, V.J., Röhm, K.H., Kolbe, L. (2018). Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. Journal of Investigative Dermatology, 138, 1601–1608. Doi: 10.1016/j.jid.2018.01.019
  • [4] Zolghadri, S., Bahrami, A., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., Saboury, A.A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 279–309. Doi: 10.1080/14756366.2018.1545767
  • [5] Scientific Committee on Consumer Products (2008), Opinion on b-arbutin. Retrieved at 21 November 2017 from: http://ec.europa.eu/health/archive/ph_risk/committees/04_sccp/docs/sccp_o_134.pdf
  • [6] Scientific Committee on Consumer Safety (2012), Opinion on kojic acid, Retrieved at 21 November 2017 from http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_098.pdf
  • [7] Gao, H. (2018). Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from Traditional Chinese medicine database. Phytomedicine, 38, 145–157. Doi: 10.1016/j.phymed.2017.11.012
  • [8] Cengiz Sahin, S. (2018). The potential of Arthrospira platensis extract as a tyrosinase inhibitor for pharmaceutical or cosmetic applications. South African Journal of Botany, 119, 236–243. Doi: 10.1016/j.sajb.2018.09.004
  • [9] Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M., Baby, A.R. (2017). Cosmetic attributes of algae - A review. Algal research, 25, 483–487. Doi: 10.1016/j.algal.2017.05.019
  • [10] Wang, H.D., Chen, C.C., Huynh, P., Chang, J.S. (2015). Exploring the potential of using algae in cosmetics Bioresource Technology, 184, 355 362. Doi: 10.1016/j.biortech.2014.12.001
  • [11] Park, Y.D., Lee, J.R., Park, K.H., Hahn, H.S., Hahn, M.J., Yang, J.M. (2003). A new continuous spectrophotometric assay method for DOPA oxidase activity of tyrosinase. Journal of Protein Chemistry, 22, 473–480. Doi: 10.1023/B:JOPC.0000005463.21302.cd
  • [12] Terpinc, P., Čeh, B., Ulrih, N.P., Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210–217. Doi: 10.1016/j.indcrop.2012.02.023
  • [13] Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chemistry, 64, 203–209. Doi: 10.1016/S0308-8146(98)00146-0
  • [14] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28, 25–30. Doi: 10.1016/S0023-6438(95)80008-5
  • [15] Lee, S.Y., Baek, N., Nam, T.G. (2016). Natural, semisynthetic and synthetic tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 1–13. Doi: 10.3109/14756366.2015.1004058
  • [16] Kang, H.S., Kim, H.R., Byun, D.S., Son, B.W., Nam, T.J., Choi, J.S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27, 1226 - 1232. Doi: 10.1007/BF02975886Thomas, N.V., Kim, S.K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146–164. Doi: 10.3390/md11010146
  • [17] Yoon, N.Y., Eom, T.K., Kim, M.M., Kim, S.K. (2009). Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 57, 4124-4129. Doi: 10.1021/jf900006f
  • [18] Heo, S.J., Ko, S.C., Cha, S.H., Kang, D.H., Park, H.S., Choi, Y.U., Kim, D., Jung, W.K., Jeon, Y.J. (2009). Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicology in Vitro, 23, 1123–1130. Doi: 10.1016/j.tiv.2009.05.013
  • [19] Loizzo, M.R., Tundis, R., Menichini, F. (2012). Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety, 11, 378–398. Doi: 10.1111/j.1541-4337.2012.00191.x
  • [20] Pei, C.J., Lee, J., Si, Y.X., Oh, S., Xu, W.A., Yin, S.J., Qian, G.Y., Han, H.Y. (2013). Inhibition of tyrosinase by gastrodin: An integrated kinetic-computational simulation analysis. Process Biochemsitry, 48, 162–168. Doi: 10.1016/j.procbio.2012.11.004
  • [21] Chen, W.C., Tseng, T.S., Hsiao, N.W., Lin, Y.L., Wen, Z.H., Tsai, C.C., Lee, Y.C., Lin, H.H., Tsai, K.C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with Significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep, 5, 7995. Doi: 10.1038/srep07995
  • [22] Zheng, Z.P., Tan, H.Y., Chen, J., Wang, M. (2013). Characterization of tyrosinase inhibitors in th e twigs of Cudrania tricuspidata and their structure–activity relationship study. Fitoterapia, 84, 242–247. Doi: 10.1016/j.fitote.2012.12.006
  • [23] Stoica, R., Velea, S., Ilie, L., Calugareanu, M., Ghimis, S.B., Ion, R.M. (2013). The Influence of Ethanol Concentration on the Total Phenolics and Antioxidant Activity of Scenedesmus Opoliensis Algal Biomass Extracts. Revista de Chimie, 64, 304-306.
  • [24] Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., Öktem, H.A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents. Journal of Applied Phycology. Doi: 10.1007/s10811-018-1726-5
  • [25] Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., Gómez-Pinchetti, J.L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 8 pages. Doi: 10.1155/2017/2924508
  • [26] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., De Cooman, L. (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477–1486. Doi: 10.1007/s10811-012-9804-6
  • [27] Connan, S., Goulard, F., Stiger, V., Deslandes, E., Gall, E.A. (2004). Inter specific and temporal variation in phlorotannin levels in assemblage of brown algae. Botanica Marina, 47, 410–416. Doi: 10.1515/BOT.2004.057
  • [28] Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A., Moreira, W.S. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97, 2402–2406. Doi: 10.1016/j.biortech.2005.10.014
  • [29] Chou, T.H., Ding, H.Y., Hung, W.J., Liang, C.H. (2010). Antioxidative characteristics and inhibition of a-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Experimental Dermatology, 19, 742–750. Doi: 10.1111/j.1600-0625.2010.01091.x
  • [30] Lee, H.S., Shin, K.H., Ryu, G.S., Chi, G.Y., Cho, I.S., Kim, H.Y. (2012). Synthesis of Small Molecule-Peptide Conjugates as Potential Whitening Agents. Bulletin Korean Chemical Society, 33, 3004–3008. Doi: 10.5012/bkcs.2012.33.9.3004
  • [31] Si, Y.X., Yin, S.J., Oh, S., Wang, Z.J., Ye, S., Yan, L., Yang, J.M., Park, Y.D., Lee, J., Qian, G.Y. (2012). An Integrated Study of Tyrosinase Inhibition by Rutin: Progress using a Computational Simulation. Journal of Biomolecular Structure and Dynamics, 29, 999–1012. Doi: 10.1080/073911012010525028
  • [32] Sabeena Farvin, K.H., Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138, 1670–1681. Doi: 10.1016/j.foodchem.2012.10.078
There are 32 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Sevilay Cengiz Sahin 0000-0003-3361-4319

Publication Date July 15, 2019
Submission Date February 10, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Cengiz Sahin, S. (2019). Scenedesmus obliquus: A Potential Natural Source for Cosmetic Industry. International Journal of Secondary Metabolite, 6(2), 129-136. https://doi.org/10.21448/ijsm.545771

Cited By








Antioxidant activities of some edaphic algae in Egypt
Beni-Suef University Journal of Basic and Applied Sciences
Neamat H. El-Tablawy
https://doi.org/10.1186/s43088-020-00060-0
International Journal of Secondary Metabolite

e-ISSN: 2148-6905