Research Article
BibTex RIS Cite

Antioxidant Activities, Phenolic Contents and Electronic Nose Analysis of Black Garlic

Year 2019, Volume: 6 Issue: 2, 154 - 161, 15.07.2019
https://doi.org/10.21448/ijsm.564813

Abstract

Black garlic is a processed garlic product with a moisture-controlled high temperature heat treatment for a long time. In order to determine the secondary metabolites of black garlics treated in the study, firstly, in vitro antioxidant activities of black garlics purchased from Edovital company, Kastamonu, Turkey were determined, followed by qualitative and quantitative measurement of the phenolic compound content by HPLC and finally the electronic nose analysis of the content of nebulizer vapors in wood vinegar extract of black garlics were done successfully. Chlorogenic acid, vanillic acid, benzoic acid, gallic acid contents in detected 13 phenolic acids were quitely high. All quantitative results were expressed as mg gallic acid equivalent (GAE) per g dry matter of black garlic sample. ABTS and DPPH antioxidant activities were very low according to BHT standart and 2-Methylene-4-pentenal (18%) and Furfural (25%) were detected in high amount with electronic nose in nebulvapor contents of black garlic wood vinegar extract.

References

  • [1]. Lu, X., Li, N., Qiao, X., Qiu, Z., and Liu, P. (2017). Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 25, 340–349, doi: 10.1016/j.jfda.2016.05.011.
  • [2]. Sun, Y. E., and Wang, W. (2018). Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 55, 479–488, doi: 10.1007/s13197-017-2956-2
  • [3]. Dong, M., Yang, G., Liu, H., Liu, X., Lin, S., Sun, D., et al. (2014). Aged blackgarlic extract inhibits ht29 colon cancer cell growth via the pi3k/akt signaling pathway. Biomed. Rep. 2, 250–254, doi: 10.3892/br.2014.226
  • [4]. Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., et al. (2018). Aged (black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. Int. J. Mol. Sci. 19 (4), 1017, doi: 10.3390/ijms19041017
  • [5]. Kimura, S., Tung, Y. C., Pan, M. H., Su, N. S., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal., 25, 62–70.
  • [6]. Queiroz, Y.S, Ishimoto, E.Y, Bastos, D.H.M, Sampaio, G.R, Torres, E.A.F.S. (2009). Garlic (Allium sativum L.) and ready-to-eat garlic products: in vitro antioxidant activity. Food Chem., 115, 371-374.
  • [7]. Choi, I.S, Cha, H.S, Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19, 16811-16823.
  • [8]. Seo, Y.J, Gweon, O.C., Im, J., Lee, Y.M., Kang, M.J., Kim, J.I. (2009). Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in animal model of type 2 diabetes mellitus. J Food Sci Nutr, 14, 1-7.
  • [9]. Yuan, H., Sun, L., Chen, M., Wang, J. (2016). The comparison of the contents of sugar, Amadori, and Heyns compounds in fresh and black garlic. J Food Sci, 81(7), C1662-C1668.
  • [10]. Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H., & Park, H.J. (2012). A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT-Food Sci. Technol. (Campinas), 46, 532–535.
  • [11]. Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2016). HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating. Anal Bioanal Chem, 408 (14), 3843–3852, doi:10.1007/s00216-016-9477-0
  • [12]. Amagase, H., et al. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131, 955S–962S.
  • [13]. Liu J., Zhang G., Cong X., Wen C. (2018). Black Garlic Improves Heart Function in Patients With Coronary Heart Disease by Improving Circulating Antioxidant Levels. Front. Physiol., 9 (1435), 1-11, doi: 10.3389/fphys.2018.01435
  • [14]. Jeong, Y., Ryu, J., Shin, J.-H., Kang, M., Kang, J., Han, J., & Kang, D. (2016). Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts. Molecules, 21(4), 430, doi:10.3390/molecules21040430
  • [15]. Chen Y.-C., Kao T.-H., Tseng C.-Y., Chang W.-T., Hsu C.-L. (2014). Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J Funct Foods, 9, 98-108, doi:10.1016/j.jff.2014.02.019
  • [16]. Zhang, R.F., Zhang, F.X., Zhang, M.W., Wei, Z.C., Yang, C.Y., Zhang, Y. (2011). Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem., 59, 5935–5944.
  • [17]. Benzie, I.F.F., and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239, 70-76.
  • [18]. Ozyurek, M., Guclu, K., Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. Trends Anal. Chem., 30 (4), 652-664, doi:10.1016/j.trac.2010.11.016
  • [19]. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med., 26 (9–10), 1231-1237.
  • [20]. Aliyazicioglu, R., Eyupoglu, O.E., Sahin, H., Yildiz, O., Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. Afr. J. Biotechnol., 12(47), 6643-6649, doi: 10.5897/AJB2013.13241
  • [21]. Nimmano, N., Somavarapu, S., Taylor, K.M.G. (2018). Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int J Pharmaceut., 542(1-2), 8–17, doi:10.1016/j.ijpharm.2018.02.035
  • [22]. Rock, F., Barsan, N., Weimar, U. (2008). Electronic Nose: Current Status and Future Trends. Chem Rev., 108(2), 705–725, doi:10.1021/cr068121q
  • [23]. Lee, H.-H., Kim, I.-J., Kang, S.-T., Kim, Y.-H., Lee, J.-O., Ryu, C.-H. (2010). Development of black garlic yakju and its antioxidant activity. Korean Journal of Food Science and Technology, 42(1), 69-74.
  • [24]. Kim, J.S, Kang, O.J, Gweon, O.C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods, 51, 80-86.
  • [25]. Wang, W., Sun, Y. (2016). In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Food Sci Technol., 37(4), 681-685, doi:10.1590/1678-457X.30816
  • [26]. Molina-Calle, M., Priego-Capote, F., Luque de Castro, M.D. (2017). Headspace GC-MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating, Food Sci Technol., 80, 98-105, doi:10.1016/j.lwt.2017.02.010
  • [27]. Gorinstein, S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Drzewiecki J., et al. (2008). Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J. Agric. Food Chem., 56 (12), 4418-4426, doi:10.1021/jf800038h
  • [28]. Tamaki, K., Sonoki, S., Tamaki, T., & Ehara, K. (2008). Measurement of odour after in vitro or in vivo ingestion of raw or heated garlic, using electronic nose, gas chromatography and sensory analysis. Int J Food Sci Technol., 43, 130–139, doi:10.1111/j.1365 2621.2006.01403.x
  • [29]. Koca, I., Tekguler, B., & Koca, A. F. (2016). Some physical and chemical characteristics of Taşköprü and Chinese black garlics. Acta Horticulturae, 1143, 221–226, doi:10.17660/actahortic.2016.1143.32
  • [30]. Chen, Y.-A., Tsai, J.-C., Cheng, K.-C., Liu, K.-F., Chang, C.-K., & Hsieh, C.-W. (2018). Extracts of black garlic exhibits gastrointestinal motility effect. Food Res Int., 107, 102–109, doi:10.1016/j.foodres.2018.02.003
  • [31]. Shin, J.-H., Lee, H.-G., Kang, M.-J., Lee, S.-J., Sung, N.-J. (2010). Antioxidant activity of solvent fraction from black garlic. J Korean Soc Food Sci Nutr, 39 (7), 933-940, doi:10.3746/jkfn.2010.39.7.933
  • [32]. Xiong, F, Dai, C-H., Hou, F-R., Zhu P-P., He R-H., and Ma, H-L. (2018). Study on the Ageing Method and Antioxidant Activity of Black Garlic Residues. Czech J. Food Sci., 36(1), 88–97, doi:10.17221/420/2016-CJFS
  • [33]. Martínez-Casas, L., Lage-Yusty, M., & López-Hernández, J. (2017). Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic. J Agric Food Chem., 65 (49), 10804–10811, doi:10.1021/acs.jafc.7b04423

Antioxidant Activities, Phenolic Contents and Electronic Nose Analysis of Black Garlic

Year 2019, Volume: 6 Issue: 2, 154 - 161, 15.07.2019
https://doi.org/10.21448/ijsm.564813

Abstract

Black garlic is a
processed garlic product with a moisture-controlled high temperature heat
treatment for a long time. In order to determine the secondary metabolites of
black garlics treated in the study, firstly, in vitro antioxidant activities of
black garlics purchased from Edovital company, Kastamonu, Turkey were
determined, followed by qualitative and quantitative measurement of the
phenolic compound content by HPLC and finally the electronic nose analysis of
the content of nebulizer vapors in wood vinegar extract of black garlics were
done successfully. Chlorogenic acid, vanillic acid, benzoic acid, gallic acid
contents in detected 13 phenolic acids were quitely high. All quantitative
results were expressed as mg gallic acid equivalent (GAE) per g dry matter of
black garlic sample. ABTS and DPPH antioxidant activities were very low
according to BHT standart and 2-Methylene-4-pentenal (18%) and Furfural (25%)
were detected in high amount with electronic nose in nebulvapor contents of
black garlic wood vinegar extract.

References

  • [1]. Lu, X., Li, N., Qiao, X., Qiu, Z., and Liu, P. (2017). Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 25, 340–349, doi: 10.1016/j.jfda.2016.05.011.
  • [2]. Sun, Y. E., and Wang, W. (2018). Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 55, 479–488, doi: 10.1007/s13197-017-2956-2
  • [3]. Dong, M., Yang, G., Liu, H., Liu, X., Lin, S., Sun, D., et al. (2014). Aged blackgarlic extract inhibits ht29 colon cancer cell growth via the pi3k/akt signaling pathway. Biomed. Rep. 2, 250–254, doi: 10.3892/br.2014.226
  • [4]. Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., et al. (2018). Aged (black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. Int. J. Mol. Sci. 19 (4), 1017, doi: 10.3390/ijms19041017
  • [5]. Kimura, S., Tung, Y. C., Pan, M. H., Su, N. S., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal., 25, 62–70.
  • [6]. Queiroz, Y.S, Ishimoto, E.Y, Bastos, D.H.M, Sampaio, G.R, Torres, E.A.F.S. (2009). Garlic (Allium sativum L.) and ready-to-eat garlic products: in vitro antioxidant activity. Food Chem., 115, 371-374.
  • [7]. Choi, I.S, Cha, H.S, Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19, 16811-16823.
  • [8]. Seo, Y.J, Gweon, O.C., Im, J., Lee, Y.M., Kang, M.J., Kim, J.I. (2009). Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in animal model of type 2 diabetes mellitus. J Food Sci Nutr, 14, 1-7.
  • [9]. Yuan, H., Sun, L., Chen, M., Wang, J. (2016). The comparison of the contents of sugar, Amadori, and Heyns compounds in fresh and black garlic. J Food Sci, 81(7), C1662-C1668.
  • [10]. Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H., & Park, H.J. (2012). A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT-Food Sci. Technol. (Campinas), 46, 532–535.
  • [11]. Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2016). HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating. Anal Bioanal Chem, 408 (14), 3843–3852, doi:10.1007/s00216-016-9477-0
  • [12]. Amagase, H., et al. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131, 955S–962S.
  • [13]. Liu J., Zhang G., Cong X., Wen C. (2018). Black Garlic Improves Heart Function in Patients With Coronary Heart Disease by Improving Circulating Antioxidant Levels. Front. Physiol., 9 (1435), 1-11, doi: 10.3389/fphys.2018.01435
  • [14]. Jeong, Y., Ryu, J., Shin, J.-H., Kang, M., Kang, J., Han, J., & Kang, D. (2016). Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts. Molecules, 21(4), 430, doi:10.3390/molecules21040430
  • [15]. Chen Y.-C., Kao T.-H., Tseng C.-Y., Chang W.-T., Hsu C.-L. (2014). Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J Funct Foods, 9, 98-108, doi:10.1016/j.jff.2014.02.019
  • [16]. Zhang, R.F., Zhang, F.X., Zhang, M.W., Wei, Z.C., Yang, C.Y., Zhang, Y. (2011). Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem., 59, 5935–5944.
  • [17]. Benzie, I.F.F., and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239, 70-76.
  • [18]. Ozyurek, M., Guclu, K., Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. Trends Anal. Chem., 30 (4), 652-664, doi:10.1016/j.trac.2010.11.016
  • [19]. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med., 26 (9–10), 1231-1237.
  • [20]. Aliyazicioglu, R., Eyupoglu, O.E., Sahin, H., Yildiz, O., Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. Afr. J. Biotechnol., 12(47), 6643-6649, doi: 10.5897/AJB2013.13241
  • [21]. Nimmano, N., Somavarapu, S., Taylor, K.M.G. (2018). Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int J Pharmaceut., 542(1-2), 8–17, doi:10.1016/j.ijpharm.2018.02.035
  • [22]. Rock, F., Barsan, N., Weimar, U. (2008). Electronic Nose: Current Status and Future Trends. Chem Rev., 108(2), 705–725, doi:10.1021/cr068121q
  • [23]. Lee, H.-H., Kim, I.-J., Kang, S.-T., Kim, Y.-H., Lee, J.-O., Ryu, C.-H. (2010). Development of black garlic yakju and its antioxidant activity. Korean Journal of Food Science and Technology, 42(1), 69-74.
  • [24]. Kim, J.S, Kang, O.J, Gweon, O.C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods, 51, 80-86.
  • [25]. Wang, W., Sun, Y. (2016). In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Food Sci Technol., 37(4), 681-685, doi:10.1590/1678-457X.30816
  • [26]. Molina-Calle, M., Priego-Capote, F., Luque de Castro, M.D. (2017). Headspace GC-MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating, Food Sci Technol., 80, 98-105, doi:10.1016/j.lwt.2017.02.010
  • [27]. Gorinstein, S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Drzewiecki J., et al. (2008). Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J. Agric. Food Chem., 56 (12), 4418-4426, doi:10.1021/jf800038h
  • [28]. Tamaki, K., Sonoki, S., Tamaki, T., & Ehara, K. (2008). Measurement of odour after in vitro or in vivo ingestion of raw or heated garlic, using electronic nose, gas chromatography and sensory analysis. Int J Food Sci Technol., 43, 130–139, doi:10.1111/j.1365 2621.2006.01403.x
  • [29]. Koca, I., Tekguler, B., & Koca, A. F. (2016). Some physical and chemical characteristics of Taşköprü and Chinese black garlics. Acta Horticulturae, 1143, 221–226, doi:10.17660/actahortic.2016.1143.32
  • [30]. Chen, Y.-A., Tsai, J.-C., Cheng, K.-C., Liu, K.-F., Chang, C.-K., & Hsieh, C.-W. (2018). Extracts of black garlic exhibits gastrointestinal motility effect. Food Res Int., 107, 102–109, doi:10.1016/j.foodres.2018.02.003
  • [31]. Shin, J.-H., Lee, H.-G., Kang, M.-J., Lee, S.-J., Sung, N.-J. (2010). Antioxidant activity of solvent fraction from black garlic. J Korean Soc Food Sci Nutr, 39 (7), 933-940, doi:10.3746/jkfn.2010.39.7.933
  • [32]. Xiong, F, Dai, C-H., Hou, F-R., Zhu P-P., He R-H., and Ma, H-L. (2018). Study on the Ageing Method and Antioxidant Activity of Black Garlic Residues. Czech J. Food Sci., 36(1), 88–97, doi:10.17221/420/2016-CJFS
  • [33]. Martínez-Casas, L., Lage-Yusty, M., & López-Hernández, J. (2017). Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic. J Agric Food Chem., 65 (49), 10804–10811, doi:10.1021/acs.jafc.7b04423
There are 33 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Ozan Emre Eyupoglu 0000-0002-4449-0537

Publication Date July 15, 2019
Submission Date January 16, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Eyupoglu, O. E. (2019). Antioxidant Activities, Phenolic Contents and Electronic Nose Analysis of Black Garlic. International Journal of Secondary Metabolite, 6(2), 154-161. https://doi.org/10.21448/ijsm.564813

Cited By







International Journal of Secondary Metabolite

e-ISSN: 2148-6905