Research Article
BibTex RIS Cite

Investigation of the Antioxidant Activity and Phenolic Compounds of Andricus quercustozae Gall and Host Plant (Quercus infectoria)

Year 2020, Volume: 7 Issue: 2, 77 - 87, 13.06.2020
https://doi.org/10.21448/ijsm.674930

Abstract

Andricus quercustozae (Bosc, 1792) is a cynipid gall wasp, which induces gall on oaks (Quercus spp.). It is known that both cynipid galls and oaks are used in traditional medicine. In this study, some biological characteristics of various extracts (acetone and ethanol) of A. quercustozae asexual gall and its host plant, Quercus infectoria Olivier, were investigated. The antioxidant capacities of the extracts were evaluated using radical scavenging activity (ABTS and DPPH assays), the β-carotene-linoleic acid method, the phosphomolybdenum method, and the reducing power (CUPRAC method). Total phenolics, flavonoid and tannin contents were measured in the gall and the oak leaf extracts. Moreover, ethanol extracts of the gall and the host plant were evaluated using HPLC for the composition of phenolics. Generally, the gall extracts (acetone and ethanol, respectively) exhibited the strongest radical scavenging (DPPH, IC50 value of acetone extract: 11.00 μg/mL and IC50 value of ethanol extract: 8.67 μg/mL; ABTS, 52.27 μg/mL and 44.97 μg/mL) and antioxidant activities with the highest level of phenolics. The antioxidant activity of the gall extracts was in the range of 80.74 to 87.49 % for β-carotene-linoleic acid method, while and it was ranged from 75.68 to 78.20 mgAEs/g for phosphomolybdenum method. In the results of some antioxidant methods (ABTS and β-carotene-linoleic acid), it is observed that the host plant extract has values close or high to the gall extract. In this context, our results suggested that the cynipid gall extracts could be used as a natural agent in food, medicinal and pharmaceutical applications.

Thanks

We would like to thank crew in Secondary Metabolite Laboratory, Pamukkale University, which helped during the study.

References

  • Dar, M.S., Ikram, M., Fakouhi, T. (1976). Pharmacology of Quercus infectoria. J. Pharm. Sci., 65, 1791-1794. doi:https://doi.org/10.1002/jps.2600651224
  • Jamzad, Z., Panahi, P., Mohammad, R.P., Fallha, A.M. (2012). Foliar epidermal morphology in Quercus (subgenus Quercus, section Quercus) in Iran. Acta Bot. Croat., 71, 95-113. doi:https://doi.org/10.2478/v10184-010-0029-y
  • Ronquist, F., Nieves-Aldrey, J.L., Buffington, M.L., Liu, Zh., Liljeblad, J., Nylander, J.A.A. (2015). Phylogeny, Evolution and Classification of Gall Wasps: The Plot Thickens. PLoS ONE, 10, 1-40. doi:https://doi.org/10.1371/journal.pone.0123301
  • Azmaz, M., Katılmış, Y. (2017). Updated species list of Cynipidae (Hymenoptera) from Turkey. Zootaxa, 4303, 361–378. doi: https://doi.org/10.11646/zootaxa.4303.3.3
  • Azmaz, M., Katılmış, Y. (2020). A new species of herb gall wasp (Cynipidae, Aulacideini, Aulacidea) from Turkey. Zootaxa, 4747, 378 390. doi:https://doi.org/10.11646/zootaxa.4747.2.9
  • Bayrak, S., Avcı, M. (2019). Gall forming Cynipini (Hymenoptera: Cynipidae) species in Isparta oak forests. Munis Entomology & Zoology, 14, 552-564.
  • Imtiyaz, S., Ali, S.J., Tariq, M., Chaudhary, S.S., Aslam, M. (2013). Oak Galls: The Medicinal Balls. Journal of Pharmaceutical and Scientific Innovation, 2, 18-21.
  • Oefele, F. (1933). Vorgeschichte zur Cecidologie der klassischen Schriftsteller. (Ed.), K. Böhner. Geschichte der Cecidologie. Teil 1, Arthur Nemayer, Mittenwald [in German].
  • Schimitschek, E. (1953). Forestry insects of Turkey and its surrounding. (Ed.) A. Acatay. İstanbul University Publications, İstanbul, 471 pp. [in Turkish].
  • Iminjan, M., Amat, N., Li, X.H., Upur, H., Ahmat, D., He, B. (2014). Investigation into the Toxicity of traditional Uyghur medicine Quercus infectoria galls water extract. PLoS One, 9, e90756. doi:https://doi.org/10.1371/journal.pone.0090756
  • Wang, J.Y., Zhang, Q.H., Deng, X.M., Wang, D.C., Han, W.Y. (2007). Progress on pharmacological activities of Quercus infectoria galls. Shizhen Guoyi Guoyao, 18, 2570-2572.
  • Dar, M.S., Ikram, M. (1979). Studies on Quercus infectoria; isolation of syringic acid and determination of its central depressive activity. Planta Med, 35, 156-161. doi:https://doi.org/10.1055/s-0028-1097197
  • Everest, A., Öztürk, E. (2005). Focusing on ethnobotanical uses of plants in Mersin and Adana provinces (Turkey). J. Ethnobiol. Ethnomed., 1, 1 6. doi:https://doi.org/10.1186/1746-4269-1-6
  • Hamid, H., Kaur, G., Abdullah, S.T., Ali, M., Athar, M., Alam, M.S. (2005). Two new compounds from the galls of Quercus infectoria with nitric oxide and superoxide inhibiting ability. Pharm. Biol., 43, 317 323. doi:https://doi.org/10.1080/13880200590951711
  • Hapidin, H., Abdullah, H., Soelaiman, I.N. (2012). The potential role of Quercus infectoria gall extract on osteoblast function and bone metabolism. Open Journal of Endocrine and Metabolic Diseases, 2, 82 88. doi:https://doi.org/10.4236/ojemd.2012.24013
  • Yamunarani, K., Jaganathan, R., Bhaskaran, P., Govindaraju, R., Velazhahan, R. (2005). In vitro Antifungal Activity of a 29-kDa Glycoprotein Purified from the Galls of Quercus infetoria. Acta Phytopath. Entomol. Hungarica, 40, 43 54. doi:https://doi.org/10.1556/APhyt.40.2005.1-2.6
  • Asif, M., Ansari, S.H., Rafiul Haque, Md., Kalam, N. (2012). Estimation of total phenolic, flavonoid contents and antioxidant activity in the nut galls of Quercus infectoria Olivier. Journal of Pharmacy Research, 5, 3855-3857.
  • Fathabad, A.E., Shariatifar, N., Mardani, K., Mohammadpourfard, I. (2015). Study on antibacterial and antioxidant activity of Oak gall (Quercus infectoria) extracts from Iran. International Journal of Current Science, 14, 44-50.
  • Hasmida, M.N., Liza, M.S., Nur Syukriah, A.R., Harisun, Y., Mohd Azizi, C.Y., Fadzilah Adibah, A.M. (2015). Total Phenolic Content and Antioxidant Activity of Quercus infectoria Galls Using Supercritical CO2 Extraction Technique and Its Comparison with Soxhlet Extraction. Pertanika J. Sci. Technol., 23, 287-295.
  • Hasmida, M.N., Nur Syukriah, A.R., Liza, M.S., Mohd Azizi, C.Y. (2014). Effect of different extraction techniques on total phenolic content and antioxidant activity of Quercus infectoria galls. Int. Food Res. J., 21, 1075-1079.
  • Noori, M., Talebi, M., Ahmadi, T. (2015). Comparative Studies of Leaf, Gall and Bark Flavonoids in Collected Quercus brantii Lindl. (Fagaceae) from Lorestan Province, Iran. Int. J. Plant Res., 5, 42-49.
  • Nur Syukriah, A.R., Liza, M.S., Harisun, Y., Fadzillah, A.A.M. (2014). Effect of solvent extraction on antioxidant and antibacterial activities from Quercus infectoria (Manjakani). International Food Research Journal, 21, 1067-1073.
  • Rina, R., Rafiquzzaman, M., Hasmah, A. (2011). Spectrophotometric Determination of Total Phenol and Flavanoid Content in Manjakani (Quercus infectoria) Extracts. Health and the Environment Journal, 2, 9-13.
  • Basri, D.F., Tan, L.S., Shafiei, Z., Zin, N.M. (2012). In vitro Antibacterial Activity of Galls of Quercus infectoria Oliver against Oral Pathogens. Evid-Based Compl. Alt., 632796. doi:https://doi.org/10.1155/2012/632796
  • Cornell, H.V. (1983). The secondary chemistry and complex morphology of galls formed by the Cynipidae (Hymenoptera): why and how? The American Midland Naturalist, 110, 225-234. doi:https://doi.org/10.2307/2425263
  • Digrak, M., Alma, M.H., Ilcim, A., Sen, S. (1999). Antibacterial and antifungal effects of various commercial plant extracts. Pharm Biol, 37, 216 220. doi:https://doi.org/10.1076/phbi.37.3.216.6307
  • Fatima, S., Farooqi, A.H.A., Kumar, R., Kumar, T.R.S., Khanuja, S.P.S. (2001). Antibacterial activity possessed by medicinal plants used in tooth powders. Journal of Medicinal and Aromatic Plant Sciences, 22, 187-189.
  • Ikram, M., Nowshad, F. (1977). Constituents of Quercus infectoria. Planta Med, 31, 86–87. doi:https://doi.org/10.1055/s-0028-1097531
  • Charles, D.F.P. (1879). Materia medica and therapeutics-vegetable kingdoms. New York: William Wood and Company.
  • Vermani, A., Navneet., Prabhat. (2009). Screening of Quercus infectoria gall extracts as anti-bacterial agents against dental pathogens. Indian J. Dent. Res., 20, 337. doi:https://doi.org/10.4103/0970-9290.57380
  • Wiart, C., Kumar, A. (2001). Practical handbook of pharmacognosy. Malaysia: Pearson Education Malaysia SdnBhd.
  • Allison, S.D., Schultz, J.C. (2005). Biochemical Responses of Chestnut Oak to A Galling Cynipid. J. Chem. Ecol., 31, 1. doi:https://doi.org/10.1007/s10886-005-0981-5
  • Howes, F.N. (1953). Vegetable tanning materials. Butterworth, London.
  • Larew, H.G. (1982). A comparative anatomical study of galls caused by the major cecidogenetic groups with special emphasis on the nutritive tissue. PhD Dissertation, Oregon State University.
  • Taper, M.L., Case, T.J. (1987). Interactions between oak tannins and parasite community structure: Unexpected benefits of tannins to cynipid gall-wasps. Oecologia, 71, 254–261. doi:https://doi.org/10.1007/BF00377292
  • Mammadov, R., Ili, P., Ertem Vaizoğullar, H., Afacan Makascı, A. (2011). Antioxidant Activity and Total Phenolic Content of Gagea fibrosa and Romulea ramiflora. Iran J. Chem. Chem. Eng., 30, 57-62.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult., 28, 49-55.
  • Arvouet-Grand, A., Vennat, B., Pourrat, A., Legret, P. (1994). Standardization of a propolis extract and identification of the main constituents. J. Pharm. Belg., 49, 462-468.
  • Bekir, J., Mars, M., Souchard, J.P., Bouajila, J. (2013). Assessment of antioxidant, antiinflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem. Toxicol., 55, 470 475. doi:https://doi.org/10.1016/j.fct.2013.01.036
  • Wu, C., Chen, F., Wang, X., Kim, H.J., He, G., Haley-Zitlin, V., Huang, G. (2006). Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem, 96, 220 227. doi:https://doi.org/10.1016/j.foodchem.2005.02.024
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med, 26, 1231 1237. doi:https://doi.org/10.1016/S08915849(98)00315-3
  • Amin, I., Tan, S.H. (2002). Antioxidant activity of selected commercial seaweeds. Mal J Nutr, 8, 167-177.
  • Berk, S., Tepe, B., Arslan, S., Sarikurkcu, C. (2011). Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Asplenium ceterach D.C. Afr J Biotechnol, 10, 8902-8908.
  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., Ercağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr., 57, 292-304. doi:https://doi.org/10.1080/09637480600798132
  • Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of pastepreperation techniques. Food Chem., 64, 203 209. doi:https://doi.org/10.1016/S0308-8146(98)00146-0
  • Kaska, A., Deniz, N., Çiçek, M., Mammadov, R. (2018). Evaluation of Antioxidant Properties, Phenolic Compounds, Anthelmintic, and Cytotoxic Activities of Various Extracts Isolated from Nepeta cadmea: An Endemic Plant for Turkey. J. Food Sci., 83, 1552-1559. doi:https://doi.org/10.1111/1750-3841.14167
  • Alpınar, K., Ozyurek, M., Kolak, U., Guclu, K., Aras, C., Altun, M., Celik, S.E., Berker, K.I., Bektasoglu, B., Apak, R. (2009). Antioxidant Capacities of Some Food Plants Wildly Grown in Ayvalik of Turkey. Food Sci Technol Res, 15, 59-64. doi:https://doi.org/10.3136/fstr.15.59
  • Kılınçarslan, Ö., Mammadov, R. (2018). HPLC analysis and Antioxidant, Antibacterial and Cytotoxicity Activities of Various Solvent Extracts of Erysimum kotschyanum Gay. (Brassicaceae). J. Chem. Soc. Pakistan, 40, 707-714.
  • Middleton, E., Kandaswami, C., Theoharides, T.C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol Rev, 52, 673-751.
  • Rio, D.D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign, 18, 1818-1892. doi:https://doi.org/10.1089/ars.2012.4581
  • Kheirandish, F., Delfan, B., Mahmoudvand, H., Moradi, N., Ezatpour, B., Ebrahimzadeh, F., Rashidipour, M. (2016). Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother., 82, 208 215. doi:https://doi.org/10.1016/j.biopha.2016.04.040
  • Paaver, U., Matto, V., Raal, A. (2010). Total tannin content in distinct Quercus robur L. galls. J. Med. Plants Res., 4, 702-705.
  • Pirozi, F., Adeli, K., Tavakoli, M. (2016). The study of Galls Growing on Oak tree’s Importance in Producing Tannin (Case study in Ghalaie region in Lorestan Province). Adv. Biores., 7, 9-12.
  • Leong, L.P., Shiu, G. (2002). An investigated of antioxidant capacity of fruits in Singapore markets. Food Chem., 76, 69-75. doi:https://doi.org/10.1016/S0308-8146(01)00251-5
  • Wang, L., Wang, Z., Li, X. (2013). Preliminary phytochemical and biological activities study of solvent extracts from a cold-field fruit-Malus baccata (Linn.) Borkh. Ind. Crop Prod., 47, 20-28. doi:https://doi.org/10.1016/j.indcrop.2013.02.029
  • Kaur, G., Athar, M., Alam, M.S. (2008). Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact, 171, 272 282. doi:https://doi.org/10.1016/j.cbi.2007.10.002
  • Khanavi, M., Sabbagh-Bani-Azad, M., Abdolghaffari, A.H., Vazirian, M., Isazadeh, I., Rezvanfar, M.A., et al. (2014). On the benefit of galls of Quercus brantii Lindl. in murine colitis: the role of free gallic acid. Arch. Med. Sci., 10, 1225 1234. doi:https://doi.org/10.5114/aoms.2014.47831
  • Augustyniak, A., Bartosz, G., Cipak, A., Duburs, G., Horakova, L., Luczaj W., et al. (2010). Natural and synthetic antioxidants: an updated overview. Free Radical Res., 44, 1216-1262. doi:https://doi.org/10.3109/10715762.2010.508495
  • Thielecke, F., Boschmann, M. (2009). The potential role of green tea catechins in the prevention of the metabolic syndrome-a review. Phytochemistry, 70, 11-24. doi:https://doi.org/10.1016/j.phytochem.2008.11.011

Investigation of the Antioxidant Activity and Phenolic Compounds of Andricus quercustozae Gall and Host Plant (Quercus infectoria)

Year 2020, Volume: 7 Issue: 2, 77 - 87, 13.06.2020
https://doi.org/10.21448/ijsm.674930

Abstract

Andricus quercustozae (Bosc, 1792) is a cynipid gall wasp, which induces gall on oaks (Quercus spp.). It is known that both cynipid galls and oaks are used in traditional medicine. In this study, some biological characteristics of various extracts (acetone and ethanol) of A. quercustozae asexual gall and its host plant, Quercus infectoria Olivier, were investigated. The antioxidant capacities of the extracts were evaluated using radical scavenging activity (ABTS and DPPH assays), the β-carotene-linoleic acid method, the phosphomolybdenum method, and the reducing power (CUPRAC method). Total phenolics, flavonoid and tannin contents were measured in the gall and the oak leaf extracts. Moreover, ethanol extracts of the gall and the host plant were evaluated using HPLC for the composition of phenolics. Generally, the gall extracts (acetone and ethanol, respectively) exhibited the strongest radical scavenging (DPPH, IC50 value of acetone extract: 11.00 μg/mL and IC50 value of ethanol extract: 8.67 μg/mL; ABTS, 52.27 μg/mL and 44.97 μg/mL) and antioxidant activities with the highest level of phenolics. The antioxidant activity of the gall extracts was in the range of 80.74 to 87.49 % for β-carotene-linoleic acid method, while and it was ranged from 75.68 to 78.20 mgAEs/g for phosphomolybdenum method. In the results of some antioxidant methods (ABTS and β-carotene-linoleic acid), it is observed that the host plant extract has values close or high to the gall extract. In this context, our results suggested that the cynipid gall extracts could be used as a natural agent in food, medicinal and pharmaceutical applications.

References

  • Dar, M.S., Ikram, M., Fakouhi, T. (1976). Pharmacology of Quercus infectoria. J. Pharm. Sci., 65, 1791-1794. doi:https://doi.org/10.1002/jps.2600651224
  • Jamzad, Z., Panahi, P., Mohammad, R.P., Fallha, A.M. (2012). Foliar epidermal morphology in Quercus (subgenus Quercus, section Quercus) in Iran. Acta Bot. Croat., 71, 95-113. doi:https://doi.org/10.2478/v10184-010-0029-y
  • Ronquist, F., Nieves-Aldrey, J.L., Buffington, M.L., Liu, Zh., Liljeblad, J., Nylander, J.A.A. (2015). Phylogeny, Evolution and Classification of Gall Wasps: The Plot Thickens. PLoS ONE, 10, 1-40. doi:https://doi.org/10.1371/journal.pone.0123301
  • Azmaz, M., Katılmış, Y. (2017). Updated species list of Cynipidae (Hymenoptera) from Turkey. Zootaxa, 4303, 361–378. doi: https://doi.org/10.11646/zootaxa.4303.3.3
  • Azmaz, M., Katılmış, Y. (2020). A new species of herb gall wasp (Cynipidae, Aulacideini, Aulacidea) from Turkey. Zootaxa, 4747, 378 390. doi:https://doi.org/10.11646/zootaxa.4747.2.9
  • Bayrak, S., Avcı, M. (2019). Gall forming Cynipini (Hymenoptera: Cynipidae) species in Isparta oak forests. Munis Entomology & Zoology, 14, 552-564.
  • Imtiyaz, S., Ali, S.J., Tariq, M., Chaudhary, S.S., Aslam, M. (2013). Oak Galls: The Medicinal Balls. Journal of Pharmaceutical and Scientific Innovation, 2, 18-21.
  • Oefele, F. (1933). Vorgeschichte zur Cecidologie der klassischen Schriftsteller. (Ed.), K. Böhner. Geschichte der Cecidologie. Teil 1, Arthur Nemayer, Mittenwald [in German].
  • Schimitschek, E. (1953). Forestry insects of Turkey and its surrounding. (Ed.) A. Acatay. İstanbul University Publications, İstanbul, 471 pp. [in Turkish].
  • Iminjan, M., Amat, N., Li, X.H., Upur, H., Ahmat, D., He, B. (2014). Investigation into the Toxicity of traditional Uyghur medicine Quercus infectoria galls water extract. PLoS One, 9, e90756. doi:https://doi.org/10.1371/journal.pone.0090756
  • Wang, J.Y., Zhang, Q.H., Deng, X.M., Wang, D.C., Han, W.Y. (2007). Progress on pharmacological activities of Quercus infectoria galls. Shizhen Guoyi Guoyao, 18, 2570-2572.
  • Dar, M.S., Ikram, M. (1979). Studies on Quercus infectoria; isolation of syringic acid and determination of its central depressive activity. Planta Med, 35, 156-161. doi:https://doi.org/10.1055/s-0028-1097197
  • Everest, A., Öztürk, E. (2005). Focusing on ethnobotanical uses of plants in Mersin and Adana provinces (Turkey). J. Ethnobiol. Ethnomed., 1, 1 6. doi:https://doi.org/10.1186/1746-4269-1-6
  • Hamid, H., Kaur, G., Abdullah, S.T., Ali, M., Athar, M., Alam, M.S. (2005). Two new compounds from the galls of Quercus infectoria with nitric oxide and superoxide inhibiting ability. Pharm. Biol., 43, 317 323. doi:https://doi.org/10.1080/13880200590951711
  • Hapidin, H., Abdullah, H., Soelaiman, I.N. (2012). The potential role of Quercus infectoria gall extract on osteoblast function and bone metabolism. Open Journal of Endocrine and Metabolic Diseases, 2, 82 88. doi:https://doi.org/10.4236/ojemd.2012.24013
  • Yamunarani, K., Jaganathan, R., Bhaskaran, P., Govindaraju, R., Velazhahan, R. (2005). In vitro Antifungal Activity of a 29-kDa Glycoprotein Purified from the Galls of Quercus infetoria. Acta Phytopath. Entomol. Hungarica, 40, 43 54. doi:https://doi.org/10.1556/APhyt.40.2005.1-2.6
  • Asif, M., Ansari, S.H., Rafiul Haque, Md., Kalam, N. (2012). Estimation of total phenolic, flavonoid contents and antioxidant activity in the nut galls of Quercus infectoria Olivier. Journal of Pharmacy Research, 5, 3855-3857.
  • Fathabad, A.E., Shariatifar, N., Mardani, K., Mohammadpourfard, I. (2015). Study on antibacterial and antioxidant activity of Oak gall (Quercus infectoria) extracts from Iran. International Journal of Current Science, 14, 44-50.
  • Hasmida, M.N., Liza, M.S., Nur Syukriah, A.R., Harisun, Y., Mohd Azizi, C.Y., Fadzilah Adibah, A.M. (2015). Total Phenolic Content and Antioxidant Activity of Quercus infectoria Galls Using Supercritical CO2 Extraction Technique and Its Comparison with Soxhlet Extraction. Pertanika J. Sci. Technol., 23, 287-295.
  • Hasmida, M.N., Nur Syukriah, A.R., Liza, M.S., Mohd Azizi, C.Y. (2014). Effect of different extraction techniques on total phenolic content and antioxidant activity of Quercus infectoria galls. Int. Food Res. J., 21, 1075-1079.
  • Noori, M., Talebi, M., Ahmadi, T. (2015). Comparative Studies of Leaf, Gall and Bark Flavonoids in Collected Quercus brantii Lindl. (Fagaceae) from Lorestan Province, Iran. Int. J. Plant Res., 5, 42-49.
  • Nur Syukriah, A.R., Liza, M.S., Harisun, Y., Fadzillah, A.A.M. (2014). Effect of solvent extraction on antioxidant and antibacterial activities from Quercus infectoria (Manjakani). International Food Research Journal, 21, 1067-1073.
  • Rina, R., Rafiquzzaman, M., Hasmah, A. (2011). Spectrophotometric Determination of Total Phenol and Flavanoid Content in Manjakani (Quercus infectoria) Extracts. Health and the Environment Journal, 2, 9-13.
  • Basri, D.F., Tan, L.S., Shafiei, Z., Zin, N.M. (2012). In vitro Antibacterial Activity of Galls of Quercus infectoria Oliver against Oral Pathogens. Evid-Based Compl. Alt., 632796. doi:https://doi.org/10.1155/2012/632796
  • Cornell, H.V. (1983). The secondary chemistry and complex morphology of galls formed by the Cynipidae (Hymenoptera): why and how? The American Midland Naturalist, 110, 225-234. doi:https://doi.org/10.2307/2425263
  • Digrak, M., Alma, M.H., Ilcim, A., Sen, S. (1999). Antibacterial and antifungal effects of various commercial plant extracts. Pharm Biol, 37, 216 220. doi:https://doi.org/10.1076/phbi.37.3.216.6307
  • Fatima, S., Farooqi, A.H.A., Kumar, R., Kumar, T.R.S., Khanuja, S.P.S. (2001). Antibacterial activity possessed by medicinal plants used in tooth powders. Journal of Medicinal and Aromatic Plant Sciences, 22, 187-189.
  • Ikram, M., Nowshad, F. (1977). Constituents of Quercus infectoria. Planta Med, 31, 86–87. doi:https://doi.org/10.1055/s-0028-1097531
  • Charles, D.F.P. (1879). Materia medica and therapeutics-vegetable kingdoms. New York: William Wood and Company.
  • Vermani, A., Navneet., Prabhat. (2009). Screening of Quercus infectoria gall extracts as anti-bacterial agents against dental pathogens. Indian J. Dent. Res., 20, 337. doi:https://doi.org/10.4103/0970-9290.57380
  • Wiart, C., Kumar, A. (2001). Practical handbook of pharmacognosy. Malaysia: Pearson Education Malaysia SdnBhd.
  • Allison, S.D., Schultz, J.C. (2005). Biochemical Responses of Chestnut Oak to A Galling Cynipid. J. Chem. Ecol., 31, 1. doi:https://doi.org/10.1007/s10886-005-0981-5
  • Howes, F.N. (1953). Vegetable tanning materials. Butterworth, London.
  • Larew, H.G. (1982). A comparative anatomical study of galls caused by the major cecidogenetic groups with special emphasis on the nutritive tissue. PhD Dissertation, Oregon State University.
  • Taper, M.L., Case, T.J. (1987). Interactions between oak tannins and parasite community structure: Unexpected benefits of tannins to cynipid gall-wasps. Oecologia, 71, 254–261. doi:https://doi.org/10.1007/BF00377292
  • Mammadov, R., Ili, P., Ertem Vaizoğullar, H., Afacan Makascı, A. (2011). Antioxidant Activity and Total Phenolic Content of Gagea fibrosa and Romulea ramiflora. Iran J. Chem. Chem. Eng., 30, 57-62.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult., 28, 49-55.
  • Arvouet-Grand, A., Vennat, B., Pourrat, A., Legret, P. (1994). Standardization of a propolis extract and identification of the main constituents. J. Pharm. Belg., 49, 462-468.
  • Bekir, J., Mars, M., Souchard, J.P., Bouajila, J. (2013). Assessment of antioxidant, antiinflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem. Toxicol., 55, 470 475. doi:https://doi.org/10.1016/j.fct.2013.01.036
  • Wu, C., Chen, F., Wang, X., Kim, H.J., He, G., Haley-Zitlin, V., Huang, G. (2006). Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem, 96, 220 227. doi:https://doi.org/10.1016/j.foodchem.2005.02.024
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med, 26, 1231 1237. doi:https://doi.org/10.1016/S08915849(98)00315-3
  • Amin, I., Tan, S.H. (2002). Antioxidant activity of selected commercial seaweeds. Mal J Nutr, 8, 167-177.
  • Berk, S., Tepe, B., Arslan, S., Sarikurkcu, C. (2011). Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Asplenium ceterach D.C. Afr J Biotechnol, 10, 8902-8908.
  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., Ercağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr., 57, 292-304. doi:https://doi.org/10.1080/09637480600798132
  • Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of pastepreperation techniques. Food Chem., 64, 203 209. doi:https://doi.org/10.1016/S0308-8146(98)00146-0
  • Kaska, A., Deniz, N., Çiçek, M., Mammadov, R. (2018). Evaluation of Antioxidant Properties, Phenolic Compounds, Anthelmintic, and Cytotoxic Activities of Various Extracts Isolated from Nepeta cadmea: An Endemic Plant for Turkey. J. Food Sci., 83, 1552-1559. doi:https://doi.org/10.1111/1750-3841.14167
  • Alpınar, K., Ozyurek, M., Kolak, U., Guclu, K., Aras, C., Altun, M., Celik, S.E., Berker, K.I., Bektasoglu, B., Apak, R. (2009). Antioxidant Capacities of Some Food Plants Wildly Grown in Ayvalik of Turkey. Food Sci Technol Res, 15, 59-64. doi:https://doi.org/10.3136/fstr.15.59
  • Kılınçarslan, Ö., Mammadov, R. (2018). HPLC analysis and Antioxidant, Antibacterial and Cytotoxicity Activities of Various Solvent Extracts of Erysimum kotschyanum Gay. (Brassicaceae). J. Chem. Soc. Pakistan, 40, 707-714.
  • Middleton, E., Kandaswami, C., Theoharides, T.C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol Rev, 52, 673-751.
  • Rio, D.D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign, 18, 1818-1892. doi:https://doi.org/10.1089/ars.2012.4581
  • Kheirandish, F., Delfan, B., Mahmoudvand, H., Moradi, N., Ezatpour, B., Ebrahimzadeh, F., Rashidipour, M. (2016). Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother., 82, 208 215. doi:https://doi.org/10.1016/j.biopha.2016.04.040
  • Paaver, U., Matto, V., Raal, A. (2010). Total tannin content in distinct Quercus robur L. galls. J. Med. Plants Res., 4, 702-705.
  • Pirozi, F., Adeli, K., Tavakoli, M. (2016). The study of Galls Growing on Oak tree’s Importance in Producing Tannin (Case study in Ghalaie region in Lorestan Province). Adv. Biores., 7, 9-12.
  • Leong, L.P., Shiu, G. (2002). An investigated of antioxidant capacity of fruits in Singapore markets. Food Chem., 76, 69-75. doi:https://doi.org/10.1016/S0308-8146(01)00251-5
  • Wang, L., Wang, Z., Li, X. (2013). Preliminary phytochemical and biological activities study of solvent extracts from a cold-field fruit-Malus baccata (Linn.) Borkh. Ind. Crop Prod., 47, 20-28. doi:https://doi.org/10.1016/j.indcrop.2013.02.029
  • Kaur, G., Athar, M., Alam, M.S. (2008). Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact, 171, 272 282. doi:https://doi.org/10.1016/j.cbi.2007.10.002
  • Khanavi, M., Sabbagh-Bani-Azad, M., Abdolghaffari, A.H., Vazirian, M., Isazadeh, I., Rezvanfar, M.A., et al. (2014). On the benefit of galls of Quercus brantii Lindl. in murine colitis: the role of free gallic acid. Arch. Med. Sci., 10, 1225 1234. doi:https://doi.org/10.5114/aoms.2014.47831
  • Augustyniak, A., Bartosz, G., Cipak, A., Duburs, G., Horakova, L., Luczaj W., et al. (2010). Natural and synthetic antioxidants: an updated overview. Free Radical Res., 44, 1216-1262. doi:https://doi.org/10.3109/10715762.2010.508495
  • Thielecke, F., Boschmann, M. (2009). The potential role of green tea catechins in the prevention of the metabolic syndrome-a review. Phytochemistry, 70, 11-24. doi:https://doi.org/10.1016/j.phytochem.2008.11.011
There are 59 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Musa Azmaz 0000-0002-9621-9909

Özge Kılınçarslan Aksoy 0000-0003-4944-1029

Yusuf Katılmış 0000-0003-0880-1489

Ramazan Mammadov 0000-0003-2218-5336

Publication Date June 13, 2020
Submission Date January 14, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Azmaz, M., Kılınçarslan Aksoy, Ö., Katılmış, Y., Mammadov, R. (2020). Investigation of the Antioxidant Activity and Phenolic Compounds of Andricus quercustozae Gall and Host Plant (Quercus infectoria). International Journal of Secondary Metabolite, 7(2), 77-87. https://doi.org/10.21448/ijsm.674930

Cited By










International Journal of Secondary Metabolite

e-ISSN: 2148-6905