Research Article
PDF EndNote BibTex RIS Cite

Determination of Photosynthesis-Related and Ascorbate Peroxidase Gene Expression in the Green Algae (Chlorella vulgaris) Under High-Temperature Conditions

Year 2021, Volume 8, Issue 1, 59 - 69, 08.03.2021
https://doi.org/10.21448/ijsm.794617

Abstract

Increasing water temperatures because of climate change resulted in population shifts and physiological responses in aquatic environments. In this study, short-term high-temperature condition effects on green algae Chlorella vulgaris were investigated at transcriptional and physiological levels. The photosystem II D1 protein (psbA) gene, a large unit of Rubisco (rbcL) gene and chloroplastic ascorbate peroxidase (cAPX) gene expressions were quantified using semi-quantitative real time-PCR. The psbA gene transcription level at 45˚C for 48 and 72 h was reduced by approx. 2.22 and 2.86-folds, respectively. The rbcL gene transcription level was also reduced by 1.54 relative to the control at 72 h. Our APX gene transcriptional level results indicated that the transcription of this gene was significantly increased at 35˚C at 24, 48, and 72 h. In contrast, the cAPX mRNA transcript level was reduced by approx. 2 times compared with the control. Our data demonstrated that alteration cAPX gene expression could play an essential role in high-temperature acclimation in C. vulgaris.

References

  • Agrawal, G.K., Jwa, N.S., Iwahashi, H., & Rakwal, R. (2003). Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene, 322, 93-103. https://doi.org/10.1016/j.gene.2003.08.017
  • Allakhverdiev, S.I., Los, D.A., Mohanty, P., Nishiyama, & Y., Murata, N. (2007). Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim. Biophys. Acta., 1767, 1363–1371. https://doi.org/10.1016/j.bbabio.2007.10.005
  • Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res., 98, 541–550. https://doi.org/10.1007/s11120-008-9331-0
  • Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 50, 601–639. https://doi.org/10.1146/annurev.arplant.50.1.601
  • Bajguz, A. (2009). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short term heat stress. J. Plant. Physiol., 166, 882 886. https://doi.org/10.1016/j.jplph.2008.10.004
  • Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Gen. Mol. Biol., 35(4), 1011-1019. https://doi.org/10.1590/s1415-47572012000600016
  • Chettri, M. K., Cook, C. M., Vardaka, E., Sawidis, T., & Lanaras, T. (1988). The effect of Cu, Zn, and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ. Exp. Bot., 39, 1-10. https://doi.org/10.1016/S0098-8472(97)00024-5
  • Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., & Borghi, M. (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process., 48, 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006
  • Du, H., Zhou, P., & Huang, B. (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ. Exp. Bot., 87, 159-166. https://doi.org/10.1016/j.envexpbot.2012.09.009
  • Feller, U., Carfts-Brandner, J.S., & Salvucci, M.E. (1998). Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant. Physiol., 116, 539 546. https://doi.org/10.1104/pp.116.2.539
  • Foyer, C.H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant., 119, 355–364. https://doi.org/10.1034/j.1399-3054.2003.00223
  • Giardi, M.T., Masojidek, J., & Godde, D. (1997). Effects of abiotic stresses on the turnover of the D1 reaction center II protein. Physiol. Plant., 101, 635–642. https://doi.org/10.1111/j.1399-3054.1997.tb01048
  • Goyary, D. (2009). Transgenic crops, and their scope for abiotic stress environment of high altitude: biochemical and physiological perspectives. DRDO. Sci. Spectrum, 195-201. https://doi.org/10.3923/biotech.2011.1.22
  • Guillard, R.R.L. (1973). Division Rates. J. R. Stein (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements (289-311). Cambridge University Press, London.
  • Kawakami, S., Matsumoto, Y., Matsunaga, A., Mayama, S., & Mizuno, M. (2002). Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant. Sci., 163, 829-836. https://doi.org/10.1016/S0168-9452(02)00232-7
  • Kusnetsov, V. V., Mikulovich, T. P., Kukina, I. M., Cherepneva, G. N., Herrmann, R. G., & Kulaeva, O. N. (1993). Changes in level of chloroplast transcripts in pumkin cotyledons during heat shock. FEBS Lett., 321, 189-193. https://doi.org/10.1016/0014-5793(93)80105-4
  • Law, R.D., & Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant. Physiol., 120, 1773 1780. https://doi.org/10.1104/pp.120.1.173
  • Lin, K.H., & Pu, S.F. (2010). Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol. Plantarum., 54, 664-670. https://doi.org/10.1007/s10535-010-0118-8
  • Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., & Liang, D. (2008). Effect of high temperature on activities and gene expression of enzymes involved in ascrobate glutathione cycle in apple leaves. Plant. Sci. 175, 761-766. https://doi.org/10.1016/j.plantsci.2008.07.010
  • Marshall, O.J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15), 2471-2472. https://doi.org/10.1093/bioinformatics/bth254
  • Menezes-Benavente, L., Teixeira, F. K., Kamei, C. L. A., & Margis-Pinheiro, M. (2004). Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant. Sci., 166, 323-331. https://doi.org/10.1016/j.plantsci.2003.10.001
  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., & Mittler, R. (2007). Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant. Physiol., 144, 1777-1785. https://doi.org/10.1104/pp.107.101436
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends. Plant. Sci., 9, 490 498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Nishiyama, Y., Allakhverdiev, S.I., Yamamoto, H., Hayashi, H., Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 43, 11321–11330. https://doi.org/10.1007/s11120-004-6434-0
  • Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta., 1757, 742–749. https://doi.org/10.1016/j.bbabio.2006.05.013
  • Park, S.Y., Ryu, S.H., Jang, I.C., Kwon, S.Y., Kim, J.G., & Kwak, S.S. (2004). Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato and its expression in response to stress. Mol. Genet. Genomics, 271, 339-346. https://doi.org/10.1007/s00438-004-0986-8
  • Poong S., Lim, P., Lai, J. W., Phang S. (2017). Optimisation of high quality total RNA isolation from the microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) for next-generation sequenching. Phycological Res. 65, 146-150. https://doi.org/10.1111/pre.12165
  • Prasil, O., Adir, N., Ohad, I., & Barber, J. (1992). Topics in Photosynthesis. Elsevier Biomedical Press.
  • Puckett, K.J., Nieboer, E., Flora, W.P., & Richardson, D.H.S. (1973). Sulphur dioxide:its effect on photosynthetic 14C fixation in lichens and suggested mechanisms of phytotoxicity. New Phytol., 72, 141-154. https://doi.org/10.1111/j.1469-8137.1973.tb02019
  • Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat. Toxicol., 94, 56–61. https://doi.org/10.1016/j.aquatox.2009.05.014
  • Rudic, V., & Dudnicenco, T. (2000). Process for cultivation of green alga Haeamatococcus pluvialis (Flotow), MD Patent Nr. a 0154.
  • Sainju, B.P., Singh, U.M., & Whitehead, W.F. (2001). Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. Sci. Hortic., 91, 201–214. https://doi.org/10.1016/S0304-4238(01)00264-3
  • Sánchez-Luna, L. D., Bezerra, R. P., Matsudo, M. C., Sato, S., Converti, A., & Carvalho, J.C.M. (2007). Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: a kinetic and thermodynamic approach. Biotechnol. Bioeng., 96, 702-711.
  • Sandmann, G., & Böger, O. (1980). Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant. Physiol., 66, 797 800. https://doi.org/10.1002/bit.21097
  • Sato, Y., Masuta, Y., Saito, K., Murayama, S., & Ozawa, K. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant. Cell. Rep., 30, 299 406. https://doi.org/10.1007/s00299-010-0985-7
  • Sen, G., Eryılmaz, I.E., & Ozakca, D. (2014). The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. Photochem. 98, 54-59. https://doi.org/10.1016/j.phytochem.2013.11.021
  • Shi, W.M., Muramoto, Y., Ueda, A., & Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273, 23-27. https://doi.org/10.1016/S0378-1119(01)00566-2
  • Sinsawat, V., Leipner, J., Stamp P., & Fracheboud, Y. (2004). Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot., 52(2), 123-129. https://doi.org/10.1016/j.envexpbot.2004.01.010
  • Sorokin, C., & Krauss, R.W. (1962). Effects of temperature  illuminance on Chlorella growth uncoupled from cell division. Plant. Physiol., 37(1), 37 42. https://doi.org/10.1104/pp.37.1.37
  • Sun, W.H., Duan, M., Li, F., Shu, D.F., Yang, S., & Meng, Q.W. (2010). Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol. Plantarum., 54, 614-620. https://doi.org/10.1007/s10535-010-0111-2
  • Tang, D., Shi, S., Li, S., Hu, C., & Liu, Y. (2007). Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J. Arid. Environ., 71, 312-320. https://doi.org/10.1016/j.jaridenv.2007.05.004
  • Vierling, E., & Key, J. L. (1985). Ribulose 1-5 bisphosphate carboxylase synthesis during heat shock. Plant Physiol., 78, 155-162. https://doi.org/10.1007/s004250100592
  • Weis, E. (1981). The temperature-sensitivity of dark-inactivation and light-inactivation of the ribulose-1,5-biphosphate carboxylase in spinach chloroplasts. FEBS Lett., 12(2), 197-200. https://doi.org/10.1016/0014-5793(81)80164-0
  • Wellburn, A.R. (1994). The spectral determination of chlorophylls a nad b, as well as total carotenoids, using various solvents with spectrophotometer of different resolution. J. Plant. Physiol. 144, 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant. Mol. Biol., 123, 223-234. https://doi.org/10.1104/pp.123.1.223
  • Zhang, H., Wang, J., Nickel, U., Allen, R.D., & Goodman, H.M. (1997). Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant. Mol. Biol., 34, 967-971. https://doi.org/10.1023/A:1005814109732

Determination of Photosynthesis-Related and Ascorbate Peroxidase Gene Expression in the Green Algae (Chlorella vulgaris) Under High-Temperature Conditions

Year 2021, Volume 8, Issue 1, 59 - 69, 08.03.2021
https://doi.org/10.21448/ijsm.794617

Abstract

Increasing water temperatures because of climate change resulted in population shifts and physiological responses in aquatic environments. In this study, short-term high-temperature condition effects on green algae Chlorella vulgaris were investigated at transcriptional and physiological levels. The photosystem II D1 protein (psbA) gene, a large unit of Rubisco (rbcL) gene and chloroplastic ascorbate peroxidase (cAPX) gene expressions were quantified using semi-quantitative real time-PCR. The psbA gene transcription level at 45˚C for 48 and 72 h was reduced by approx. 2.22 and 2.86-folds, respectively. The rbcL gene transcription level was also reduced by 1.54 relative to the control at 72 h. Our APX gene transcriptional level results indicated that the transcription of this gene was significantly increased at 35˚C at 24, 48, and 72 h. In contrast, the cAPX mRNA transcript level was reduced by approx. 2 times compared with the control. Our data demonstrated that alteration cAPX gene expression could play an essential role in high-temperature acclimation in C. vulgaris.

References

  • Agrawal, G.K., Jwa, N.S., Iwahashi, H., & Rakwal, R. (2003). Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene, 322, 93-103. https://doi.org/10.1016/j.gene.2003.08.017
  • Allakhverdiev, S.I., Los, D.A., Mohanty, P., Nishiyama, & Y., Murata, N. (2007). Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim. Biophys. Acta., 1767, 1363–1371. https://doi.org/10.1016/j.bbabio.2007.10.005
  • Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res., 98, 541–550. https://doi.org/10.1007/s11120-008-9331-0
  • Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 50, 601–639. https://doi.org/10.1146/annurev.arplant.50.1.601
  • Bajguz, A. (2009). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short term heat stress. J. Plant. Physiol., 166, 882 886. https://doi.org/10.1016/j.jplph.2008.10.004
  • Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Gen. Mol. Biol., 35(4), 1011-1019. https://doi.org/10.1590/s1415-47572012000600016
  • Chettri, M. K., Cook, C. M., Vardaka, E., Sawidis, T., & Lanaras, T. (1988). The effect of Cu, Zn, and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ. Exp. Bot., 39, 1-10. https://doi.org/10.1016/S0098-8472(97)00024-5
  • Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., & Borghi, M. (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process., 48, 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006
  • Du, H., Zhou, P., & Huang, B. (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ. Exp. Bot., 87, 159-166. https://doi.org/10.1016/j.envexpbot.2012.09.009
  • Feller, U., Carfts-Brandner, J.S., & Salvucci, M.E. (1998). Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant. Physiol., 116, 539 546. https://doi.org/10.1104/pp.116.2.539
  • Foyer, C.H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant., 119, 355–364. https://doi.org/10.1034/j.1399-3054.2003.00223
  • Giardi, M.T., Masojidek, J., & Godde, D. (1997). Effects of abiotic stresses on the turnover of the D1 reaction center II protein. Physiol. Plant., 101, 635–642. https://doi.org/10.1111/j.1399-3054.1997.tb01048
  • Goyary, D. (2009). Transgenic crops, and their scope for abiotic stress environment of high altitude: biochemical and physiological perspectives. DRDO. Sci. Spectrum, 195-201. https://doi.org/10.3923/biotech.2011.1.22
  • Guillard, R.R.L. (1973). Division Rates. J. R. Stein (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements (289-311). Cambridge University Press, London.
  • Kawakami, S., Matsumoto, Y., Matsunaga, A., Mayama, S., & Mizuno, M. (2002). Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant. Sci., 163, 829-836. https://doi.org/10.1016/S0168-9452(02)00232-7
  • Kusnetsov, V. V., Mikulovich, T. P., Kukina, I. M., Cherepneva, G. N., Herrmann, R. G., & Kulaeva, O. N. (1993). Changes in level of chloroplast transcripts in pumkin cotyledons during heat shock. FEBS Lett., 321, 189-193. https://doi.org/10.1016/0014-5793(93)80105-4
  • Law, R.D., & Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant. Physiol., 120, 1773 1780. https://doi.org/10.1104/pp.120.1.173
  • Lin, K.H., & Pu, S.F. (2010). Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol. Plantarum., 54, 664-670. https://doi.org/10.1007/s10535-010-0118-8
  • Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., & Liang, D. (2008). Effect of high temperature on activities and gene expression of enzymes involved in ascrobate glutathione cycle in apple leaves. Plant. Sci. 175, 761-766. https://doi.org/10.1016/j.plantsci.2008.07.010
  • Marshall, O.J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15), 2471-2472. https://doi.org/10.1093/bioinformatics/bth254
  • Menezes-Benavente, L., Teixeira, F. K., Kamei, C. L. A., & Margis-Pinheiro, M. (2004). Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant. Sci., 166, 323-331. https://doi.org/10.1016/j.plantsci.2003.10.001
  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., & Mittler, R. (2007). Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant. Physiol., 144, 1777-1785. https://doi.org/10.1104/pp.107.101436
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends. Plant. Sci., 9, 490 498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Nishiyama, Y., Allakhverdiev, S.I., Yamamoto, H., Hayashi, H., Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 43, 11321–11330. https://doi.org/10.1007/s11120-004-6434-0
  • Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta., 1757, 742–749. https://doi.org/10.1016/j.bbabio.2006.05.013
  • Park, S.Y., Ryu, S.H., Jang, I.C., Kwon, S.Y., Kim, J.G., & Kwak, S.S. (2004). Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato and its expression in response to stress. Mol. Genet. Genomics, 271, 339-346. https://doi.org/10.1007/s00438-004-0986-8
  • Poong S., Lim, P., Lai, J. W., Phang S. (2017). Optimisation of high quality total RNA isolation from the microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) for next-generation sequenching. Phycological Res. 65, 146-150. https://doi.org/10.1111/pre.12165
  • Prasil, O., Adir, N., Ohad, I., & Barber, J. (1992). Topics in Photosynthesis. Elsevier Biomedical Press.
  • Puckett, K.J., Nieboer, E., Flora, W.P., & Richardson, D.H.S. (1973). Sulphur dioxide:its effect on photosynthetic 14C fixation in lichens and suggested mechanisms of phytotoxicity. New Phytol., 72, 141-154. https://doi.org/10.1111/j.1469-8137.1973.tb02019
  • Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat. Toxicol., 94, 56–61. https://doi.org/10.1016/j.aquatox.2009.05.014
  • Rudic, V., & Dudnicenco, T. (2000). Process for cultivation of green alga Haeamatococcus pluvialis (Flotow), MD Patent Nr. a 0154.
  • Sainju, B.P., Singh, U.M., & Whitehead, W.F. (2001). Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. Sci. Hortic., 91, 201–214. https://doi.org/10.1016/S0304-4238(01)00264-3
  • Sánchez-Luna, L. D., Bezerra, R. P., Matsudo, M. C., Sato, S., Converti, A., & Carvalho, J.C.M. (2007). Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: a kinetic and thermodynamic approach. Biotechnol. Bioeng., 96, 702-711.
  • Sandmann, G., & Böger, O. (1980). Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant. Physiol., 66, 797 800. https://doi.org/10.1002/bit.21097
  • Sato, Y., Masuta, Y., Saito, K., Murayama, S., & Ozawa, K. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant. Cell. Rep., 30, 299 406. https://doi.org/10.1007/s00299-010-0985-7
  • Sen, G., Eryılmaz, I.E., & Ozakca, D. (2014). The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. Photochem. 98, 54-59. https://doi.org/10.1016/j.phytochem.2013.11.021
  • Shi, W.M., Muramoto, Y., Ueda, A., & Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273, 23-27. https://doi.org/10.1016/S0378-1119(01)00566-2
  • Sinsawat, V., Leipner, J., Stamp P., & Fracheboud, Y. (2004). Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot., 52(2), 123-129. https://doi.org/10.1016/j.envexpbot.2004.01.010
  • Sorokin, C., & Krauss, R.W. (1962). Effects of temperature  illuminance on Chlorella growth uncoupled from cell division. Plant. Physiol., 37(1), 37 42. https://doi.org/10.1104/pp.37.1.37
  • Sun, W.H., Duan, M., Li, F., Shu, D.F., Yang, S., & Meng, Q.W. (2010). Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol. Plantarum., 54, 614-620. https://doi.org/10.1007/s10535-010-0111-2
  • Tang, D., Shi, S., Li, S., Hu, C., & Liu, Y. (2007). Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J. Arid. Environ., 71, 312-320. https://doi.org/10.1016/j.jaridenv.2007.05.004
  • Vierling, E., & Key, J. L. (1985). Ribulose 1-5 bisphosphate carboxylase synthesis during heat shock. Plant Physiol., 78, 155-162. https://doi.org/10.1007/s004250100592
  • Weis, E. (1981). The temperature-sensitivity of dark-inactivation and light-inactivation of the ribulose-1,5-biphosphate carboxylase in spinach chloroplasts. FEBS Lett., 12(2), 197-200. https://doi.org/10.1016/0014-5793(81)80164-0
  • Wellburn, A.R. (1994). The spectral determination of chlorophylls a nad b, as well as total carotenoids, using various solvents with spectrophotometer of different resolution. J. Plant. Physiol. 144, 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant. Mol. Biol., 123, 223-234. https://doi.org/10.1104/pp.123.1.223
  • Zhang, H., Wang, J., Nickel, U., Allen, R.D., & Goodman, H.M. (1997). Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant. Mol. Biol., 34, 967-971. https://doi.org/10.1023/A:1005814109732

Details

Primary Language English
Subjects Biology
Published Date March
Journal Section Articles
Authors

İnci TÜNEY KIZILKAYA> (Primary Author)
Ege Üniversitesi
0000-0003-0293-6964
Türkiye


Sedef AKCAALAN This is me
NECMETTİN ERBAKAN ÜNİVERSİTESİ
0000-0000-0000-0000
Türkiye


Dilek ÜNAL>
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
0000-0002-6915-9699
Türkiye

Supporting Institution Turkish Scientific and Technological Research Institution (TUBITAK)
Project Number 2209 Projects
Publication Date March 8, 2021
Published in Issue Year 2021, Volume 8, Issue 1

Cite

APA Tüney Kızılkaya, İ. , Akcaalan, S. & Ünal, D. (2021). Determination of Photosynthesis-Related and Ascorbate Peroxidase Gene Expression in the Green Algae (Chlorella vulgaris) Under High-Temperature Conditions . International Journal of Secondary Metabolite , 8 (1) , 59-69 . DOI: 10.21448/ijsm.794617

International Journal of Secondary Metabolite (IJSM)

ISSN-e: 2148-6905