Research Article
BibTex RIS Cite

Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria

Year 2021, Volume: 8 Issue: 4, 398 - 413, 26.12.2021
https://doi.org/10.21448/ijsm.990569

Abstract

Diabetes mellitus is a chronic metabolic disease. Traditional medicines are currently still popular as an alternative in the treatment of this disease. However, the mechanism of action in lowering blood sugar of most folk recipes remains unproven. The objective of this study is to evaluate the antidiabetic potential of an Algerian halophyte in regulating postprandial hyperglycemia via α-amylase inhibitory activity. For this, methanolic and aqueous crude extracts were prepared from the aerial part of Haloxylon scoparium Pomel and analyzed by HPLC/ UV method. Total flavonoids, total tannins and total alkaloids as specific extracts were also prepared from the same part. The in vitro α-amylase inhibition assay using starch-iodine was performed. As results, the methanolic crude extract seems to be the best with 29 phenolic compounds of which the most abundant is gallic acid. All tested extracts showed better α-amylase inhibitory activities. Among these extracts and compared to acarbose (IC50 = 17.96 µg/ mL), the methanolic crude extract had the highest inhibitory activity (IC50 = 22.9 µg/ mL), followed by total flavonoids and alkaloids. Finally, we conclude that Haloxylon scoparium aerial part had displayed maximum inhibition against α-amylase enzyme especially with its methanolic crude extract. It can be used for management of postprandial hyperglycemia with lesser side effects and provide a strong rationale for further animal and clinical studies.

Supporting Institution

University of Ghardaia

Thanks

Authors thank gratefully Professor TAHAR Ali (Annaba university, Algeria) and Professor MESSAOUD Chokri (INSAT Tunis, Tunisia) for their precious help.

References

  • Abulude, F.O. (2007). Phytochemical Screening and Mineral Contents of Leaves of Some Nigerian Woody Plants. Research Journal of Phytochemistry, 1, 33-39.
  • Abulude, F.O., Onibon, V.O., Oluwatoba, F. (2004). Nutrition and Nutritional composition of some tree barks. Nigerian Journal of Basic and Applied Sciences, 13, 43-49.
  • Allali, H., Benmehdi, H., Dib, M., Tabti, B., Ghalem, S., Benabadji, N. (2008). Phytotherapy of Diabetes in West Algeria. Asian Journal of Chemistry, 20(4), 2701- 2710.
  • Allaoui, M., Cheriti, A., Chebouat, E., Dadamoussa, B., Gherraf, N. (2016). Comparative Study of the Antioxidant Activity and Phenols and Flavonoids Contents of the Ethyl Acetate Extracts from Two Saharan Chenopodiaceae: Haloxylon scoparium and Traganum nudatum. Algerian Journal of Arid Environment, 6(1), 71-79.
  • Arunachalam, K.D., Annamalai, S.K., Arunachalam, A.M., Kennedy, S. (2014a). One Step Green Synthesis of Phytochemicals Mediated Gold Nanoparticles from Aegle marmales For the Prevention of Urinary Catheter Infection. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 700-706.
  • Arunachalam, K.D., Arun, L.B., Annamalai, S.K., Arunachalam, A.M. (2014b). Biofunctionalized Gold Nanoparticles Synthesis from Gymnema sylvestre and Its Preliminary Anticancer Activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6(4), 423-430.
  • Aryangat, A.V., Gerich, J.E. (2010). Type 2 Diabetes: Postprandial Hyperglycemia and Increased Cardiovascular Risk. Vascular Health and Risk Management, 6, 145-155. https://doi.org/10.2147/vhrm.s8216
  • Ashok Kumar, B.S., Lakshman, K., Nandeesh, R., Arun Kumar, P.A., Manoj, B., Kumar, V., Shekar, D.S. (2011). In Vitro Alpha-Amylase Inhibition and In Vivo Antioxidant Potential of Amaranthus spinosus in Alloxan-Induced Oxidative Stress in Diabetic Rats. Saudi Journal of Biological Sciences, 18(1), 1-5. https://doi.org/ 10.1016/j.sjbs.2010.08.002
  • Atmani, D. (2009). Antioxidant Capacity and Phenol Content of Selected Algerian Medicinal Plants. Food Chemistry, 112(2), 303-309. https://doi.org/10.1016/j.foodchem.2008.05.077
  • Bachhawat, A., Shihabudeen, M.S., Thirumurugan, K. (2011). Screening of Fifteen Indian Ayurvedic Plants for Alpha-Glucosidase Inhibitory Activity and Enzyme Kinetics. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 267-274.
  • Ben Salah, H., Jarraya, R., Martin, M.T., Veitch, N.C., Grayer, R.J., Simmonds, M.S.J., Damak, M. (2002). Flavonol Triglycosides From the Leaves of Hammada scoparia (Pomel) Iljin. Chemical and Pharmaceutical Bulletin, 50(9), 1268 1270. https://doi.org/10.1248/cpb.50.1268
  • Bischoff, H., Puls, W., Krause, H.P., Schutt, H., Thomas, G. (1985). Pharmacological Properties of the Novel Glucosidase Inhibitors BAY m1099 (miglitol) and BAY o 1248. Diabetes Research and Clinical Practice, 1, 53-62.
  • Bonora, E., Muggeo, M. (2001). Postprandial Blood Glucose as a Risk Factor for Cardiovascular Disease in Type II Diabetes: The Epidemiological Evidence. Diabetologia, 44(12), 2107-2114. https://doi.org/10.1007/s001250100020
  • Bouaziz, A., Mhalla, D., Zouari, I., Jlaiel, L., Tounsi, S., Jarraya, R., Trigui, M. (2016). Antibacterial and Antioxidant Activities of Hammada scoparia Extracts and Its Major Purified Alkaloids. South Africain Journa of Botany, 105, 89 96. https://doi.org/10.1016/j.sajb.2016.03.012
  • Boulos, L. (1999). Flora of Egypt. Al Hadara Publishing, Cairo, Egypt, pp. 123-124.
  • Bourogaa, E., Jarraya, R.M., Nciri, R., Damak, M., Elfeki, A. (2014). Protective Effects of Aqueous Extract of Hammada scoparia Against Hepatotoxicity Induced by Ethanol in the Rat. Toxicology and Industrial Health, 30(2), 113 122. https://doi.org/10.1177/0748233712452602
  • Campos, C. (2012). Chronic Hyperglycemia and Glucose Toxicity: Pathology and Clinical Sequelae. Postgraduate Medicine, 124(6), 1-8. https://doi.org/10.3810/pgm.2012.11.2615
  • Ceriello, A., (2005). Postprandial Hyperglycemia and Diabetes Complications: Is It Time to Treat? Diabetes, 54(1), 1-7. https://doi.org/10.2337/diabetes.54.1.1
  • Chao, H.C., Najjaa, H., Villareal, M.O., Ksouri, R., Han, J., Neffati, M., Isoda, H. (2013). Arthrophytum scoparium Inhibits Melanogenesis Through the Down‐Regulation of Tyrosinase and Melanogenic Gene Expressions in b16 Melanoma Cells. Experimental Dermatology, 22(2), 131-136. https://doi.org/10.1111/exd.12089
  • Dong, H.Q., Li, M., Zhu, F., Liu, F.L., Huang, J.B. (2012). Inhibitory Potential of Trilobatin from Lithocarpus polystachyus Rehd Against α-Glucosidase and α-Amylase Linked to Type 2 Diabetes. Food Chemistry, 130, 261-266.
  • Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M.-L., Jouad, H. (2002). Ethnopharmacological Survey of Medicinal Plants Used for the Treatment of Diabetes Mellitus, Hypertension and Cardiac Diseases in the South-East Region of Morocco (Tafilalet). Journal of Ethnopharmacology, 82(2), 97-103. https://doi.org/10.1016/S0378-8741(02)00164-2
  • Fadeyi, M.G., Adeoye, A.E., Olowokodejo, J.D., (1989). Epidermal and Phytochemical Studies with Genus of Boerhavia (Nyetanginaceae). International Journal of Crude Drug Research, 27(3), 178-184. https://doi.org/10.3109/13880208909053960
  • Falleh, H., Ksouri, R., Chaieb, K., Karray-Bouraoui, N., Trabelsi, N., Boulaaba, M., Abdelly, C. (2008). Phenolic Composition of Cynara cardunculus L. Organs, and Their Biological Activities. Comptes Rendus Biologies, 331(5), 372 379. https://doi.org/10.1016/j.crvi.2008.02.008
  • Fattorusso, E., Taglialatela-Scafati, O. (2007). Modern Alkaloids. Structure, Isolation, Synthesis and Biology. (Ed.). Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, République Fédérale d'Allemagne, 691p.
  • Foungbe, S., Tillequin, F., Paris, M., Jacquemin, H., Paris, R.R. (1976). Sur Une Pipéracée de Guyane, le Piper marginatum Jacq. Annales Pharmaceutiques Françaises, 34(9-10), 339-343.
  • Hagerman, A.E., Muller-Harvey, I., Makkar, H.P.S. (2000). Quantification of Tannins in Tree Foliage. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. (Ed.). FAO/IAEA Working Document, Vienna, 31p.
  • Harborne, J.B. (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. (3rd ed.). Chapman and Hall, 317p.
  • Hollander, P. (1992). Safety Profile of Acabose, an Alpha-Glucosidase Inhibitor. Drugs, 44(3), 47-53. https://doi.org/10.2165/00003495-199200443-00007
  • Horii, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N., Matsui, K. (1986). Synthesis and Alpha‑D‑Glucosidase Inhibitory Activity of N‑Substituted Valiolamine Derivatives as Potential Oral Antidiabetic Agents. Journal of Medicinal Chemistry, 29(6), 1038-1046. https://doi.org/10.1021/jm00156a023
  • Jarraya, R., Ben Salah, H., Damak, M., (2005). Chemical and Radical Scavenging Activity of Constituents from Hammada scoparia (Pomel) Iljin. Journal de la Société Chimique de Tunisie, 7, 261-266.
  • Khavandi, K., Amer, H., Ibrahim, B., Brownrigg, J. (2013). Strategies for Preventing Type 2 Diabetes: An Update for Clinicians. Therapeutic Advances in Chronic Disease, 4, 242-261.
  • Kim, M.J., Lee, S.B., Lee, H.S., Lee, S.Y., Baek, J.S., Kim, D., Moon, T.W., Robyt, J.F., Park, K.H. (1999). Comparative Study of the Inhibition of Alpha-Glucosidase, alpha-Amylase, and Cyclomaltodextrin Glucanosyltransferase by Acarbose, Isoacarbose, and Acarviosine-Glucose. Archives of Biochemistry and Biophysics, 371(2), 277 283. https://doi.org/10.1006/abbi.1999.1423
  • Kojima, K., Tsujimoto, T., Fujii, H., Morimoto, T., Yoshioka, S., Kato, S., Yasuhara, Y., Aizawa, S., Sawai, M., Makutani, S., Yamamoto, K., Mochi, T., Fukui, H. (2010). Pneumatosis Cystoides Intestinalis Induced by the α-Glucosidase Inhibitor Miglitol. Internal Medicine, 49(15), 1545-1548. https://doi.org/10.2169/internalmedicine.49.3634
  • Kusano, R., Ogawa, S., Matsuo, Y., Tanaka, T., Yazaki, Y., Kouno, I. (2011). α-Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark Proanthocyanidins. Journal of Natural Products, 74(2), 119 128. https://doi.org/10.1021/np100372t
  • Kwon, Y.I., Vattem, D.A., Shetty, K. (2006). Evaluation of Clonal Herbs of Lamiaceae Species for Management of Diabetes and Hypertension. Asian Pacific Journal of Clinical Nutrition, 15(1), 107-118.
  • Lee, K.W., Kim, Y.J., Lee, H.J., Lee, C.Y. (2003). Cocao Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. Food Chemistry, 51(25), 7292-7295. https://doi.org/10.1021/jf0344385
  • Mezghani-Jarraya, R., Hammami, H., Ayadi, A., Damak, M. (2009). Molluscicidal Activity of Hammada scoparia (Pomel) iljin Leaf Extracts and the Principal Alkaloids Isolated from Them Against Galba truncatula. Memórias do Instituto Oswaldo Cruz, 104(7), 1035-1038. https://doi.org/10.1590/S0074-02762009000700017
  • Miliauskas, G., Venskutonis, P.R., Van Beek, T.A. (2004). Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extract. Food Chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
  • Mohamed Sham Shihabudeen, H., Hansi, Priscilla, D., Thirumurugan, K. (2011). Cinnamon Extract Inhibits α-Glucosidase Activity and Dampens Postprandial Glucose Excursion in Diabetic Rats. Nutrition & Metaboilsm, 8(1), 46-47. https://doi.org/10.1186/1743-7075-8-46
  • Monnier, L., Colette, C. (2006). Contribution of Fasting and Post Prandial Glucose to Haemoglobin A1c. Endocrine Practice, 12(1), 42-46. https://doi.org/10.4158/EP.12.S1.42
  • Mulas, M. (2004). Potentialité D’utilisation Stratégique des Plantes des Genres Atriplex et Opuntia dans la Lutte Contre la Désertification. Short and Medium, Term Priority Environmental Action Program SMAP, pp. 91-92.
  • Nyenwe, E.A., Jerkins, T.W., Umpierrez, G.E., Kitabchi, A.E. (2011). Management of Type 2 Diabetes: Evolving Strategies for the Treatment of Patients with Type 2. Diabetes & Metabolism, 60(1), 1-23. https://doi.org/10.1016/j.metabol.2010.09.010
  • Odebiyi, A., Sofowora, A.E. (1990). Phytochemical Screening of Nigerian Medicinal Plants. Part III. Lioydia, 41(3), 234-246.
  • Ortiz-Andrade, R.R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Vilalobos- Molina, R., Estrada-Soto, S. (2007). Alpha-Glucosidase Inhibitory Activity of the Methanolic Extract from Tournefortia hartwegiana: an Anti-Hyperglycemic Agent. Journal of Ethnopharmacology, 109(1), 48-53. https://doi.org/10.1016/j.jep.2006.07.002
  • Paris, R. (1954). Revue de chimie végétale. Bulletin de la Société Botanique de France, 101(7-9), 457-475. https://doi.org/10.1080/00378941.1954.10837749
  • Puavilai, G., Chanprasertyotin, S., Sriphrapradaeng, A. (1999). Diagnostic Criteria for Diabetes Mellitus and Other Categories of Glucose Intolerance: 1997 Criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO Consultation Criteria, and 1985 WHO Criteria. World Health Organization. Diabetes Research and Clinical Practice, 44(1), 21 26. https://doi.org/10.1016/s0168 8227(99)00008-x
  • Puls, W. (1996). Pharmacology of Glucosidase Inhibitors. In: Kuhlmann J., Puls W., (Eds.) Oral Antidiabetics, 119. Berlin Heidelberg, Springer, pp. 497-534.
  • Ratner, R.E. (2001). Controlling Postprandial Hyperglycemia. American Journal of Cardiology, 88(6), 26-31. https://doi.org/10.1016/s0002-9149(01)01834-3
  • Ronchetti, F., Russo, G. (1971). A New alkaloid From Rauvolfia vomitoria. Phytochemistry, 10(6), 1385-1388. https://doi.org/10.1016/S0031-9422(00)84347-2
  • Shang, Q., Xiang, J.F., Tang, Y.L. (2012). Screening α-Glucosidase Inhibitors from Mulberry Extracts Via DOSY and Relaxation-Edited NMR. Talanta, 97, 362-367. https://doi.org/10.1016/j.talanta.2012.04.046
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Solfo, R.R. (1973). Etude d’une Plante Médicinale Malgache Buxus madagascarica Bail et Ses Variétés. (Ed.). ORSTOM, pp. 98-99.
  • Sowunmi, S., Ebewele, R.O., Peters, C.A.H. (2000). Differential Scanning Calorimetry of Hydrolysed Mangrove Tannin. Polymer International, 49(6), 574 578. https://doi.org/10.1002/1097-0126(200006)49:6<574::AID-PI409>3.0.CO;2-L
  • Täckholm, V. (1974). Students’ Flora of Egypt. (2nd ed.). Beirut: Cairo University, Cooperative Printing Company, pp. 127-128.
  • Tahar, S.B., Hadj-Mahammed, M., Yousfi, M. (2015). Study of the Antioxidant Activity of Phenolic Extracts of Atriplex halimus and Haloxylon scoparium Pomel from Northern Sahara. Annales des Sciences et Technologie, 7, 35-42.
  • Taîr, K., Kharoubi, O., Taîr, O.A., Hellal, N., Benyettou, I., Aoues, A. (2016). Aluminium-Induced Acute Neurotoxicity in Rats: Treatment with Aqueous Extract of Arthrophytum (Hammada scoparia). Journal of Acute Disease, 5(6), 470 482. https://doi.org/10.1016/j.joad.2016.08.028
  • Toeller, M. (1994). Alpha-Glucosidase Inhibitors in Diabetes: Efficacy in NIDDM Subjects. European Journal of Clinical Investigation, 24(3), 31-35. https://doi.org/10.1111/j.1365-2362.1994.tb02253.x
  • World Health Organization. (2016). Global Report on Diabetes. Available online from: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf

Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria

Year 2021, Volume: 8 Issue: 4, 398 - 413, 26.12.2021
https://doi.org/10.21448/ijsm.990569

Abstract

Diabetes mellitus is a chronic metabolic disease. Traditional medicines are currently still popular as an alternative in the treatment of this disease. However, the mechanism of action in lowering blood sugar of most folk recipes remains unproven. The objective of this study is to evaluate the antidiabetic potential of an Algerian halophyte in regulating postprandial hyperglycemia via α-amylase inhibitory activity. For this, methanolic and aqueous crude extracts were prepared from the aerial part of Haloxylon scoparium Pomel and analyzed by HPLC/ UV method. Total flavonoids, total tannins and total alkaloids as specific extracts were also prepared from the same part. The in vitro α-amylase inhibition assay using starch-iodine was performed. As results, the methanolic crude extract seems to be the best with 29 phenolic compounds of which the most abundant is gallic acid. All tested extracts showed better α-amylase inhibitory activities. Among these extracts and compared to acarbose (IC50 = 17.96 µg/ mL), the methanolic crude extract had the highest inhibitory activity (IC50 = 22.9 µg/ mL), followed by total flavonoids and alkaloids. Finally, we conclude that Haloxylon scoparium aerial part had displayed maximum inhibition against α-amylase enzyme especially with its methanolic crude extract. It can be used for management of postprandial hyperglycemia with lesser side effects and provide a strong rationale for further animal and clinical studies.

References

  • Abulude, F.O. (2007). Phytochemical Screening and Mineral Contents of Leaves of Some Nigerian Woody Plants. Research Journal of Phytochemistry, 1, 33-39.
  • Abulude, F.O., Onibon, V.O., Oluwatoba, F. (2004). Nutrition and Nutritional composition of some tree barks. Nigerian Journal of Basic and Applied Sciences, 13, 43-49.
  • Allali, H., Benmehdi, H., Dib, M., Tabti, B., Ghalem, S., Benabadji, N. (2008). Phytotherapy of Diabetes in West Algeria. Asian Journal of Chemistry, 20(4), 2701- 2710.
  • Allaoui, M., Cheriti, A., Chebouat, E., Dadamoussa, B., Gherraf, N. (2016). Comparative Study of the Antioxidant Activity and Phenols and Flavonoids Contents of the Ethyl Acetate Extracts from Two Saharan Chenopodiaceae: Haloxylon scoparium and Traganum nudatum. Algerian Journal of Arid Environment, 6(1), 71-79.
  • Arunachalam, K.D., Annamalai, S.K., Arunachalam, A.M., Kennedy, S. (2014a). One Step Green Synthesis of Phytochemicals Mediated Gold Nanoparticles from Aegle marmales For the Prevention of Urinary Catheter Infection. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 700-706.
  • Arunachalam, K.D., Arun, L.B., Annamalai, S.K., Arunachalam, A.M. (2014b). Biofunctionalized Gold Nanoparticles Synthesis from Gymnema sylvestre and Its Preliminary Anticancer Activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6(4), 423-430.
  • Aryangat, A.V., Gerich, J.E. (2010). Type 2 Diabetes: Postprandial Hyperglycemia and Increased Cardiovascular Risk. Vascular Health and Risk Management, 6, 145-155. https://doi.org/10.2147/vhrm.s8216
  • Ashok Kumar, B.S., Lakshman, K., Nandeesh, R., Arun Kumar, P.A., Manoj, B., Kumar, V., Shekar, D.S. (2011). In Vitro Alpha-Amylase Inhibition and In Vivo Antioxidant Potential of Amaranthus spinosus in Alloxan-Induced Oxidative Stress in Diabetic Rats. Saudi Journal of Biological Sciences, 18(1), 1-5. https://doi.org/ 10.1016/j.sjbs.2010.08.002
  • Atmani, D. (2009). Antioxidant Capacity and Phenol Content of Selected Algerian Medicinal Plants. Food Chemistry, 112(2), 303-309. https://doi.org/10.1016/j.foodchem.2008.05.077
  • Bachhawat, A., Shihabudeen, M.S., Thirumurugan, K. (2011). Screening of Fifteen Indian Ayurvedic Plants for Alpha-Glucosidase Inhibitory Activity and Enzyme Kinetics. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 267-274.
  • Ben Salah, H., Jarraya, R., Martin, M.T., Veitch, N.C., Grayer, R.J., Simmonds, M.S.J., Damak, M. (2002). Flavonol Triglycosides From the Leaves of Hammada scoparia (Pomel) Iljin. Chemical and Pharmaceutical Bulletin, 50(9), 1268 1270. https://doi.org/10.1248/cpb.50.1268
  • Bischoff, H., Puls, W., Krause, H.P., Schutt, H., Thomas, G. (1985). Pharmacological Properties of the Novel Glucosidase Inhibitors BAY m1099 (miglitol) and BAY o 1248. Diabetes Research and Clinical Practice, 1, 53-62.
  • Bonora, E., Muggeo, M. (2001). Postprandial Blood Glucose as a Risk Factor for Cardiovascular Disease in Type II Diabetes: The Epidemiological Evidence. Diabetologia, 44(12), 2107-2114. https://doi.org/10.1007/s001250100020
  • Bouaziz, A., Mhalla, D., Zouari, I., Jlaiel, L., Tounsi, S., Jarraya, R., Trigui, M. (2016). Antibacterial and Antioxidant Activities of Hammada scoparia Extracts and Its Major Purified Alkaloids. South Africain Journa of Botany, 105, 89 96. https://doi.org/10.1016/j.sajb.2016.03.012
  • Boulos, L. (1999). Flora of Egypt. Al Hadara Publishing, Cairo, Egypt, pp. 123-124.
  • Bourogaa, E., Jarraya, R.M., Nciri, R., Damak, M., Elfeki, A. (2014). Protective Effects of Aqueous Extract of Hammada scoparia Against Hepatotoxicity Induced by Ethanol in the Rat. Toxicology and Industrial Health, 30(2), 113 122. https://doi.org/10.1177/0748233712452602
  • Campos, C. (2012). Chronic Hyperglycemia and Glucose Toxicity: Pathology and Clinical Sequelae. Postgraduate Medicine, 124(6), 1-8. https://doi.org/10.3810/pgm.2012.11.2615
  • Ceriello, A., (2005). Postprandial Hyperglycemia and Diabetes Complications: Is It Time to Treat? Diabetes, 54(1), 1-7. https://doi.org/10.2337/diabetes.54.1.1
  • Chao, H.C., Najjaa, H., Villareal, M.O., Ksouri, R., Han, J., Neffati, M., Isoda, H. (2013). Arthrophytum scoparium Inhibits Melanogenesis Through the Down‐Regulation of Tyrosinase and Melanogenic Gene Expressions in b16 Melanoma Cells. Experimental Dermatology, 22(2), 131-136. https://doi.org/10.1111/exd.12089
  • Dong, H.Q., Li, M., Zhu, F., Liu, F.L., Huang, J.B. (2012). Inhibitory Potential of Trilobatin from Lithocarpus polystachyus Rehd Against α-Glucosidase and α-Amylase Linked to Type 2 Diabetes. Food Chemistry, 130, 261-266.
  • Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M.-L., Jouad, H. (2002). Ethnopharmacological Survey of Medicinal Plants Used for the Treatment of Diabetes Mellitus, Hypertension and Cardiac Diseases in the South-East Region of Morocco (Tafilalet). Journal of Ethnopharmacology, 82(2), 97-103. https://doi.org/10.1016/S0378-8741(02)00164-2
  • Fadeyi, M.G., Adeoye, A.E., Olowokodejo, J.D., (1989). Epidermal and Phytochemical Studies with Genus of Boerhavia (Nyetanginaceae). International Journal of Crude Drug Research, 27(3), 178-184. https://doi.org/10.3109/13880208909053960
  • Falleh, H., Ksouri, R., Chaieb, K., Karray-Bouraoui, N., Trabelsi, N., Boulaaba, M., Abdelly, C. (2008). Phenolic Composition of Cynara cardunculus L. Organs, and Their Biological Activities. Comptes Rendus Biologies, 331(5), 372 379. https://doi.org/10.1016/j.crvi.2008.02.008
  • Fattorusso, E., Taglialatela-Scafati, O. (2007). Modern Alkaloids. Structure, Isolation, Synthesis and Biology. (Ed.). Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, République Fédérale d'Allemagne, 691p.
  • Foungbe, S., Tillequin, F., Paris, M., Jacquemin, H., Paris, R.R. (1976). Sur Une Pipéracée de Guyane, le Piper marginatum Jacq. Annales Pharmaceutiques Françaises, 34(9-10), 339-343.
  • Hagerman, A.E., Muller-Harvey, I., Makkar, H.P.S. (2000). Quantification of Tannins in Tree Foliage. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. (Ed.). FAO/IAEA Working Document, Vienna, 31p.
  • Harborne, J.B. (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. (3rd ed.). Chapman and Hall, 317p.
  • Hollander, P. (1992). Safety Profile of Acabose, an Alpha-Glucosidase Inhibitor. Drugs, 44(3), 47-53. https://doi.org/10.2165/00003495-199200443-00007
  • Horii, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N., Matsui, K. (1986). Synthesis and Alpha‑D‑Glucosidase Inhibitory Activity of N‑Substituted Valiolamine Derivatives as Potential Oral Antidiabetic Agents. Journal of Medicinal Chemistry, 29(6), 1038-1046. https://doi.org/10.1021/jm00156a023
  • Jarraya, R., Ben Salah, H., Damak, M., (2005). Chemical and Radical Scavenging Activity of Constituents from Hammada scoparia (Pomel) Iljin. Journal de la Société Chimique de Tunisie, 7, 261-266.
  • Khavandi, K., Amer, H., Ibrahim, B., Brownrigg, J. (2013). Strategies for Preventing Type 2 Diabetes: An Update for Clinicians. Therapeutic Advances in Chronic Disease, 4, 242-261.
  • Kim, M.J., Lee, S.B., Lee, H.S., Lee, S.Y., Baek, J.S., Kim, D., Moon, T.W., Robyt, J.F., Park, K.H. (1999). Comparative Study of the Inhibition of Alpha-Glucosidase, alpha-Amylase, and Cyclomaltodextrin Glucanosyltransferase by Acarbose, Isoacarbose, and Acarviosine-Glucose. Archives of Biochemistry and Biophysics, 371(2), 277 283. https://doi.org/10.1006/abbi.1999.1423
  • Kojima, K., Tsujimoto, T., Fujii, H., Morimoto, T., Yoshioka, S., Kato, S., Yasuhara, Y., Aizawa, S., Sawai, M., Makutani, S., Yamamoto, K., Mochi, T., Fukui, H. (2010). Pneumatosis Cystoides Intestinalis Induced by the α-Glucosidase Inhibitor Miglitol. Internal Medicine, 49(15), 1545-1548. https://doi.org/10.2169/internalmedicine.49.3634
  • Kusano, R., Ogawa, S., Matsuo, Y., Tanaka, T., Yazaki, Y., Kouno, I. (2011). α-Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark Proanthocyanidins. Journal of Natural Products, 74(2), 119 128. https://doi.org/10.1021/np100372t
  • Kwon, Y.I., Vattem, D.A., Shetty, K. (2006). Evaluation of Clonal Herbs of Lamiaceae Species for Management of Diabetes and Hypertension. Asian Pacific Journal of Clinical Nutrition, 15(1), 107-118.
  • Lee, K.W., Kim, Y.J., Lee, H.J., Lee, C.Y. (2003). Cocao Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. Food Chemistry, 51(25), 7292-7295. https://doi.org/10.1021/jf0344385
  • Mezghani-Jarraya, R., Hammami, H., Ayadi, A., Damak, M. (2009). Molluscicidal Activity of Hammada scoparia (Pomel) iljin Leaf Extracts and the Principal Alkaloids Isolated from Them Against Galba truncatula. Memórias do Instituto Oswaldo Cruz, 104(7), 1035-1038. https://doi.org/10.1590/S0074-02762009000700017
  • Miliauskas, G., Venskutonis, P.R., Van Beek, T.A. (2004). Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extract. Food Chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
  • Mohamed Sham Shihabudeen, H., Hansi, Priscilla, D., Thirumurugan, K. (2011). Cinnamon Extract Inhibits α-Glucosidase Activity and Dampens Postprandial Glucose Excursion in Diabetic Rats. Nutrition & Metaboilsm, 8(1), 46-47. https://doi.org/10.1186/1743-7075-8-46
  • Monnier, L., Colette, C. (2006). Contribution of Fasting and Post Prandial Glucose to Haemoglobin A1c. Endocrine Practice, 12(1), 42-46. https://doi.org/10.4158/EP.12.S1.42
  • Mulas, M. (2004). Potentialité D’utilisation Stratégique des Plantes des Genres Atriplex et Opuntia dans la Lutte Contre la Désertification. Short and Medium, Term Priority Environmental Action Program SMAP, pp. 91-92.
  • Nyenwe, E.A., Jerkins, T.W., Umpierrez, G.E., Kitabchi, A.E. (2011). Management of Type 2 Diabetes: Evolving Strategies for the Treatment of Patients with Type 2. Diabetes & Metabolism, 60(1), 1-23. https://doi.org/10.1016/j.metabol.2010.09.010
  • Odebiyi, A., Sofowora, A.E. (1990). Phytochemical Screening of Nigerian Medicinal Plants. Part III. Lioydia, 41(3), 234-246.
  • Ortiz-Andrade, R.R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Vilalobos- Molina, R., Estrada-Soto, S. (2007). Alpha-Glucosidase Inhibitory Activity of the Methanolic Extract from Tournefortia hartwegiana: an Anti-Hyperglycemic Agent. Journal of Ethnopharmacology, 109(1), 48-53. https://doi.org/10.1016/j.jep.2006.07.002
  • Paris, R. (1954). Revue de chimie végétale. Bulletin de la Société Botanique de France, 101(7-9), 457-475. https://doi.org/10.1080/00378941.1954.10837749
  • Puavilai, G., Chanprasertyotin, S., Sriphrapradaeng, A. (1999). Diagnostic Criteria for Diabetes Mellitus and Other Categories of Glucose Intolerance: 1997 Criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO Consultation Criteria, and 1985 WHO Criteria. World Health Organization. Diabetes Research and Clinical Practice, 44(1), 21 26. https://doi.org/10.1016/s0168 8227(99)00008-x
  • Puls, W. (1996). Pharmacology of Glucosidase Inhibitors. In: Kuhlmann J., Puls W., (Eds.) Oral Antidiabetics, 119. Berlin Heidelberg, Springer, pp. 497-534.
  • Ratner, R.E. (2001). Controlling Postprandial Hyperglycemia. American Journal of Cardiology, 88(6), 26-31. https://doi.org/10.1016/s0002-9149(01)01834-3
  • Ronchetti, F., Russo, G. (1971). A New alkaloid From Rauvolfia vomitoria. Phytochemistry, 10(6), 1385-1388. https://doi.org/10.1016/S0031-9422(00)84347-2
  • Shang, Q., Xiang, J.F., Tang, Y.L. (2012). Screening α-Glucosidase Inhibitors from Mulberry Extracts Via DOSY and Relaxation-Edited NMR. Talanta, 97, 362-367. https://doi.org/10.1016/j.talanta.2012.04.046
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Solfo, R.R. (1973). Etude d’une Plante Médicinale Malgache Buxus madagascarica Bail et Ses Variétés. (Ed.). ORSTOM, pp. 98-99.
  • Sowunmi, S., Ebewele, R.O., Peters, C.A.H. (2000). Differential Scanning Calorimetry of Hydrolysed Mangrove Tannin. Polymer International, 49(6), 574 578. https://doi.org/10.1002/1097-0126(200006)49:6<574::AID-PI409>3.0.CO;2-L
  • Täckholm, V. (1974). Students’ Flora of Egypt. (2nd ed.). Beirut: Cairo University, Cooperative Printing Company, pp. 127-128.
  • Tahar, S.B., Hadj-Mahammed, M., Yousfi, M. (2015). Study of the Antioxidant Activity of Phenolic Extracts of Atriplex halimus and Haloxylon scoparium Pomel from Northern Sahara. Annales des Sciences et Technologie, 7, 35-42.
  • Taîr, K., Kharoubi, O., Taîr, O.A., Hellal, N., Benyettou, I., Aoues, A. (2016). Aluminium-Induced Acute Neurotoxicity in Rats: Treatment with Aqueous Extract of Arthrophytum (Hammada scoparia). Journal of Acute Disease, 5(6), 470 482. https://doi.org/10.1016/j.joad.2016.08.028
  • Toeller, M. (1994). Alpha-Glucosidase Inhibitors in Diabetes: Efficacy in NIDDM Subjects. European Journal of Clinical Investigation, 24(3), 31-35. https://doi.org/10.1111/j.1365-2362.1994.tb02253.x
  • World Health Organization. (2016). Global Report on Diabetes. Available online from: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
There are 58 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Salah Benkherara 0000-0002-0194-3479

Ouahiba Bordjıba 0000-0001-8829-7483

Samiha Harrat This is me 0000-0001-5484-8769

Ali Boutlelis Djahra This is me 0000-0001-6046-6804

Publication Date December 26, 2021
Submission Date September 4, 2021
Published in Issue Year 2021 Volume: 8 Issue: 4

Cite

APA Benkherara, S., Bordjıba, O., Harrat, S., Djahra, A. B. (2021). Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria. International Journal of Secondary Metabolite, 8(4), 398-413. https://doi.org/10.21448/ijsm.990569
International Journal of Secondary Metabolite

e-ISSN: 2148-6905