Research Article
BibTex RIS Cite

Persea americana Mill.: As a potent quorum sensing inhibitor of Pseudomonas aeruginosa PAO1 virulence

Year 2022, Volume: 9 Issue: 1, 14 - 26, 10.03.2022
https://doi.org/10.21448/ijsm.1029610

Abstract

The emergence of bacteria resistant to conventional antibiotics and the inability of these antibiotics to treat bacterial biofilm-induced infections cause millions of deaths every year.
This situation has prompted scientists to develop alternative strategies to combat infectious diseases. Among these, researches on phytochemicals to reduce bacterial virulence in Pseudomonas aeruginosa have gained momentum in recent years. The main reasons behind this are the production of virulence factors and biofilm formation, all of which are under the control of quorum sensing (QS) system. Hence, inhibition of the QS pathways is an eligible strategy for the control of microbial pathogenesis.
For the first time in the present study, the methanolic seed extract of avocado was evaluated for its anti-QS activity against P. aeruginosa PAO1. The results of the experiments carried out proved that the extract has inhibitory activity on the regulation of virulence and biofilm formation. Phytochemical analysis resulted in the identification of epicatechin, catechin, chlorogenic acid, caffeic acid, quercetin, kaempferol, vanillin, ferulic acid in the extract. Then, the mechanism of action for the extract was investigated through molecular docking. Docking outcomes demonstrated that the major components, catechin, epicatechin, chlorogenic acid, could bind to the receptors of QS competitively. Hence, the mode of action for the extract might be through the inhibition of the QS. Considering the computational analysis results and the literature, it is thought that the anti-QS activity of the extract prepared from avocado seeds may be related to the synergistic effect of the phytochemicals it contains.

Supporting Institution

yok

Project Number

yok

References

  • Berry, D.B., Lu, D., Geva, M., Watts, J.C., Bhardwaj, S., Oehler, A., et al. (2013). Drug resistance confounding prion therapeutics. PNAS, 110(44), E4160 9. https://doi.org/10.1073/pnas.1317164110
  • Jiang, Q., Chen, J., Yang, C., Yin, Y., Yao, K. (2019). Quorum sensing: A prospective therapeutic target for bacterial diseases. BioMed Res. Int. 2015978. https://doi.org/10.1155/2019/2015978
  • Rutherford, S.T., Bassler, B.L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspect. Med., 2(11), a012427. https://doi.org/10.1101/cshperspect.a012427
  • Smith, R.S., Iglewski, B.H. (2003). P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6(1), 56-60. https://doi.org/10.1016/S1369-5274(03)00008-0
  • Parsek, M.R., Greenberg, E.P. (1999). Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Meth. Enzymol., 310, 43-55. https://doi.org/10.1016/S0076-6879(99)10005-3
  • Vysakh, A., Midhun, S.J., Jayesh, K., Jyothis, M., Latha, M.S. (2018). Studies on biofilm formation and virulence factors associated with uropathogenic Escherichia coli isolated from patient with acute pyelonephritis. Pathophysiology., 25(4), 381 7. https://doi.org/10.1016/j.pathophys.2018.07.004
  • Lyczak, J.B., Cannon, C.L, Pier, G.B. (2000). Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes and Infect., 2(9), 1051-60. https://doi.org/10.1016/S1286-4579(00)01259-4
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infect. Dis., 18(3), 318-27. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Pompilio, A., Crocetta, V., Nicola, D.S., Verginelli, F., Fiscarelli, E., Bonaventura G.D. (2015). Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front. Microbiol., 6, 951. https://doi.org/10.3389/fmicb.2015.00951
  • Rather, M.A., Gupta, K., Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. leaf extract: An in vitro study. J. Ethnopharmacol., 269, 113699. https://doi.org/10.1016/j.jep.2020.113699
  • Mohabi, S., Kalantar-Neyestanaki, D., Mansouri, S. (2017). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iran. J. Microbiol., 9(1), 26-32. PMID: 28775820; PMCID: PMC5534001.
  • Hurtado-Fernández, E., Fernández-Gutiérrez, A., Carrasco-Pancorbo, A. (2018). Avocado fruit—Persea americana. Academic Press.
  • Dreher, M.L., Davenport, A.J. (2013). Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr., 53(7), 738-50. https://doi.org/10.1080/10408398.2011.556759
  • Nayak, B.S., Raju, S.S., Chalapathi, R.A.V. (2008). Wound healing activity of Persea americana (avocado) fruit: A preclinical study on rats. J. Wound Care., 17(3), 123-6. https://doi.org/10.12968/jowc.2008.17.3.28670
  • Rodriguez-Carpena, J.G., Morcuende, D., Andrade, MJ., Kylli, P., Estevez, M. (2011). Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem., 59(10), 5625-35. https://doi.org/10.1021/jf1048832
  • Pahua-Ramos, M.E, Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernandez-Navarro, M.D., Garduno-Siciliano, L., Necoechea-Mondragon, H., et al. (2012). Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Hum. Nutr., 67(1), 10-16. https://doi.org/10.1007/s11130-012-0280-6
  • Nabavi, S.F., Nabavi, S.M, Setzer, W.N, Nabavi, S.A, Nabavi, S.A, Ebrahimzadeh, M.A. (2013). Antioxidant and antihemolytic activity of lipid-soluble bioactive substances in avocado fruits. Fruits, 68(3), 185-93. https://doi.org/10.3390/antiox8100426
  • Alkhalaf, M.I, Alansari, W.S, Ibrahim, E.A, ELhalwagy, M.E.A. (2019). Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. Journal of King Saud University Science, 31(4), 1358 62. https://doi.org/10.3389/fnut.2021.775751
  • Umoh, I.O., Samuel, O.O., Kureh, T.B., Davies, K.G. (2019). Antidiabetic and hypolipidaemic potentials of ethanol fruit pulp extract of Persea americana (avocado pear) in rats. J. Afr. Assoc. Physiol., 7(1), 59-63.
  • Holder, I.A., Boyce, S.T. (1994). Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 20(5), 426-29. https://doi.org/10.1016/0305-4179(94)90035-3
  • Xu, K.D., McFeters, G.A., Stewart, P.S. (2000). Biofilm resistance to antimicrobial agents. Microbiology, 146, 547-49. https://doi.org/10.1099/00221287-146-3-547
  • Qu, Y., Locock, K., Verma-Gaur, J., Hay, I.D., Meagher, L., Traven, A. (2016). Searching for new strategies against polymicrobial biofilm infections: Guanylated polymethacrylates kill mixed fungal/bacterial biofilms. J. Antimicrob. Chemother., 71(2), 413 21. https://doi.org/10.1093/jac/dkv334
  • O'Toole, G.A. (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiments, 30(47), 2437. https://doi.org/10.3791/2437
  • Onem, E., Dundar, Y., Ulusoy, S., Noyanalpan, N., Bosgelmez-Tinaz, G. (2018). Anti-quorum sensing activity of 1, 3-dihydro-2H-benzimidazol-2-one derivatives. Fresenius Environ. Bull., 27(12 B), 9906-12.
  • Bever, R.A., Iglewski, B.H. (1988). Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol., 170(9), 4309 14. https://doi.org/10.1128/jb.170.9.4309-4314.1988
  • Galdino, A.C.M., de Oliveira, M.P., Ramalho, T.C., de Castro, A.A., Branquinha, M.H., Santos, A.L.S. (2019). Anti-virulence strategy against the multidrug-resistant bacterial pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a potential druggable target. Curr. Protein Pept. Sci., 20(5), 471-87. https://doi.org/10.2174/1389203720666190207100415
  • Ohman, D.E., Cryz, S.J., Iglewski, B.H. (1980). Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J. Bacteriol., 142(3), 836-42. https://doi.org/10.1128/jb.142.3.836-842.1980
  • Reyes, E.A., Bale, M.J., Cannon, W.H., Matsen, J.M. (1981). Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clinic. Microbiol., 13(3), 456-8. https://doi.org/10.1128/jcm.13.3.456-458.1981
  • Lau, G.W., Hassett, D.J., Ran, H., Kong, F. (2004). The role of pyocyanin in Pseudomonas aeruginosa infection. Trends. Mol. Med., 10(12), 599 606. https://doi.org/10.1016/j.molmed.2004.10.002
  • Essar, D.W., Eberly, L., Hadero, A., Crawford, I.P. (1990). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol., 172(2), 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
  • Paczkowski, J.E., McCready, A.R., Cong, J.P., Li, Z., Jeffrey, P.D., Smith, C.D., et al. (2019). An autoinducer analog reveals an alternative mode of ligand binding for the LasR quorum sensing receptor. ACS Chem. Biol., 14(3), 378 89. https://doi.org/10.1021/acschembio.8b00971
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 49(D1), D1388-95. https://doi.org/10.1093/nar/gkaa971
  • Trott, O., Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-61. https://doi.org/10.1002/jcc.21334
  • Lie, M.A., Thomsen, R., Pedersen, C.N, Schiott, B., Christensen, M.H. (2011). Molecular docking with ligand attached water molecules. J Chem Inf Model., 51(4), 909-17. https://doi.org/10.1021/ci100510m
  • Saleem, M., Nazir, M., Ali, M.S., Hussain, H., Lee, Y.S., Riaz, N., et al. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Pro. Rep., 27(2), 238-54. https://doi.org/10.1039/B916096E
  • Bhuyan, D.J., Basu, A. (Eds). (2017). Phenolic compounds: Potential health benefits and toxicity. Western Sydney University.
  • Lattanzio, V., Kroon, P.A., Quideau, S., Treutter, D. (2008). Plant phenolics-Secondary metabolites with diverse functions. Wiley-Blackwell.
  • Ugurlu, A., Yagci, A.K., Ulusoy, S., Aksu, B., Bosgelmez-Tinaz, G. (2016). Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed., 6(8), 698 701. https://doi.org/10.1016/j.apjtb.2016.06.008
  • Vandeputte, O.M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., El Jaziri, M., et al. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 76(1), 243 53. https://doi.org/10.1128/AEM.01059-09
  • Lahiri, D., Nag, M., Dutta, B., Mukherjee, I., Ghosh, S., Dey, A., et al. (2021). Catechin as the most efficient bioactive compound from Azadirachta indica with antibiofilm and anti-quorum sensing activities against dental biofilm: An in vitro and in silico study. Appl. Biochem. Biotechnol., 1-14. https://doi.org/10.1007/s12010-021-03511-1
  • Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., et al. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Appl. Environ. Microbiol., 120(4), 966 74. https://doi.org/10.1111/jam.13073
  • Yang, R., Guan, Y., Zhou, J.W., Sun, B., Wang, Z.N., Chen, H.J., et al. (2018). Phytochemicals from Camellia nitidissima Chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front. Microbiol., 8, 1 13. https://doi.org/10.3389/fmicb.2017.02640
  • Wang, H., Chu, W.H., Ye, C., Gaeta, B., Tao, H.M., Wang, M., et al. (2019). Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl. Microbiol. Biotechnol., 103(2), 903 15. https://doi.org/10.1007/s00253-018-9482-7
  • Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Apmis, 121(11), 1073-81. https://doi.org/10.1111/apm.12083
  • Bottomley, M.J., Muraglia, E., Bazzo, R., Carfì, A. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem., 282, 13592 600. https://doi.org/10.1074/jbc.M700556200
  • Onem, E., Sarisu, H.C., Ozaydin, A.G., Muhammed, M.T., Ak, A. (2021). Phytochemical profile, antimicrobial and anti‐quorum sensing properties of fruit stalks of Prunus avium L. Lett. Appl. Microbiol., 73(4), 426-437. https://doi.org/10.1111/lam.13528

Persea americana Mill.: As a potent quorum sensing inhibitor of Pseudomonas aeruginosa PAO1 virulence

Year 2022, Volume: 9 Issue: 1, 14 - 26, 10.03.2022
https://doi.org/10.21448/ijsm.1029610

Abstract

The emergence of bacteria resistant to conventional antibiotics and the inability of these antibiotics to treat bacterial biofilm-induced infections cause millions of deaths every year.
This situation has prompted scientists to develop alternative strategies to combat infectious diseases. Among these, researches on phytochemicals to reduce bacterial virulence in Pseudomonas aeruginosa have gained momentum in recent years. The main reasons behind this are the production of virulence factors and biofilm formation, all of which are under the control of quorum sensing (QS) system. Hence, inhibition of the QS pathways is an eligible strategy for the control of microbial pathogenesis.
For the first time in the present study, the methanolic seed extract of avocado was evaluated for its anti-QS activity against P. aeruginosa PAO1. The results of the experiments carried out proved that the extract has inhibitory activity on the regulation of virulence and biofilm formation. Phytochemical analysis resulted in the identification of epicatechin, catechin, chlorogenic acid, caffeic acid, quercetin, kaempferol, vanillin, ferulic acid in the extract. Then, the mechanism of action for the extract was investigated through molecular docking. Docking outcomes demonstrated that the major components, catechin, epicatechin, chlorogenic acid, could bind to the receptors of QS competitively. Hence, the mode of action for the extract might be through the inhibition of the QS. Considering the computational analysis results and the literature, it is thought that the anti-QS activity of the extract prepared from avocado seeds may be related to the synergistic effect of the phytochemicals it contains.

Project Number

yok

References

  • Berry, D.B., Lu, D., Geva, M., Watts, J.C., Bhardwaj, S., Oehler, A., et al. (2013). Drug resistance confounding prion therapeutics. PNAS, 110(44), E4160 9. https://doi.org/10.1073/pnas.1317164110
  • Jiang, Q., Chen, J., Yang, C., Yin, Y., Yao, K. (2019). Quorum sensing: A prospective therapeutic target for bacterial diseases. BioMed Res. Int. 2015978. https://doi.org/10.1155/2019/2015978
  • Rutherford, S.T., Bassler, B.L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspect. Med., 2(11), a012427. https://doi.org/10.1101/cshperspect.a012427
  • Smith, R.S., Iglewski, B.H. (2003). P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6(1), 56-60. https://doi.org/10.1016/S1369-5274(03)00008-0
  • Parsek, M.R., Greenberg, E.P. (1999). Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Meth. Enzymol., 310, 43-55. https://doi.org/10.1016/S0076-6879(99)10005-3
  • Vysakh, A., Midhun, S.J., Jayesh, K., Jyothis, M., Latha, M.S. (2018). Studies on biofilm formation and virulence factors associated with uropathogenic Escherichia coli isolated from patient with acute pyelonephritis. Pathophysiology., 25(4), 381 7. https://doi.org/10.1016/j.pathophys.2018.07.004
  • Lyczak, J.B., Cannon, C.L, Pier, G.B. (2000). Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes and Infect., 2(9), 1051-60. https://doi.org/10.1016/S1286-4579(00)01259-4
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infect. Dis., 18(3), 318-27. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Pompilio, A., Crocetta, V., Nicola, D.S., Verginelli, F., Fiscarelli, E., Bonaventura G.D. (2015). Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front. Microbiol., 6, 951. https://doi.org/10.3389/fmicb.2015.00951
  • Rather, M.A., Gupta, K., Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. leaf extract: An in vitro study. J. Ethnopharmacol., 269, 113699. https://doi.org/10.1016/j.jep.2020.113699
  • Mohabi, S., Kalantar-Neyestanaki, D., Mansouri, S. (2017). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iran. J. Microbiol., 9(1), 26-32. PMID: 28775820; PMCID: PMC5534001.
  • Hurtado-Fernández, E., Fernández-Gutiérrez, A., Carrasco-Pancorbo, A. (2018). Avocado fruit—Persea americana. Academic Press.
  • Dreher, M.L., Davenport, A.J. (2013). Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr., 53(7), 738-50. https://doi.org/10.1080/10408398.2011.556759
  • Nayak, B.S., Raju, S.S., Chalapathi, R.A.V. (2008). Wound healing activity of Persea americana (avocado) fruit: A preclinical study on rats. J. Wound Care., 17(3), 123-6. https://doi.org/10.12968/jowc.2008.17.3.28670
  • Rodriguez-Carpena, J.G., Morcuende, D., Andrade, MJ., Kylli, P., Estevez, M. (2011). Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem., 59(10), 5625-35. https://doi.org/10.1021/jf1048832
  • Pahua-Ramos, M.E, Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernandez-Navarro, M.D., Garduno-Siciliano, L., Necoechea-Mondragon, H., et al. (2012). Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Hum. Nutr., 67(1), 10-16. https://doi.org/10.1007/s11130-012-0280-6
  • Nabavi, S.F., Nabavi, S.M, Setzer, W.N, Nabavi, S.A, Nabavi, S.A, Ebrahimzadeh, M.A. (2013). Antioxidant and antihemolytic activity of lipid-soluble bioactive substances in avocado fruits. Fruits, 68(3), 185-93. https://doi.org/10.3390/antiox8100426
  • Alkhalaf, M.I, Alansari, W.S, Ibrahim, E.A, ELhalwagy, M.E.A. (2019). Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. Journal of King Saud University Science, 31(4), 1358 62. https://doi.org/10.3389/fnut.2021.775751
  • Umoh, I.O., Samuel, O.O., Kureh, T.B., Davies, K.G. (2019). Antidiabetic and hypolipidaemic potentials of ethanol fruit pulp extract of Persea americana (avocado pear) in rats. J. Afr. Assoc. Physiol., 7(1), 59-63.
  • Holder, I.A., Boyce, S.T. (1994). Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 20(5), 426-29. https://doi.org/10.1016/0305-4179(94)90035-3
  • Xu, K.D., McFeters, G.A., Stewart, P.S. (2000). Biofilm resistance to antimicrobial agents. Microbiology, 146, 547-49. https://doi.org/10.1099/00221287-146-3-547
  • Qu, Y., Locock, K., Verma-Gaur, J., Hay, I.D., Meagher, L., Traven, A. (2016). Searching for new strategies against polymicrobial biofilm infections: Guanylated polymethacrylates kill mixed fungal/bacterial biofilms. J. Antimicrob. Chemother., 71(2), 413 21. https://doi.org/10.1093/jac/dkv334
  • O'Toole, G.A. (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiments, 30(47), 2437. https://doi.org/10.3791/2437
  • Onem, E., Dundar, Y., Ulusoy, S., Noyanalpan, N., Bosgelmez-Tinaz, G. (2018). Anti-quorum sensing activity of 1, 3-dihydro-2H-benzimidazol-2-one derivatives. Fresenius Environ. Bull., 27(12 B), 9906-12.
  • Bever, R.A., Iglewski, B.H. (1988). Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol., 170(9), 4309 14. https://doi.org/10.1128/jb.170.9.4309-4314.1988
  • Galdino, A.C.M., de Oliveira, M.P., Ramalho, T.C., de Castro, A.A., Branquinha, M.H., Santos, A.L.S. (2019). Anti-virulence strategy against the multidrug-resistant bacterial pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a potential druggable target. Curr. Protein Pept. Sci., 20(5), 471-87. https://doi.org/10.2174/1389203720666190207100415
  • Ohman, D.E., Cryz, S.J., Iglewski, B.H. (1980). Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J. Bacteriol., 142(3), 836-42. https://doi.org/10.1128/jb.142.3.836-842.1980
  • Reyes, E.A., Bale, M.J., Cannon, W.H., Matsen, J.M. (1981). Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clinic. Microbiol., 13(3), 456-8. https://doi.org/10.1128/jcm.13.3.456-458.1981
  • Lau, G.W., Hassett, D.J., Ran, H., Kong, F. (2004). The role of pyocyanin in Pseudomonas aeruginosa infection. Trends. Mol. Med., 10(12), 599 606. https://doi.org/10.1016/j.molmed.2004.10.002
  • Essar, D.W., Eberly, L., Hadero, A., Crawford, I.P. (1990). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol., 172(2), 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
  • Paczkowski, J.E., McCready, A.R., Cong, J.P., Li, Z., Jeffrey, P.D., Smith, C.D., et al. (2019). An autoinducer analog reveals an alternative mode of ligand binding for the LasR quorum sensing receptor. ACS Chem. Biol., 14(3), 378 89. https://doi.org/10.1021/acschembio.8b00971
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 49(D1), D1388-95. https://doi.org/10.1093/nar/gkaa971
  • Trott, O., Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-61. https://doi.org/10.1002/jcc.21334
  • Lie, M.A., Thomsen, R., Pedersen, C.N, Schiott, B., Christensen, M.H. (2011). Molecular docking with ligand attached water molecules. J Chem Inf Model., 51(4), 909-17. https://doi.org/10.1021/ci100510m
  • Saleem, M., Nazir, M., Ali, M.S., Hussain, H., Lee, Y.S., Riaz, N., et al. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Pro. Rep., 27(2), 238-54. https://doi.org/10.1039/B916096E
  • Bhuyan, D.J., Basu, A. (Eds). (2017). Phenolic compounds: Potential health benefits and toxicity. Western Sydney University.
  • Lattanzio, V., Kroon, P.A., Quideau, S., Treutter, D. (2008). Plant phenolics-Secondary metabolites with diverse functions. Wiley-Blackwell.
  • Ugurlu, A., Yagci, A.K., Ulusoy, S., Aksu, B., Bosgelmez-Tinaz, G. (2016). Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed., 6(8), 698 701. https://doi.org/10.1016/j.apjtb.2016.06.008
  • Vandeputte, O.M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., El Jaziri, M., et al. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 76(1), 243 53. https://doi.org/10.1128/AEM.01059-09
  • Lahiri, D., Nag, M., Dutta, B., Mukherjee, I., Ghosh, S., Dey, A., et al. (2021). Catechin as the most efficient bioactive compound from Azadirachta indica with antibiofilm and anti-quorum sensing activities against dental biofilm: An in vitro and in silico study. Appl. Biochem. Biotechnol., 1-14. https://doi.org/10.1007/s12010-021-03511-1
  • Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., et al. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Appl. Environ. Microbiol., 120(4), 966 74. https://doi.org/10.1111/jam.13073
  • Yang, R., Guan, Y., Zhou, J.W., Sun, B., Wang, Z.N., Chen, H.J., et al. (2018). Phytochemicals from Camellia nitidissima Chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front. Microbiol., 8, 1 13. https://doi.org/10.3389/fmicb.2017.02640
  • Wang, H., Chu, W.H., Ye, C., Gaeta, B., Tao, H.M., Wang, M., et al. (2019). Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl. Microbiol. Biotechnol., 103(2), 903 15. https://doi.org/10.1007/s00253-018-9482-7
  • Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Apmis, 121(11), 1073-81. https://doi.org/10.1111/apm.12083
  • Bottomley, M.J., Muraglia, E., Bazzo, R., Carfì, A. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem., 282, 13592 600. https://doi.org/10.1074/jbc.M700556200
  • Onem, E., Sarisu, H.C., Ozaydin, A.G., Muhammed, M.T., Ak, A. (2021). Phytochemical profile, antimicrobial and anti‐quorum sensing properties of fruit stalks of Prunus avium L. Lett. Appl. Microbiol., 73(4), 426-437. https://doi.org/10.1111/lam.13528
There are 46 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Fatma Tuğçe Gürağaç Dereli 0000-0002-7554-733X

Ebru Önem 0000-0002-7770-7958

Ayşe Gül Özaydın 0000-0001-7860-8356

Evren Arın 0000-0002-6800-9226

Muhammed Tilahun Muhammed 0000-0003-0050-5271

Project Number yok
Publication Date March 10, 2022
Submission Date November 28, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Gürağaç Dereli, F. T., Önem, E., Özaydın, A. G., Arın, E., et al. (2022). Persea americana Mill.: As a potent quorum sensing inhibitor of Pseudomonas aeruginosa PAO1 virulence. International Journal of Secondary Metabolite, 9(1), 14-26. https://doi.org/10.21448/ijsm.1029610
International Journal of Secondary Metabolite

e-ISSN: 2148-6905