Research Article
BibTex RIS Cite

Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants

Year 2022, Volume: 9 Issue: 2, 208 - 328, 15.06.2022
https://doi.org/10.21448/ijsm.1023864

Abstract

This study evaluated the antibacterial and antioxidant activities of the constituents of L. tomentosa and S. longipedunculata. The in-silico molecular docking analysis of the isolated compounds was also reported herein for the first time. The GC-MS analysis of the essential oil of L. tomentosa led to the identification of eleven components with 2,5-dimethoxy-p-cymene identified as the principal constituent (59.39%). Lauric acid (1), β-stigmasterol (2), chrysophanol (3), and emodin (4) were isolated from L. tomentosa using silica gel column chromatography. Likewise, 9H-xanthene-3,5-diol (5), 1,7-dihydroxy-4-methoxyxanthone (6), and oleic acid (7) were isolated from S. longipedunculata. The structures of the isolated compounds were elucidated using UV-Vis, IR, and NMR spectroscopic methods. Compounds 3 and 4 are new to the genus Laggera, while 5 and 6 are new to the species S. longipedunculata. Compounds 3-6 inhibited DPPH radical by 86, 92, 88, and 90%, respectively. Compounds 5 and 6 inhibited 79.2 and 81.9% peroxide formation, respectively. The antioxidant activities displayed by compounds 4-6 suggest their use as a natural antioxidant. Compounds 4 and 6 inhibited the growth of bacteria by 18.00±0.10 and 16.06±0.22 mm, respectively. Compounds 3, 4, and 6 showed binding affinities of −10.4, −10.4, and −9.9 kcal/mol against Staphylococcus aureus DNA Gyrase, respectively, while 4 showed −10.4 kcal/mol against human topoisomerase IIβ. Therefore, the present study results showed that emodin and 1,7-dihydroxy-4-methoxyxanthone might be considered lead compounds for further development as antibacterial and anti-cancer agents. The findings also substantiate the traditional use of these plants against bacteria.

References

  • Abu-Melha, S. (2018). Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 23(2). https://doi.org/10.3390/molecules23020434
  • Ah, A., & Yi, A. (2019). In silico Pharmacokinetics and Molecular Docking Studies of Lead Compounds Derived from Diospyros Mespiliformis. PharmaTutor, 7, 31-37.
  • Akpemi, A., Oyewale, A.O., Ndukwe, I.G. (2013). Phytochemical screening and antimicrobial activity of extracts of Securidaca longepedunclata root bark MeOH extract. [Department of Chemistry, Thesis, Federal Collage of Education, Zaria, Nigeria].
  • Asfaw, N., Storesund, H.J., Aasen, A.J., & Skattebol, L. (2003). Constituents of the Essential Oil of Laggera tomentosa Sch. Bip. ex Oliv. et Hiern Endemic to Ethiopia. Journal of Essential Oil Research, 15(2), 102-105. https://doi.org/10.1080/10412905.2003.9712081
  • Baker, J.T., Borris, R.P., Carté, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., . . . Tyler, V. E. (1995). Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod, 58(9), 1325 1357. https://doi.org/10.1021/np50123a003
  • Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46(W1), W257-w263. https://doi.org/10.1093/nar/gky318
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt - Food Science and Technology, 28, 25-30.
  • Chaturvedula, V., & Prakash, I. (2012). Isolation of Stigmasterol and ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical Journal, 1(9), 239-242. https://doi.org/10.3329/icpj.v1i9.11613
  • Coopoosamy, R.M. and Magwa, M.L. (2006). Antibacterial activity of chrysophanol isolated from Aloe excelsa. African Journal of Biotechnology, 5(16). 1508-1510.
  • Cuauthemone Sesquiterpenes and Flavones From Laggera Tomentosa Endemic TO ETHIOPIA. (2010). Bulletin of the Chemical Society of Ethiopia, 24(2), 267-271.
  • Debella, A., Kunert, O., Schmid, M.G., Michl, G., Bucar, F., Abebe, D.S., & Haslinger, E. (2000). A Diterpene, a Flavonol Glycoside, and a Phytosterol Glycoside from Securidaca longipedunculata and Entada abyssinica. ChemInform, 131, 401-408.
  • Declercq, J.P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., & Knoops, B. (2001). Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol, 311(4), 751-759. https://doi.org/10.1006/jmbi.2001.4853
  • Dibwe, D.F., Awale, S., Kadota, S., Morita, H., & Tezuka, Y. (2013). Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorg Med Chem, 21(24), 7663-7668. https://doi.org/10.1016/j.bmc.2013.10.027
  • El-Etrawy, A.-A.S., & Sherbiny, F. F. (2021). Design, synthesis, biological assessment and molecular docking studies of some new 2-Thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. Journal of Molecular Structure, 1225, 129014. https://doi.org/10.1016/j.molstruc.2020.129014
  • Fekade, B. (2008). Phytochemical investigation of the pods of Senna occidentalis. [Master Thesis, AAU, Addis Ababa, Ethiopia].
  • Garg, A., Tadesse, A., & Eswaramoorthy, R. (2021). A Four-Component Domino Reaction: An Eco-Compatible and Highly Efficient Construction of 1,8-Naphthyridine Derivatives, Their In Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies. Journal of Chemistry, 2021, 5589837. https://doi.org/10.1155/2021/5589837
  • Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 22(3), 277-281.
  • Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53. https://doi.org/10.1016/j.arabjc.2009.12.008
  • Guo, S., Feng, B., Zhu, R., Ma, J., & Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201-1210. https://doi.org/10.3390/molecules16021201
  • Hakim, A., Akssira, M., Mina, L., Idrissi Hassani, L. M., Chebli, B., Hakmoui, A., . . . Blázquez, M. (2008). Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathologia Mediterranea, 47(1), 3 10. https://doi.org/10.14601/Phytopathol_Mediterr-2541
  • Joshi, R.K. (2013). Chemical constituents and antibacterial property of the essential oil of the roots of Cyathocline purpurea. J Ethnopharmacol, 145(2), 621 625. https://doi.org/10.1016/j.jep.2012.11.045
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Martin, N., Jirovetz, L., Buchbauer, G., & Fleischhacker, W. (2000). Investigation of the Essential Oil and Headspace of Laggera pterodonta (DC.) Sch. Bip. ex Oliv., a Medicinal Plant from Cameroon. The Journal of Essential Oil Research, 12, 345-349. https://doi.org/10.1080/10412905.2000.9699532
  • Mongalo, N.I., McGaw, L.J., Finnie, J.F., & Staden, J.V. (2015). Securidaca longipedunculata Fresen (Polygalaceae): a review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. J Ethnopharmacol, 165, 215 226. https://doi.org/10.1016/j.jep.2015.02.041
  • Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., . . . Yoshida, T. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther, 6(3), 987-994. https://doi.org/10.1158/1535-7163.Mct-06-0605
  • Nagatsu, A. (2004). Investigation of Anti-oxidative Compounds from Oil Plant Seed, Fabad J. Pharm. Sci., 29, 203–210.
  • Ndukwe, K., Okeke, I., Lamikanra, A., Adesina, S., & Aboderin, O. (2005). Antibacterial Activity of Aqueous Extracts of Selected Chewing Sticks. The journal of contemporary dental practice, 6, 86-94. https://doi.org/10.5005/jcdp-6-3-86
  • Ołdak, A., Zielińska, D., Rzepkowska, A., & Kołożyn-Krajewska, D. (2017). Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. Biomed Res Int, 2017, 6820369. https://doi.org/10.1155/2017/6820369
  • Omoregie, H., Okwute, & Koma, S. (2014). Some Bioactive Fatty Derivatives from L. pterodonta. Nature and Science, 12(1), 79-86.
  • Owolabi, M.S., Lajide, L., Villanueva, H.E., & Setzer, W.N. (2010). Essential oil composition and insecticidal activity of Blumea perrottetiana growing in southwestern Nigeria. Nat Prod Commun, 5(7), 1135-1138.
  • Panda, S., Jafri, M., Kar, A., & Meheta, B.K. (2009). Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia, 80(2), 123-126. https://doi.org/10.1016/j.fitote.2008.12.002
  • Popelier, P.L.A. (2000). Atoms in Molecules: An Introduction; Pearson Education.
  • Qusti, S.Y., Abo-khatwa, A.N., Lahwa, M.A.B., & Qusti, S.Y. (2010). Screening of antioxidant activity and phenolic content of selected food items cited in the holly Quran. EJBS, 2(1), 40–52
  • Rawat, D., Rawat, M. s. M., Semalty, A., & Semalty, M. (2013). Crysophanol-Phospholipid Complex: A Drug Delivery Strategy in Herbal Novel Drug Delivery System-HNDDS. Journal of Thermal Analysis and Calorimetry, 111, 2069 2077. https://doi.org/10.1007/s10973-012-2448-6
  • Tamano, M., & Koketsu, J. (1982). Isolation of Hydroxyanthrones from the Roots of Rumex acetosa Linn. Agricultural and Biological Chemistry, 46(7), 1913 1914. https://doi.org/10.1080/00021369.1982.10865350
  • Trott, O., & Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, R., Padalia, R., Chanotiya, C., Chauhan, A., & Yadav, A. (2011). Chemical investigation of the essential oil of Laggera crispata (Vahl) Hepper & Wood from India. J. Serb. Chem. Soc., 76, 523–528. https://doi.org/10.2298/JSC100801048V
  • Vujovic, M., Ragavendran, V., Arsic, B., Kostic, E., & Mladenović, M. (2020). DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones. Open Chemistry, 18, 185 195. https://doi.org/10.1515/chem-2020-0021
  • Yamashita, S., Igarashi, M., Hayashi, C., Shitara, T., Nomoto, A., Mizote, T., & Shibasaki, M. (2015). Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori. Microbiology (Reading), 161(6), 1231-1239. https://doi.org/10.1099/mic.0.000077

Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants

Year 2022, Volume: 9 Issue: 2, 208 - 328, 15.06.2022
https://doi.org/10.21448/ijsm.1023864

Abstract

This study evaluated the antibacterial and antioxidant activities of the constituents of L. tomentosa and S. longipedunculata. The in-silico molecular docking analysis of the isolated compounds was also reported herein for the first time. The GC-MS analysis of the essential oil of L. tomentosa led to the identification of eleven components with 2,5-dimethoxy-p-cymene identified as the principal constituent (59.39%). Lauric acid (1), β-stigmasterol (2), chrysophanol (3), and emodin (4) were isolated from L. tomentosa using silica gel column chromatography. Likewise, 9H-xanthene-3,5-diol (5), 1,7-dihydroxy-4-methoxyxanthone (6), and oleic acid (7) were isolated from S. longipedunculata. The structures of the isolated compounds were elucidated using UV-Vis, IR, and NMR spectroscopic methods. Compounds 3 and 4 are new to the genus Laggera, while 5 and 6 are new to the species S. longipedunculata. Compounds 3-6 inhibited DPPH radical by 86, 92, 88, and 90%, respectively. Compounds 5 and 6 inhibited 79.2 and 81.9% peroxide formation, respectively. The antioxidant activities displayed by compounds 4-6 suggest their use as a natural antioxidant. Compounds 4 and 6 inhibited the growth of bacteria by 18.00±0.10 and 16.06±0.22 mm, respectively. Compounds 3, 4, and 6 showed binding affinities of −10.4, −10.4, and −9.9 kcal/mol against Staphylococcus aureus DNA Gyrase, respectively, while 4 showed −10.4 kcal/mol against human topoisomerase IIβ. Therefore, the present study results showed that emodin and 1,7-dihydroxy-4-methoxyxanthone might be considered lead compounds for further development as antibacterial and anti-cancer agents. The findings also substantiate the traditional use of these plants against bacteria.

References

  • Abu-Melha, S. (2018). Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 23(2). https://doi.org/10.3390/molecules23020434
  • Ah, A., & Yi, A. (2019). In silico Pharmacokinetics and Molecular Docking Studies of Lead Compounds Derived from Diospyros Mespiliformis. PharmaTutor, 7, 31-37.
  • Akpemi, A., Oyewale, A.O., Ndukwe, I.G. (2013). Phytochemical screening and antimicrobial activity of extracts of Securidaca longepedunclata root bark MeOH extract. [Department of Chemistry, Thesis, Federal Collage of Education, Zaria, Nigeria].
  • Asfaw, N., Storesund, H.J., Aasen, A.J., & Skattebol, L. (2003). Constituents of the Essential Oil of Laggera tomentosa Sch. Bip. ex Oliv. et Hiern Endemic to Ethiopia. Journal of Essential Oil Research, 15(2), 102-105. https://doi.org/10.1080/10412905.2003.9712081
  • Baker, J.T., Borris, R.P., Carté, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., . . . Tyler, V. E. (1995). Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod, 58(9), 1325 1357. https://doi.org/10.1021/np50123a003
  • Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46(W1), W257-w263. https://doi.org/10.1093/nar/gky318
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt - Food Science and Technology, 28, 25-30.
  • Chaturvedula, V., & Prakash, I. (2012). Isolation of Stigmasterol and ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical Journal, 1(9), 239-242. https://doi.org/10.3329/icpj.v1i9.11613
  • Coopoosamy, R.M. and Magwa, M.L. (2006). Antibacterial activity of chrysophanol isolated from Aloe excelsa. African Journal of Biotechnology, 5(16). 1508-1510.
  • Cuauthemone Sesquiterpenes and Flavones From Laggera Tomentosa Endemic TO ETHIOPIA. (2010). Bulletin of the Chemical Society of Ethiopia, 24(2), 267-271.
  • Debella, A., Kunert, O., Schmid, M.G., Michl, G., Bucar, F., Abebe, D.S., & Haslinger, E. (2000). A Diterpene, a Flavonol Glycoside, and a Phytosterol Glycoside from Securidaca longipedunculata and Entada abyssinica. ChemInform, 131, 401-408.
  • Declercq, J.P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., & Knoops, B. (2001). Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol, 311(4), 751-759. https://doi.org/10.1006/jmbi.2001.4853
  • Dibwe, D.F., Awale, S., Kadota, S., Morita, H., & Tezuka, Y. (2013). Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorg Med Chem, 21(24), 7663-7668. https://doi.org/10.1016/j.bmc.2013.10.027
  • El-Etrawy, A.-A.S., & Sherbiny, F. F. (2021). Design, synthesis, biological assessment and molecular docking studies of some new 2-Thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. Journal of Molecular Structure, 1225, 129014. https://doi.org/10.1016/j.molstruc.2020.129014
  • Fekade, B. (2008). Phytochemical investigation of the pods of Senna occidentalis. [Master Thesis, AAU, Addis Ababa, Ethiopia].
  • Garg, A., Tadesse, A., & Eswaramoorthy, R. (2021). A Four-Component Domino Reaction: An Eco-Compatible and Highly Efficient Construction of 1,8-Naphthyridine Derivatives, Their In Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies. Journal of Chemistry, 2021, 5589837. https://doi.org/10.1155/2021/5589837
  • Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 22(3), 277-281.
  • Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53. https://doi.org/10.1016/j.arabjc.2009.12.008
  • Guo, S., Feng, B., Zhu, R., Ma, J., & Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201-1210. https://doi.org/10.3390/molecules16021201
  • Hakim, A., Akssira, M., Mina, L., Idrissi Hassani, L. M., Chebli, B., Hakmoui, A., . . . Blázquez, M. (2008). Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathologia Mediterranea, 47(1), 3 10. https://doi.org/10.14601/Phytopathol_Mediterr-2541
  • Joshi, R.K. (2013). Chemical constituents and antibacterial property of the essential oil of the roots of Cyathocline purpurea. J Ethnopharmacol, 145(2), 621 625. https://doi.org/10.1016/j.jep.2012.11.045
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Martin, N., Jirovetz, L., Buchbauer, G., & Fleischhacker, W. (2000). Investigation of the Essential Oil and Headspace of Laggera pterodonta (DC.) Sch. Bip. ex Oliv., a Medicinal Plant from Cameroon. The Journal of Essential Oil Research, 12, 345-349. https://doi.org/10.1080/10412905.2000.9699532
  • Mongalo, N.I., McGaw, L.J., Finnie, J.F., & Staden, J.V. (2015). Securidaca longipedunculata Fresen (Polygalaceae): a review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. J Ethnopharmacol, 165, 215 226. https://doi.org/10.1016/j.jep.2015.02.041
  • Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., . . . Yoshida, T. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther, 6(3), 987-994. https://doi.org/10.1158/1535-7163.Mct-06-0605
  • Nagatsu, A. (2004). Investigation of Anti-oxidative Compounds from Oil Plant Seed, Fabad J. Pharm. Sci., 29, 203–210.
  • Ndukwe, K., Okeke, I., Lamikanra, A., Adesina, S., & Aboderin, O. (2005). Antibacterial Activity of Aqueous Extracts of Selected Chewing Sticks. The journal of contemporary dental practice, 6, 86-94. https://doi.org/10.5005/jcdp-6-3-86
  • Ołdak, A., Zielińska, D., Rzepkowska, A., & Kołożyn-Krajewska, D. (2017). Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. Biomed Res Int, 2017, 6820369. https://doi.org/10.1155/2017/6820369
  • Omoregie, H., Okwute, & Koma, S. (2014). Some Bioactive Fatty Derivatives from L. pterodonta. Nature and Science, 12(1), 79-86.
  • Owolabi, M.S., Lajide, L., Villanueva, H.E., & Setzer, W.N. (2010). Essential oil composition and insecticidal activity of Blumea perrottetiana growing in southwestern Nigeria. Nat Prod Commun, 5(7), 1135-1138.
  • Panda, S., Jafri, M., Kar, A., & Meheta, B.K. (2009). Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia, 80(2), 123-126. https://doi.org/10.1016/j.fitote.2008.12.002
  • Popelier, P.L.A. (2000). Atoms in Molecules: An Introduction; Pearson Education.
  • Qusti, S.Y., Abo-khatwa, A.N., Lahwa, M.A.B., & Qusti, S.Y. (2010). Screening of antioxidant activity and phenolic content of selected food items cited in the holly Quran. EJBS, 2(1), 40–52
  • Rawat, D., Rawat, M. s. M., Semalty, A., & Semalty, M. (2013). Crysophanol-Phospholipid Complex: A Drug Delivery Strategy in Herbal Novel Drug Delivery System-HNDDS. Journal of Thermal Analysis and Calorimetry, 111, 2069 2077. https://doi.org/10.1007/s10973-012-2448-6
  • Tamano, M., & Koketsu, J. (1982). Isolation of Hydroxyanthrones from the Roots of Rumex acetosa Linn. Agricultural and Biological Chemistry, 46(7), 1913 1914. https://doi.org/10.1080/00021369.1982.10865350
  • Trott, O., & Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, R., Padalia, R., Chanotiya, C., Chauhan, A., & Yadav, A. (2011). Chemical investigation of the essential oil of Laggera crispata (Vahl) Hepper & Wood from India. J. Serb. Chem. Soc., 76, 523–528. https://doi.org/10.2298/JSC100801048V
  • Vujovic, M., Ragavendran, V., Arsic, B., Kostic, E., & Mladenović, M. (2020). DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones. Open Chemistry, 18, 185 195. https://doi.org/10.1515/chem-2020-0021
  • Yamashita, S., Igarashi, M., Hayashi, C., Shitara, T., Nomoto, A., Mizote, T., & Shibasaki, M. (2015). Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori. Microbiology (Reading), 161(6), 1231-1239. https://doi.org/10.1099/mic.0.000077
There are 39 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Articles
Authors

Yadessa Melaku 0000-0003-2599-0517

Tokuma Getahun This is me 0000-0003-4564-9252

Markos Addisu This is me

Hailemichael Tesso This is me

Rajalakshmanan Eswaramoorthy 0000-0002-8331-2100

Ankita Garg 0000-0002-6073-6138

Early Pub Date May 19, 2022
Publication Date June 15, 2022
Submission Date November 15, 2021
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Melaku, Y., Getahun, T., Addisu, M., … Tesso, H. (2022). Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants. International Journal of Secondary Metabolite, 9(2), 208-328. https://doi.org/10.21448/ijsm.1023864
International Journal of Secondary Metabolite

e-ISSN: 2148-6905