Secondary metabolites are highly beneficial to human health and have commercial and industrial values. So, this research aimed to study the effects of exogenous salicylic acid (SA) and jasmonic acid (JA) on some secondary metabolites in purple coneflower. A field experiment as a randomized complete block design with three replications was conducted in Shahrood, Iran. Treatments were the factorial arrangement of 3 SA (0, 0.5, and 1 millimole) and 4 JA concentrations (0, 5, 20, and 50 micromole). The non-linear regression procedure was employed to quantify the relation of these materials with each other. The results indicated that the SA effect on all ten measured secondary metabolites changed with changing the JA levels as there was the interaction between these elicitors. On average, most (7 out of 11) of the combined SA_JA levels up-regulated the production of secondary metabolites as compared to the plants not sprayed with SA and JA. In terms of average response to elicitation with 11 combined SA_JA levels, they ranked from higher to lower as the guaiacol peroxidase, hydrogen proxide (H2O2), polyphenol oxidase, glutathione S-transferase, superoxide dismutase, NADPH oxidase, total phenolic content, phenylalanine ammonia-lyase, anthocyanin, and flavonoid. A few secondary metabolites appeared to have a biphasic relationship with each other. For instance, over lower and medium values of NADPH oxidase activity, anthocyanin content increased linearly with increasing NADPH oxidase activity; over higher values of NADPH oxidase activity, it showed a plateau state.
Secondary metabolites are highly beneficial to human health and have commercial and industrial values. So, this research aimed to study the effects of exogenous salicylic acid (SA) and jasmonic acid (JA) on some secondary metabolites in purple coneflower. A field experiment as a randomized complete block design with three replications was conducted in Shahrood, Iran. Treatments were the factorial arrangement of 3 SA (0, 0.5, and 1 millimole) and 4 JA concentrations (0, 5, 20, and 50 micromole). The non-linear regression procedure was employed to quantify the relation of these materials with each other. The results indicated that the SA effect on all ten measured secondary metabolites changed with changing the JA levels as there was the interaction between these elicitors. On average, most (7 out of 11) of the combined SA_JA levels up-regulated the production of secondary metabolites as compared to the plants not sprayed with SA and JA. In terms of average response to elicitation with 11 combined SA_JA levels, they ranked from higher to lower as the guaiacol peroxidase, hydrogen proxide (H2O2), polyphenol oxidase, glutathione S-transferase, superoxide dismutase, NADPH oxidase, total phenolic content, phenylalanine ammonia-lyase, anthocyanin, and flavonoid. A few secondary metabolites appeared to have a biphasic relationship with each other. For instance, over lower and medium values of NADPH oxidase activity, anthocyanin content increased linearly with increasing NADPH oxidase activity; over higher values of NADPH oxidase activity, it showed a plateau state.
Primary Language | English |
---|---|
Subjects | Structural Biology |
Journal Section | Articles |
Authors | |
Publication Date | March 26, 2023 |
Submission Date | February 27, 2022 |
Published in Issue | Year 2023 Volume: 10 Issue: 1 |