Research Article
BibTex RIS Cite

Effect of Na, Mg, Ca chloride salts on mineral element, proline and total protein contents in rice (Oryza sativa L.) grown in vitro

Year 2024, Volume: 11 Issue: 1, 144 - 156, 05.02.2024
https://doi.org/10.21448/ijsm.1335099

Abstract

In this study, the effects of different types and concentrations of salts on local Siverek rice plant (Oryza sativa L.) grown in vitro were investigated in terms of mineral elements (K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, Mo, Co), proline, and total protein content. Sterilized seeds were planted in hormone-free and salt-free MS medium. After one week, the seedlings were subjected to different concentrations of NaCl, CaCl2, and MgCl2 salts (0, 30 mM, 90 mM) in order to evaluate the effect of salinity on plant growth and development. In response to salt stress, a decrease in nutrient elements was observed for all three types of salt compared to the control group, which can be attributed to disruptions in ion balance. Changes in element levels generally showed varying levels of increase or decrease depending on both the type and concentration of the salt and these changes were statistically significant. The increase in proline level was found to be directly proportional to the changes in the amounts of Ca, Mg, K, and Na elements. Both total protein and proline content showed the lowest values for all salt concentrations with CaCl2, while the highest values were obtained with NaCl. In conclusion, the changes in the level of mineral elements, total protein, and proline content levels, which decrease or increase in different ratios, depending on the type and concentration rising of the salt, are associated with the varying tolerance of the plant to different types of salts.

References

  • Abdelhamid, M.T., Rady, M.M., Osman, A.S., & Abdalla, M.A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. The Journal of Horticultural Science and Biotechnology, 88(4), 439 446. https://doi.org/10.1080/14620316.2013.11512989
  • Akyol, T.Y., Yılmaz, O., Uzilday, B., Uzilday, R.Ö., & Türkan, İ. (2020). Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany, 44(1), Article 1. https://doi.org/10.3906/bot-1911-15
  • Alejandro, S., Holler, S., Meier, B., & Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Bernstein, N., Sela, S., Dudai, N., & Gorbatsevich, E. (2017). Salinity stress does not affect root uptake, dissemination and persistence of salmonella in sweet-basil (Ocimum basilicum). Frontiers in Plant Science, 8, 675. https://doi.org/10.3389/fpls.2017.00675
  • Bhattarai, S., Lundell, S., & Biligetu, B. (2022). Effect of sodium chloride salt on germination, growth, and elemental composition of alfalfa cultivars with different tolerances to salinity. Agronomy, 12, 2516. https://doi.org/10.3390/agronomy12102516l
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Botella, M.A., Rosado, A., Bressan, R.A., & Hasegawa, P.M. (2005). Plant adaptive responses to salinity stress. Plant Abiotic Stress. Wiley Blackwell. https://doi.org/10.1002/9780470988503
  • Burkhead, J.L., Gogolin Reynolds, K.A., Abdel-Ghany, S.E., Cohu, C.M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799-816. https://doi.org/10.1111/j.1469-8137.2009.02846.x
  • Büyük, İ., Aydın, S.S., & Aras, S. (2012). Bitkilerin stres koşullarında verdiği moleküler cevaplar [Molecular responses of plants to stress conditions]. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(2), 97-110.
  • Çalışkan, O., Kurt, D., Temizel, K.E., & Odabas, M.S. (2017). Effect of salt stress and irrigation water on growth and development of sweet basil (Ocimum basilicum L.). Open Agriculture, 2(1), 589-594. https://doi.org/10.1515/opag-2017-0062
  • Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., & Schroeder, J.I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371 379. https://doi.org/10.1016/j.tplants.2014.02.001
  • Demir, Y., & Kocaçalışkan, I. (2001). Effects of NaCl and proline on polyphenol oxidase activity in bean seedlings. Biologia Plantarum, 44(4), 607 609. https://doi.org/10.1023/A:1013715425310
  • Dionisio, M.L.S., & Tobita, S. (2000). Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology, 157(1), 54-58. https://doi.org/10.1016/S0176-1617(00)80135-2
  • Dramalis, C., Katsantonis, D., & Koutroubas, S.D. (2021). Rice growth, assimilate translocation, and grain quality in response to salinity under Mediterranean conditions. AIMS Agriculture and Food, 6, 255–272. https://doi.org/10.3934/agrfood.2021017
  • Elhindi, K.M., Al-Amri, S.M., Abdel-Salam, E.M., & Al-Suhaibani, N.A. (2017). Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (Ocimum basilicum L.). Journal of Plant Nutrition, 40(6), 908-919. https://doi.org/10.1080/01904167.2016.1270311
  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188(2), 86-93. https://doi.org/10.1046/j.1439-037X.2002.00537.x
  • Fageria, N.K., Stone, L.F., & Santos, A.B.D. (2012). Breeding for salinity tolerance. Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_7
  • Fahad, S., Noor, M., Adnan, M., Khan, M.A., Rahman, I.U., Alam, M., & Nasim, W. (2019). Abiotic Stress and Rice Grain Quality, 571 583. Cambridge, UK: Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00028-9
  • Ghoulam, C., Foursy, A., & Fores, K. (2002). Effects of salt stress on growth, inorganic ions, and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Hasanuzzaman, M., Raihan, M.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Moleculer Science, 22, 9326. https://doi.org/10.3390/ijms22179326
  • İnal, A., Güneş, A., & Aktaş, M. (1995). Effects of chloride and partial substitution of reduced forms of nitrogen for nitrate in the nutrient solution on the nitrate, total nitrogen, and chlorine contents of onion. Journal of Plant Nutrition, 18, 2219 2227. https://doi.org/10.1080/01904169509365058
  • Kacar, B., & Katkat, V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd.
  • Karaman, R., & Kaya, M. (2017). Mercimeğe (Lens esculanta Moench) uygulanan farklı klor tuzu ve dozlarının kimi ilk gelişme özelliklerine etkisi [Effect of Different Chloride Salts and Doses on Early Growth Characters in Lentil]. Journal of Agricultural Sciences, 23, 10-21.
  • Kaya, A., & İnan, M. (2017). Effect of salicylic acid on some morphological, physiological and biochemical parameters of basil plant (Ocimum basilicum L.) which was subjected to salt (NaCl) stress. Harran Tarım ve Gıda Bilimleri Dergisi/Harran Journal of Agricultural and Food Science, 21(3), 332-342. https://doi.org/10.29050/harranziraat.339489
  • Kordrostami, M., Rabiei, B., & Hassani Kumleh, H. (2017). Biochemical, physiological, and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiology and Molecular Biology of Plants, 23, 529–544. https://doi.org/10.1007/s12298-017-0440-0
  • Kumar, G., Kushwaha, H.R., Panjabi-Sabharwal, V., Kumari, S., Joshi, R., Karan, R., Mittal, S., Pareek, S.L.S., & Pareek, A. (2012). Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biology, 12, 107. https://doi.org/10.1186/1471-2229-12-107
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., & Verma. J.P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. https://doi.org/10.3389/fmicb.2020.01216
  • Lacerda, C.F., Cambraia, J., Oliva, M.A., & Ruiz, H.A. (2002). Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54, 69–76. https://doi.org/10.1016/j.envexpbot.2004.06.004
  • Leidi, E. O., Nogales, R., & Lips, S. H. (1991). Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels. Field Crops Research, 26(1), 35-44. https://doi.org/10.1016/0378-4290(91)90055-Z
  • Liu, S., Zheng, L., Xue, Y., Zhang, Q., Wang, L., & Shou, H. (2010). Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 53, 444–452. https://doi.org/10.1007/s12374-010-9135-6
  • Malkoç, M., & Aydın, A. (2003). Mısır (Zea mays L.) ve fasulye (Phaseolus vulgaris L.)’nin gelişimi ve bitki besin maddeleri içeriğine farklı tuz uygulamalarının etkisi [Effects of Different Salt Sources on Zea Mays and Phaseolus Growth and Mineral Content]. Turkish Journal of Agriculture and Forestry, 34(3), 211–216.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, The Netherlands.
  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., & Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. https://doi.org/10.1104/pp.106.092635
  • Mokabel, S., Olama, Z., Ali, S., & El-Dakak, R. (2022). The role of plant growth promoting rhizosphere microbiome as alternative biofertilizer in boosting Solanum melongena L. adaptation to salinity stress. Plants, 11(5), 659. https://doi.org/10.3390/plants11050659
  • Mondal, T.K., Rawal, H.C., Chowrasia, S., Varshney, D., Panda, A.K., Mazumdar, A., Kaur, H., Gaikwad, K., Sharma, T.R., & Singh, N.K. (2018). Draft genome sequence of the first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Scientific Reports, 8, 13698. https://doi.org/10.1038/s41598-018-31518-y
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiology, 15, 473-497.
  • Nam, M.H., Huh, S.M., Kim, K.M., Park, W.J., Seo, J.B., Cho, K., & Kim, D.Y. (2012). Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteomics Science, 10(25), 15. https://doi.org/10.1186/1477-5956-10-25
  • Orcan, P., Işıkalan, Ç., & Akbaş, F. (2019). Evaluation of salinity tolerance in rice (Oryza sativa L.) using water potential, biomass, membrane damage, and osmoprotective compounds. Fresenius Environmental Bulletin, 28(4a), 3313-3323.
  • Özcan, H., Turan, M.A., Koç, Ö., Çıkılı, Y., & Taban, S. (2000). Tuz stresinde bazı nohut (Cicer arietinum L.) çeşitlerinin gelişimi ve prolin, sodyum, klor, fosfor ve potasyum konsantrasyonlarındaki değişimler [Growth and variations in proline, sodium, chloride, phosphorus and potassiumconcentrations of chickpea (Cicer arietinumL. cvs.) Varieties Under Salinity Stress]. Turkish Journal of Agriculture and Forestry, 24, 649-654.
  • Özden, M., Dikilitaş, M., Gürsöz, S., & Ak, B.E. (2011). 110r anacı üzerine aşılı şiraz üzüm (Vitis Vinifera L.) çeşidinin NaCl ve prolin uygulamalarına karşı fizyolojik ve biyokimyasal tepkileri [Physiological and biochemical responses of syrah vines (Vitis vinifera L.) grafted on 110 r rootstock to NaCl and proline applications]. Harran Üniversitesi Ziraat Fakültesi Dergisi, 15(1), 1-9.
  • Pani, D.R., Sarangi, S.K., Subudhi, H.N., Misra, R.C., & Bhandari, D.C. (2012). Exploration, evaluation, and conservation of salt-tolerant rice genetic resources from the Sundarbans region of West Bengal. Journal of the Indian Society of Coastal Agricultural Research, 30(1), 45-53.
  • Rajakumar, R. (2013). A study on the effect of salt stress on seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro conditions. Asian Journal of Plant Science and Research, 3(6), 20-25.
  • Rajendran, K., Tester, M., & Roy, S.T. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant, Cell and Environment, 32, 237 249. https://doi.org/10.1111/j.1365-3040.2008.01916.x
  • Rao, P.S., Mishra, B., & Gupta, S. (2013). Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant, and sensitive rice genotypes. Rice Science, 20(4), 284–291. https://doi.org/10.1016/S1672-6308(13)60136-5
  • Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1). https://doi.org/10.1111/1750-3841.14983
  • Scagel, C.F., & Bryla, D.R. (2017). Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in 'Siam Queen' Basil. HortScience, 52(2), 278-287. https://doi.org/10.21273/HORTSCI11256-16
  • Schimansky, C. (1981). The influence of certain experimental parameters on the flux characteristics of Mg-28 in the case of barley seedlings in hydroculture experiments. Landwirtschaftliche Forschung, 34(3), 154-163.
  • Shanker, A. (2011). Abiotic Stress in Plants - Mechanisms and Adaptations. InTech.
  • Sevilmiş, U., Sevilmiş, D., Ölmez, Y.A., Aykanat, S., & Özcan, O.B. (2020). Soyada bitki besleme ve hastalıklarla mücadele yöntemi olarak yapraktan mangan uygulamaları [Effect of foliar manganese applications on yield quality and diseases progresses of soybean]. Ziraat Mühendisliği, 369, 4-21.https://doi.org/10.33724/zm.675983
  • Singh, A.S., Ramteke, P.W., Paul, A., David, A.A., Shukla, P.K., & Lal, E.P. (2018). Influence of jeevamrutha on seed germination of Ocimum basilicum L. under NaCl salinity stress. Journal of Pharmacognosy and Phytochemistry, 7(2), 705-707.
  • Socha, A.L., & Guerinot, M.L. (2014). Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5, 106. https://doi.org/10.3389/fpls.2014.00106
  • Suleiman, M.K., Bhatt, A., Madouh, T.A., Islam, M.A., Jacob, S., Thomas, R.R.,&Sivadasan, M.T. (2023). Effects of salt stress on growth, proline and mineral content in native desert species. Sustainability, 15, 6232. https://doi.org/10.3390/su15076232
  • Thu, T.T.P., Yasui, H., & Yamakawa, T. (2017). Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Science and Plant Nutrition, 63(3), 264-273. https://doi.org/10.1080/00380768.2017.1323672
  • Tilman, D., Balzer, C., Hill, J., & Befort, B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.11164371
  • Tuna, A.L., & Eroğlu, B. (2017). Tuz stresi altındaki biber (Capsicum annuum L.) bitkisinde bazı organik ve inorganik bileşiklerin antioksidatif sisteme etkileri [Effects of some organic and inorganic compounds on antioxidative system in pepper (Capsicum annuum L.) plant under salt stress]. Anadolu Journal of Agricultural Sciences, 32, 121 131. https://doi.org/10.7161/omuanajas.289038
  • Vicente, O., Boscaiu, M., Naranjo, M.A., Estrelles, E., Belles, J.M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-48. https://doi.org/10.1016/j.jaridenv.2003.12.003
  • Vuralın, A., & Müftüoğlu, N.M. (2012). Farklı Dozlarda Uygulanan Molibdenin Bakla (Vicia faba L.) Bitkisinin Azot İçeriğine Etkisi[The effect of different doses Molybdenum applied to nitrogen content of broad bean (Vicia faba L.)]. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(1), 53-62.
  • Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., & Yang, C. (2012). Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology, 12, 194. https://doi.org/10.1186/1471-2229-12-194
  • Wang, P., Sun, X., Li, C., Wei, Z., Liang, D., & Ma, F. (2013). Long‐term exogenous application of melatonin delays drought‐induced leaf senescence in apple. Journal of Pineal Research, 54(3), 292-302. https://doi.org/10.1111/jpi.12017
  • Yakıt, S., & Tuna, A.L. (2006). Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg Ve K'nın etkileri [The Effects of Ca, K and Mg on the stress parameters of the maize (Zea mays L.) plant under salinity stress]. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 59-67.
  • Zhang, R., Wang, Y., Hussain, S., Yang, S., Li, R., Liu, S., Chen, Y., Wei, H., Dai, Q., & Hou, H. (2022). Study on the effect of salt stress on yield and grain quality among different rice varieties. Frontiers in Plant Science, 13, 918460. https://doi.org/10.3389/fpls.2022.918460
  • Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66 71. https://doi.org/10.1016/S1360-1385(00)01838-0
  • Zeiner, M., Cindrić, I.J., Nemet, I., Franjković, K., & Sondi, B.S. (2022). Influence of soil salinity on selected element contents in different brassica species. Molecules, 27(6), 1878. https://doi.org/10.3390/molecules27061878

Effect of Na, Mg, Ca chloride salts on mineral element, proline and total protein contents in rice (Oryza sativa L.) grown in vitro

Year 2024, Volume: 11 Issue: 1, 144 - 156, 05.02.2024
https://doi.org/10.21448/ijsm.1335099

Abstract

In this study, the effects of different types and concentrations of salts on local Siverek rice plant (Oryza sativa L.) grown in vitro were investigated in terms of mineral elements (K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, Mo, Co), proline, and total protein content. Sterilized seeds were planted in hormone-free and salt-free MS medium. After one week, the seedlings were subjected to different concentrations of NaCl, CaCl2, and MgCl2 salts (0, 30 mM, 90 mM) in order to evaluate the effect of salinity on plant growth and development. In response to salt stress, a decrease in nutrient elements was observed for all three types of salt compared to the control group, which can be attributed to disruptions in ion balance. Changes in element levels generally showed varying levels of increase or decrease depending on both the type and concentration of the salt and these changes were statistically significant. The increase in proline level was found to be directly proportional to the changes in the amounts of Ca, Mg, K, and Na elements. Both total protein and proline content showed the lowest values for all salt concentrations with CaCl2, while the highest values were obtained with NaCl. In conclusion, the changes in the level of mineral elements, total protein, and proline content levels, which decrease or increase in different ratios, depending on the type and concentration rising of the salt, are associated with the varying tolerance of the plant to different types of salts.

References

  • Abdelhamid, M.T., Rady, M.M., Osman, A.S., & Abdalla, M.A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. The Journal of Horticultural Science and Biotechnology, 88(4), 439 446. https://doi.org/10.1080/14620316.2013.11512989
  • Akyol, T.Y., Yılmaz, O., Uzilday, B., Uzilday, R.Ö., & Türkan, İ. (2020). Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany, 44(1), Article 1. https://doi.org/10.3906/bot-1911-15
  • Alejandro, S., Holler, S., Meier, B., & Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Bernstein, N., Sela, S., Dudai, N., & Gorbatsevich, E. (2017). Salinity stress does not affect root uptake, dissemination and persistence of salmonella in sweet-basil (Ocimum basilicum). Frontiers in Plant Science, 8, 675. https://doi.org/10.3389/fpls.2017.00675
  • Bhattarai, S., Lundell, S., & Biligetu, B. (2022). Effect of sodium chloride salt on germination, growth, and elemental composition of alfalfa cultivars with different tolerances to salinity. Agronomy, 12, 2516. https://doi.org/10.3390/agronomy12102516l
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Botella, M.A., Rosado, A., Bressan, R.A., & Hasegawa, P.M. (2005). Plant adaptive responses to salinity stress. Plant Abiotic Stress. Wiley Blackwell. https://doi.org/10.1002/9780470988503
  • Burkhead, J.L., Gogolin Reynolds, K.A., Abdel-Ghany, S.E., Cohu, C.M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799-816. https://doi.org/10.1111/j.1469-8137.2009.02846.x
  • Büyük, İ., Aydın, S.S., & Aras, S. (2012). Bitkilerin stres koşullarında verdiği moleküler cevaplar [Molecular responses of plants to stress conditions]. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(2), 97-110.
  • Çalışkan, O., Kurt, D., Temizel, K.E., & Odabas, M.S. (2017). Effect of salt stress and irrigation water on growth and development of sweet basil (Ocimum basilicum L.). Open Agriculture, 2(1), 589-594. https://doi.org/10.1515/opag-2017-0062
  • Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., & Schroeder, J.I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371 379. https://doi.org/10.1016/j.tplants.2014.02.001
  • Demir, Y., & Kocaçalışkan, I. (2001). Effects of NaCl and proline on polyphenol oxidase activity in bean seedlings. Biologia Plantarum, 44(4), 607 609. https://doi.org/10.1023/A:1013715425310
  • Dionisio, M.L.S., & Tobita, S. (2000). Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology, 157(1), 54-58. https://doi.org/10.1016/S0176-1617(00)80135-2
  • Dramalis, C., Katsantonis, D., & Koutroubas, S.D. (2021). Rice growth, assimilate translocation, and grain quality in response to salinity under Mediterranean conditions. AIMS Agriculture and Food, 6, 255–272. https://doi.org/10.3934/agrfood.2021017
  • Elhindi, K.M., Al-Amri, S.M., Abdel-Salam, E.M., & Al-Suhaibani, N.A. (2017). Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (Ocimum basilicum L.). Journal of Plant Nutrition, 40(6), 908-919. https://doi.org/10.1080/01904167.2016.1270311
  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188(2), 86-93. https://doi.org/10.1046/j.1439-037X.2002.00537.x
  • Fageria, N.K., Stone, L.F., & Santos, A.B.D. (2012). Breeding for salinity tolerance. Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_7
  • Fahad, S., Noor, M., Adnan, M., Khan, M.A., Rahman, I.U., Alam, M., & Nasim, W. (2019). Abiotic Stress and Rice Grain Quality, 571 583. Cambridge, UK: Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00028-9
  • Ghoulam, C., Foursy, A., & Fores, K. (2002). Effects of salt stress on growth, inorganic ions, and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Hasanuzzaman, M., Raihan, M.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Moleculer Science, 22, 9326. https://doi.org/10.3390/ijms22179326
  • İnal, A., Güneş, A., & Aktaş, M. (1995). Effects of chloride and partial substitution of reduced forms of nitrogen for nitrate in the nutrient solution on the nitrate, total nitrogen, and chlorine contents of onion. Journal of Plant Nutrition, 18, 2219 2227. https://doi.org/10.1080/01904169509365058
  • Kacar, B., & Katkat, V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd.
  • Karaman, R., & Kaya, M. (2017). Mercimeğe (Lens esculanta Moench) uygulanan farklı klor tuzu ve dozlarının kimi ilk gelişme özelliklerine etkisi [Effect of Different Chloride Salts and Doses on Early Growth Characters in Lentil]. Journal of Agricultural Sciences, 23, 10-21.
  • Kaya, A., & İnan, M. (2017). Effect of salicylic acid on some morphological, physiological and biochemical parameters of basil plant (Ocimum basilicum L.) which was subjected to salt (NaCl) stress. Harran Tarım ve Gıda Bilimleri Dergisi/Harran Journal of Agricultural and Food Science, 21(3), 332-342. https://doi.org/10.29050/harranziraat.339489
  • Kordrostami, M., Rabiei, B., & Hassani Kumleh, H. (2017). Biochemical, physiological, and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiology and Molecular Biology of Plants, 23, 529–544. https://doi.org/10.1007/s12298-017-0440-0
  • Kumar, G., Kushwaha, H.R., Panjabi-Sabharwal, V., Kumari, S., Joshi, R., Karan, R., Mittal, S., Pareek, S.L.S., & Pareek, A. (2012). Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biology, 12, 107. https://doi.org/10.1186/1471-2229-12-107
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., & Verma. J.P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. https://doi.org/10.3389/fmicb.2020.01216
  • Lacerda, C.F., Cambraia, J., Oliva, M.A., & Ruiz, H.A. (2002). Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54, 69–76. https://doi.org/10.1016/j.envexpbot.2004.06.004
  • Leidi, E. O., Nogales, R., & Lips, S. H. (1991). Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels. Field Crops Research, 26(1), 35-44. https://doi.org/10.1016/0378-4290(91)90055-Z
  • Liu, S., Zheng, L., Xue, Y., Zhang, Q., Wang, L., & Shou, H. (2010). Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 53, 444–452. https://doi.org/10.1007/s12374-010-9135-6
  • Malkoç, M., & Aydın, A. (2003). Mısır (Zea mays L.) ve fasulye (Phaseolus vulgaris L.)’nin gelişimi ve bitki besin maddeleri içeriğine farklı tuz uygulamalarının etkisi [Effects of Different Salt Sources on Zea Mays and Phaseolus Growth and Mineral Content]. Turkish Journal of Agriculture and Forestry, 34(3), 211–216.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, The Netherlands.
  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., & Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. https://doi.org/10.1104/pp.106.092635
  • Mokabel, S., Olama, Z., Ali, S., & El-Dakak, R. (2022). The role of plant growth promoting rhizosphere microbiome as alternative biofertilizer in boosting Solanum melongena L. adaptation to salinity stress. Plants, 11(5), 659. https://doi.org/10.3390/plants11050659
  • Mondal, T.K., Rawal, H.C., Chowrasia, S., Varshney, D., Panda, A.K., Mazumdar, A., Kaur, H., Gaikwad, K., Sharma, T.R., & Singh, N.K. (2018). Draft genome sequence of the first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Scientific Reports, 8, 13698. https://doi.org/10.1038/s41598-018-31518-y
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiology, 15, 473-497.
  • Nam, M.H., Huh, S.M., Kim, K.M., Park, W.J., Seo, J.B., Cho, K., & Kim, D.Y. (2012). Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteomics Science, 10(25), 15. https://doi.org/10.1186/1477-5956-10-25
  • Orcan, P., Işıkalan, Ç., & Akbaş, F. (2019). Evaluation of salinity tolerance in rice (Oryza sativa L.) using water potential, biomass, membrane damage, and osmoprotective compounds. Fresenius Environmental Bulletin, 28(4a), 3313-3323.
  • Özcan, H., Turan, M.A., Koç, Ö., Çıkılı, Y., & Taban, S. (2000). Tuz stresinde bazı nohut (Cicer arietinum L.) çeşitlerinin gelişimi ve prolin, sodyum, klor, fosfor ve potasyum konsantrasyonlarındaki değişimler [Growth and variations in proline, sodium, chloride, phosphorus and potassiumconcentrations of chickpea (Cicer arietinumL. cvs.) Varieties Under Salinity Stress]. Turkish Journal of Agriculture and Forestry, 24, 649-654.
  • Özden, M., Dikilitaş, M., Gürsöz, S., & Ak, B.E. (2011). 110r anacı üzerine aşılı şiraz üzüm (Vitis Vinifera L.) çeşidinin NaCl ve prolin uygulamalarına karşı fizyolojik ve biyokimyasal tepkileri [Physiological and biochemical responses of syrah vines (Vitis vinifera L.) grafted on 110 r rootstock to NaCl and proline applications]. Harran Üniversitesi Ziraat Fakültesi Dergisi, 15(1), 1-9.
  • Pani, D.R., Sarangi, S.K., Subudhi, H.N., Misra, R.C., & Bhandari, D.C. (2012). Exploration, evaluation, and conservation of salt-tolerant rice genetic resources from the Sundarbans region of West Bengal. Journal of the Indian Society of Coastal Agricultural Research, 30(1), 45-53.
  • Rajakumar, R. (2013). A study on the effect of salt stress on seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro conditions. Asian Journal of Plant Science and Research, 3(6), 20-25.
  • Rajendran, K., Tester, M., & Roy, S.T. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant, Cell and Environment, 32, 237 249. https://doi.org/10.1111/j.1365-3040.2008.01916.x
  • Rao, P.S., Mishra, B., & Gupta, S. (2013). Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant, and sensitive rice genotypes. Rice Science, 20(4), 284–291. https://doi.org/10.1016/S1672-6308(13)60136-5
  • Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1). https://doi.org/10.1111/1750-3841.14983
  • Scagel, C.F., & Bryla, D.R. (2017). Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in 'Siam Queen' Basil. HortScience, 52(2), 278-287. https://doi.org/10.21273/HORTSCI11256-16
  • Schimansky, C. (1981). The influence of certain experimental parameters on the flux characteristics of Mg-28 in the case of barley seedlings in hydroculture experiments. Landwirtschaftliche Forschung, 34(3), 154-163.
  • Shanker, A. (2011). Abiotic Stress in Plants - Mechanisms and Adaptations. InTech.
  • Sevilmiş, U., Sevilmiş, D., Ölmez, Y.A., Aykanat, S., & Özcan, O.B. (2020). Soyada bitki besleme ve hastalıklarla mücadele yöntemi olarak yapraktan mangan uygulamaları [Effect of foliar manganese applications on yield quality and diseases progresses of soybean]. Ziraat Mühendisliği, 369, 4-21.https://doi.org/10.33724/zm.675983
  • Singh, A.S., Ramteke, P.W., Paul, A., David, A.A., Shukla, P.K., & Lal, E.P. (2018). Influence of jeevamrutha on seed germination of Ocimum basilicum L. under NaCl salinity stress. Journal of Pharmacognosy and Phytochemistry, 7(2), 705-707.
  • Socha, A.L., & Guerinot, M.L. (2014). Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5, 106. https://doi.org/10.3389/fpls.2014.00106
  • Suleiman, M.K., Bhatt, A., Madouh, T.A., Islam, M.A., Jacob, S., Thomas, R.R.,&Sivadasan, M.T. (2023). Effects of salt stress on growth, proline and mineral content in native desert species. Sustainability, 15, 6232. https://doi.org/10.3390/su15076232
  • Thu, T.T.P., Yasui, H., & Yamakawa, T. (2017). Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Science and Plant Nutrition, 63(3), 264-273. https://doi.org/10.1080/00380768.2017.1323672
  • Tilman, D., Balzer, C., Hill, J., & Befort, B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.11164371
  • Tuna, A.L., & Eroğlu, B. (2017). Tuz stresi altındaki biber (Capsicum annuum L.) bitkisinde bazı organik ve inorganik bileşiklerin antioksidatif sisteme etkileri [Effects of some organic and inorganic compounds on antioxidative system in pepper (Capsicum annuum L.) plant under salt stress]. Anadolu Journal of Agricultural Sciences, 32, 121 131. https://doi.org/10.7161/omuanajas.289038
  • Vicente, O., Boscaiu, M., Naranjo, M.A., Estrelles, E., Belles, J.M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-48. https://doi.org/10.1016/j.jaridenv.2003.12.003
  • Vuralın, A., & Müftüoğlu, N.M. (2012). Farklı Dozlarda Uygulanan Molibdenin Bakla (Vicia faba L.) Bitkisinin Azot İçeriğine Etkisi[The effect of different doses Molybdenum applied to nitrogen content of broad bean (Vicia faba L.)]. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(1), 53-62.
  • Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., & Yang, C. (2012). Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology, 12, 194. https://doi.org/10.1186/1471-2229-12-194
  • Wang, P., Sun, X., Li, C., Wei, Z., Liang, D., & Ma, F. (2013). Long‐term exogenous application of melatonin delays drought‐induced leaf senescence in apple. Journal of Pineal Research, 54(3), 292-302. https://doi.org/10.1111/jpi.12017
  • Yakıt, S., & Tuna, A.L. (2006). Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg Ve K'nın etkileri [The Effects of Ca, K and Mg on the stress parameters of the maize (Zea mays L.) plant under salinity stress]. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 59-67.
  • Zhang, R., Wang, Y., Hussain, S., Yang, S., Li, R., Liu, S., Chen, Y., Wei, H., Dai, Q., & Hou, H. (2022). Study on the effect of salt stress on yield and grain quality among different rice varieties. Frontiers in Plant Science, 13, 918460. https://doi.org/10.3389/fpls.2022.918460
  • Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66 71. https://doi.org/10.1016/S1360-1385(00)01838-0
  • Zeiner, M., Cindrić, I.J., Nemet, I., Franjković, K., & Sondi, B.S. (2022). Influence of soil salinity on selected element contents in different brassica species. Molecules, 27(6), 1878. https://doi.org/10.3390/molecules27061878
There are 64 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Articles
Authors

Mehmet Yusuf Orcan 0000-0002-5953-1178

Pınar Orcan 0000-0001-8666-4542

Publication Date February 5, 2024
Submission Date August 1, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Orcan, M. Y., & Orcan, P. (2024). Effect of Na, Mg, Ca chloride salts on mineral element, proline and total protein contents in rice (Oryza sativa L.) grown in vitro. International Journal of Secondary Metabolite, 11(1), 144-156. https://doi.org/10.21448/ijsm.1335099
International Journal of Secondary Metabolite

e-ISSN: 2148-6905