Research Article
BibTex RIS Cite

Ultrasound and microwave extraction from Moringa oleifera Lam.: Characterization and antiproliferative effect

Year 2024, Volume: 11 Issue: 2, 292 - 304, 03.06.2024
https://doi.org/10.21448/ijsm.1363300

Abstract

Moringa oleifera has been a focus of interest because of the different properties (anticancer, antioxidant, etc.) that have been attributed to this plant. However, the most used methodology is soxhlet, which requires long periods of reaction (18 hours), generating greater energy expenditure. Recently, green extraction technologies have been developed like ultrasound and microwaves, reducing reaction time by up to 97%. The objectives of this study were to extract and identify the polyphenolic compounds present in aqueous and hydro-alcoholic extracts from Moringa oleifera dried leaves using ultrasound and microwave, as well as to evaluate their in vitro cytotoxic effect using cancer and non-cancer cells. A combination of ultrasound and microwave was utilized to extract polyphenolic compounds from Moringa dried leaves. HPLC–MS analysis was conducted to qualitatively identify the polyphenols in the samples. The cytotoxic effect was evaluated by MTT and comet assays using non-cancer (3T3, Hek293, and Vero) and cancer (HepG2) cells lines. Results: 30 polyphenolic compounds from 9 different families were identified by HPLC. Data suggested that hydro-alcoholic extracts from Moringa leaves have potent cytotoxic activities in a depend-doses response. Also, compounds from aqueous extracts did not cause cell death, while polyphenol extract from hydro-alcoholic extracts decreased populations in both cancer and non-cancer cell lines measurement by MTT. HepG2 cells showed DNA damage by comet assay. The extraction using ultrasound and microwaves at 30 minutes of reaction has an antiproliferative effect through apoptosis in cancer cells, in addition ethanolic extracts have higher cytotoxicity compared to aqueous extracts.

Project Number

SAGARPA-CONACyT 2015-4-266936

References

  • Alkan, H., Ciğerci, İ.H., Ali, M.M., Hazman, O., Liman, R., Colă, F., &Bonciu, E. (2022). Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF 7 and HUVEC Cell Lines. Plants, 11(10), 1293. https://doi.org/10.3390/plants11101293
  • Asare, G.A., Gyan, B., Bugyei, K., Adjei, S., Mahama, R., Addo, P., …, Nyarko, A. (2012). Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. Journal of Ethnopharmacology, 139(1), 265–272. https://doi.org/10.1016/j.jep.2011.11.009
  • Ascacio-Valdés, J.A., Aguilera-Carbó, A., Martínez-Hernández, J.L., Rodríguez-Herrera, R., & Aguilar, C.N. (2010). Euphorbia antisyphilitica residues as a new source of ellagic acid. Chemical Papers, 64(4), 528–532. https://doi.org/10.2478/s11696-010-0034-6
  • Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., …, Omar, A. K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426 436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  • Bakre, A.G., Aderibigbe, A.O., & Ademowo, O.G. (2013). Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. Journal of Ethnopharmacology, 149(3), 783–789. https://doi.org/10.1016/j.jep.2013.08.006
  • Boncler, M., Ró, M., Krajewska, U., Pods, A., & Watala, C. (2014). Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. Journal of Pharmacological and Toxicological Methods, 69, 9–16. https://doi.org/10.1016/j.vascn.2013.09.003
  • Chen, C., Zhang, B., Huang, Q., Fu, X., & Liu, R.H. (2017). Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Industrial Crops and Products, 100, 1 11. https://doi.org/10.1016/j.indcrop.2017.01.042
  • Cuellar-Nuñez, M. L., Luzardo-Ocampo, I., Campos-Vega, R., Gallegos-Corona, M.A., De Mejía, E.G., &Loarca-Piña, G. (2018). Physicochemical and nutraceutical properties of Moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Research International, 105, 159-168.
  • Eren, Y., & Ozata, A. (2014). Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Brazilian Journal of Pharmacognosy, 24(1), 51–59. https://doi.org/10.1590/0102-695X20142413322
  • França, F.R.M., dos Santos Freitas, L., Ramos, A.L.D., da Silva, G.F., & Brandão, S.T. (2017). Storage and oxidation stability of commercial biodiesel using Moringa oleifera Lam as an antioxidant additive. Fuel, 203, 627–632. https://doi.org/10.1016/j.fuel.2017.03.020
  • Fu, Z.F., Tu, Z.C., Zhang, L., Wang, H., Wen, Q.H., & Huang, T. (2016). Antioxidant activities and polyphenols of sweet potato (Ipomoea batata L.) leaves extracted with solvents of various polarities. Food Bioscience, 15, 11–18. https://doi.org/10.1016/j.fbio.2016.04.004
  • González-Trujano, M.E., Martínez-González, C.L., Flores-Carrillo, M., Luna-Nophal, S.I., Contreras-Murillo, G., & Magdaleno-Madrigal, V.M. (2018). Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures. Phytomedicine, 39(101), 1–9. https://doi.org/10.1016/j.phymed.2017.12.009
  • Guerrouj, K., Sánchez-Rubio, M., Taboada-Rodríguez, A., Cava-Roda, R.M., & Marín-Iniesta, F. (2016). Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food and Bioproducts Processing, 99, 20–28. https://doi.org/10.1016/j.fbp.2016.03.007
  • Houdkova, M., Rondevaldova, J., Doskocil, I., & Kokoska, L. (2017). Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 118, 56 62. https://doi.org/10.1016/j.fitote.2017.02.008
  • Jarriyawattanachaikul, W., Chaveerach, P., & Chokesajjawatee, N. (2016). Antimicrobial Activity of Thai-herbal Plants against Food-borne Pathogens E. Coli, S. Aureus and C. Jejuni. Agriculture and Agricultural Science Procedia, 11, 20 24. https://doi.org/10.1016/j.aaspro.2016.12.004
  • Kayanan, B.U.R., & Sagum, R.S. (2021). Microwave and Ultrasound Pretreatment of Moringa oleifera Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. Journal of Oleo Science, 70(7), 875–884. https://doi.org/10.5650/jos.ess20357
  • Khor, K.Z., Lim, V., Moses, E.J., & Abdul Samad, N. (2018). The In Vitro and In Vivo Anticancer Properties of Moringa oleifera. Evidence-Based Complementary and Alternative Medicine, Article ID 1071243. https://doi.org/10.1155/2018/1071243
  • Bhadresha, K., Thakore, V., Brahmbhatt, J., Upadhyay, V., Jain, N., & Rawal, R. (2022). Anticancer effect of Moringa oleifera leaves extract against lung cancer cell line via induction of apoptosis. Advances in Cancer Biology-Metastasis, 6, 100072.
  • Li, Y.B., Gao, J.L., Zhong, Z.F., Hoi, P.M., Lee, S.M.Y., & Wang, Y.T. (2013). Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharmacological Reports, 65(3), 700-709.
  • Liu, Y.L., Yang, H.P., Zhou, X.D., Gong, L., Tang, C.L., & Wang, H.J. (2011). The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Current Cancer Drug Targets, 11(9), 1098-1110.
  • Liu, Z., Tao, X., Zhang, C., Lu, Y., & Wei, D. (2005). Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomedicine and Pharmacotherapy, 59(9), 481–490.
  • Mahdi, H.J., Khan, N.A.K., Asmawi, M.Z. Bin, Mahmud, R., & Murugaiyah, V.A. (2017). in vivo anti- arthritic and anti-noceciptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integrative Medicine Research, 7(1), 85-94. https://doi.org/10.1016/j.imr.2017.11.002
  • Makita, C., Madala, N.E., Cukrowska, E., Abdelgadir, H., Chimuka, L., Steenkamp, P., & Ndhlala, 385 A.R. (2017). Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve Moringa oleifera Lam. cultivars. South African Journal of Botany, 112, 270–274. 387 https://doi.org/10.1016/j.sajb.2017.06.001
  • Makkar, H.A., & Becker, K. (1996). Nutrional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Animal Feed Science and Technology, 63(1-4), 211-228.
  • Mekonnen, N., Houghton, P., & Timbrell, J. (2005). The toxicity of extracts of plant parts of Moringa stenopetala in HEPG2 cells in vitro. Phytotherapy Research, 19(10), 870–875. https://doi.org/10.1002/ptr.1720
  • Miller F, Hinze U, Chichkov B, Leibold W, Lenarz T, Paasche G. (2017). Validation of eGFP fluorescence intensity for testing in vitro cytotoxicity according to ISO 10993-5. J Biomed Master Res B Appl Biomater., 105(4), 715-722. https://doi.org/10.1002/jbm.b.33602
  • Moure, A., Cruz, J.M., Franco, D., Dominguez, J.M., Sineiro, J., Dominguez, H., … Parajo, J.C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5
  • Moyo, B., Oyedemi, S., Masika, P.J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91(4), 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029
  • Nayak, G., Honguntikar, S.D., Kalthur, S.G.,D’Souza, A.S., Mutalik, S., Setty, M.M., …, Adiga, S.K. (2016). Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. Journal of Ethnopharmacology, 182, 101–109. https://doi.org/10.1016/j.jep.2016.02.003
  • Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166-176.
  • Nkechinyere Onyekwere, N., & Felix I., N. (2014). Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 9(1), 99 103. https://doi.org/10.9790/3008-091699103
  • Nurcholis, W., Khumaida, N., Syukur, M., & Bintang, M. (2016). Variability of curcuminoid content and lack of correlation with cytotoxicity in ethanolic extracts from 20 accessions of Curcuma aeruginosa RoxB. Asian Pacific Journal of Tropical Disease, 6(11), 887-891.
  • Ramabulana, T., Mavunda, R.D., Steenkamp, P.A., Piater, L.A., Dubery, I.A., & Madala, N.E. (2016). Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation. Journal of Photochemistry and Photobiology B: Biology, 156, 79 86. https://doi.org/10.1016/j.jphotobiol.2016.01.013
  • Schwarzlin, R., Pu, N., Makuc, D., Kri, M., Vovk, I., Plavec, J., & Urban, Š. (2016). Synergistic complex from plants Solanaceae exhibits cytotoxicity for the human hepatocellular carcinoma cell line HepG2, 1–12. https://doi.org/10.1186/s12906-016-1362-z
  • Souid, G., Sfar, M., Timoumi, R., Romdhane, M.H., Essefi, S.A., &Majdoub, H. (2020). Protective effect assessment of Moringa oleifera against cadmium-induced toxicity in HCT116 and HEK293 cell lines. Environmental Science and Pollution Research, 27, 23783-23792. https://doi.org/10.1007/s11356-020-08730-3
  • Stohs, S.J., & Hartman, M.J. (2015). Review of the Safety and Efficacy of Moringa oleifera. Phytotherapy Research : PTR, 29(6), 796–804. https://doi.org/10.1002/ptr.5325
  • Tapia-Torres, Y., López-Lozano, N.E., Souza, V., & García-Oliva, F. (2015). Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert. Journal of Arid Environments, 114, 62 69. https://doi.org/10.1016/j.jaridenv.2014.11.007
  • Vendidandala, N.R., Yin, T.P., Nelli, G., Pasupuleti, V.R., Nyamathulla, S., & Mokhtar, S.I. (2021). Gallocatechin silver nanoparticle impregnated cotton gauze patches enhance wound healing in diabetic rats by suppressing oxidative stress and inflammation via modulating the Nrf2/HO 1 and TLR4/NF κB pathways. Life sciences, 286, 120019. https://doi.org/10.1016/j.lfs.2021.120019
  • Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021
  • Yang, L., Wang, H., Zu, Y.-gang, Zhao, C., Zhang, L., Chen, X., & Zhang, Z. (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chemical Engineering Journal, 172(2 3), 705 712. https://doi.org/10.1016/j.cej.2011.06.039

Ultrasound and microwave extraction from Moringa oleifera Lam.: Characterization and antiproliferative effect

Year 2024, Volume: 11 Issue: 2, 292 - 304, 03.06.2024
https://doi.org/10.21448/ijsm.1363300

Abstract

Moringa oleifera has been a focus of interest because of the different properties (anticancer, antioxidant, etc.) that have been attributed to this plant. However, the most used methodology is soxhlet, which requires long periods of reaction (18 hours), generating greater energy expenditure. Recently, green extraction technologies have been developed like ultrasound and microwaves, reducing reaction time by up to 97%. The objectives of this study were to extract and identify the polyphenolic compounds present in aqueous and hydro-alcoholic extracts from Moringa oleifera dried leaves using ultrasound and microwave, as well as to evaluate their in vitro cytotoxic effect using cancer and non-cancer cells. A combination of ultrasound and microwave was utilized to extract polyphenolic compounds from Moringa dried leaves. HPLC–MS analysis was conducted to qualitatively identify the polyphenols in the samples. The cytotoxic effect was evaluated by MTT and comet assays using non-cancer (3T3, Hek293, and Vero) and cancer (HepG2) cells lines. Results: 30 polyphenolic compounds from 9 different families were identified by HPLC. Data suggested that hydro-alcoholic extracts from Moringa leaves have potent cytotoxic activities in a depend-doses response. Also, compounds from aqueous extracts did not cause cell death, while polyphenol extract from hydro-alcoholic extracts decreased populations in both cancer and non-cancer cell lines measurement by MTT. HepG2 cells showed DNA damage by comet assay. The extraction using ultrasound and microwaves at 30 minutes of reaction has an antiproliferative effect through apoptosis in cancer cells, in addition ethanolic extracts have higher cytotoxicity compared to aqueous extracts.

Ethical Statement

No Applied

Supporting Institution

Financial support was received from SAGARPA-CONACyT through the project: “Obtaining, purification and scaling of bioactive extract compounds with industrial value, obtained using advanced extraction technologies and from undervalued crops, by-products and natural resources”

Project Number

SAGARPA-CONACyT 2015-4-266936

References

  • Alkan, H., Ciğerci, İ.H., Ali, M.M., Hazman, O., Liman, R., Colă, F., &Bonciu, E. (2022). Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF 7 and HUVEC Cell Lines. Plants, 11(10), 1293. https://doi.org/10.3390/plants11101293
  • Asare, G.A., Gyan, B., Bugyei, K., Adjei, S., Mahama, R., Addo, P., …, Nyarko, A. (2012). Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. Journal of Ethnopharmacology, 139(1), 265–272. https://doi.org/10.1016/j.jep.2011.11.009
  • Ascacio-Valdés, J.A., Aguilera-Carbó, A., Martínez-Hernández, J.L., Rodríguez-Herrera, R., & Aguilar, C.N. (2010). Euphorbia antisyphilitica residues as a new source of ellagic acid. Chemical Papers, 64(4), 528–532. https://doi.org/10.2478/s11696-010-0034-6
  • Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., …, Omar, A. K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426 436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  • Bakre, A.G., Aderibigbe, A.O., & Ademowo, O.G. (2013). Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. Journal of Ethnopharmacology, 149(3), 783–789. https://doi.org/10.1016/j.jep.2013.08.006
  • Boncler, M., Ró, M., Krajewska, U., Pods, A., & Watala, C. (2014). Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. Journal of Pharmacological and Toxicological Methods, 69, 9–16. https://doi.org/10.1016/j.vascn.2013.09.003
  • Chen, C., Zhang, B., Huang, Q., Fu, X., & Liu, R.H. (2017). Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Industrial Crops and Products, 100, 1 11. https://doi.org/10.1016/j.indcrop.2017.01.042
  • Cuellar-Nuñez, M. L., Luzardo-Ocampo, I., Campos-Vega, R., Gallegos-Corona, M.A., De Mejía, E.G., &Loarca-Piña, G. (2018). Physicochemical and nutraceutical properties of Moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Research International, 105, 159-168.
  • Eren, Y., & Ozata, A. (2014). Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Brazilian Journal of Pharmacognosy, 24(1), 51–59. https://doi.org/10.1590/0102-695X20142413322
  • França, F.R.M., dos Santos Freitas, L., Ramos, A.L.D., da Silva, G.F., & Brandão, S.T. (2017). Storage and oxidation stability of commercial biodiesel using Moringa oleifera Lam as an antioxidant additive. Fuel, 203, 627–632. https://doi.org/10.1016/j.fuel.2017.03.020
  • Fu, Z.F., Tu, Z.C., Zhang, L., Wang, H., Wen, Q.H., & Huang, T. (2016). Antioxidant activities and polyphenols of sweet potato (Ipomoea batata L.) leaves extracted with solvents of various polarities. Food Bioscience, 15, 11–18. https://doi.org/10.1016/j.fbio.2016.04.004
  • González-Trujano, M.E., Martínez-González, C.L., Flores-Carrillo, M., Luna-Nophal, S.I., Contreras-Murillo, G., & Magdaleno-Madrigal, V.M. (2018). Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures. Phytomedicine, 39(101), 1–9. https://doi.org/10.1016/j.phymed.2017.12.009
  • Guerrouj, K., Sánchez-Rubio, M., Taboada-Rodríguez, A., Cava-Roda, R.M., & Marín-Iniesta, F. (2016). Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food and Bioproducts Processing, 99, 20–28. https://doi.org/10.1016/j.fbp.2016.03.007
  • Houdkova, M., Rondevaldova, J., Doskocil, I., & Kokoska, L. (2017). Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 118, 56 62. https://doi.org/10.1016/j.fitote.2017.02.008
  • Jarriyawattanachaikul, W., Chaveerach, P., & Chokesajjawatee, N. (2016). Antimicrobial Activity of Thai-herbal Plants against Food-borne Pathogens E. Coli, S. Aureus and C. Jejuni. Agriculture and Agricultural Science Procedia, 11, 20 24. https://doi.org/10.1016/j.aaspro.2016.12.004
  • Kayanan, B.U.R., & Sagum, R.S. (2021). Microwave and Ultrasound Pretreatment of Moringa oleifera Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. Journal of Oleo Science, 70(7), 875–884. https://doi.org/10.5650/jos.ess20357
  • Khor, K.Z., Lim, V., Moses, E.J., & Abdul Samad, N. (2018). The In Vitro and In Vivo Anticancer Properties of Moringa oleifera. Evidence-Based Complementary and Alternative Medicine, Article ID 1071243. https://doi.org/10.1155/2018/1071243
  • Bhadresha, K., Thakore, V., Brahmbhatt, J., Upadhyay, V., Jain, N., & Rawal, R. (2022). Anticancer effect of Moringa oleifera leaves extract against lung cancer cell line via induction of apoptosis. Advances in Cancer Biology-Metastasis, 6, 100072.
  • Li, Y.B., Gao, J.L., Zhong, Z.F., Hoi, P.M., Lee, S.M.Y., & Wang, Y.T. (2013). Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharmacological Reports, 65(3), 700-709.
  • Liu, Y.L., Yang, H.P., Zhou, X.D., Gong, L., Tang, C.L., & Wang, H.J. (2011). The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Current Cancer Drug Targets, 11(9), 1098-1110.
  • Liu, Z., Tao, X., Zhang, C., Lu, Y., & Wei, D. (2005). Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomedicine and Pharmacotherapy, 59(9), 481–490.
  • Mahdi, H.J., Khan, N.A.K., Asmawi, M.Z. Bin, Mahmud, R., & Murugaiyah, V.A. (2017). in vivo anti- arthritic and anti-noceciptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integrative Medicine Research, 7(1), 85-94. https://doi.org/10.1016/j.imr.2017.11.002
  • Makita, C., Madala, N.E., Cukrowska, E., Abdelgadir, H., Chimuka, L., Steenkamp, P., & Ndhlala, 385 A.R. (2017). Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve Moringa oleifera Lam. cultivars. South African Journal of Botany, 112, 270–274. 387 https://doi.org/10.1016/j.sajb.2017.06.001
  • Makkar, H.A., & Becker, K. (1996). Nutrional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Animal Feed Science and Technology, 63(1-4), 211-228.
  • Mekonnen, N., Houghton, P., & Timbrell, J. (2005). The toxicity of extracts of plant parts of Moringa stenopetala in HEPG2 cells in vitro. Phytotherapy Research, 19(10), 870–875. https://doi.org/10.1002/ptr.1720
  • Miller F, Hinze U, Chichkov B, Leibold W, Lenarz T, Paasche G. (2017). Validation of eGFP fluorescence intensity for testing in vitro cytotoxicity according to ISO 10993-5. J Biomed Master Res B Appl Biomater., 105(4), 715-722. https://doi.org/10.1002/jbm.b.33602
  • Moure, A., Cruz, J.M., Franco, D., Dominguez, J.M., Sineiro, J., Dominguez, H., … Parajo, J.C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5
  • Moyo, B., Oyedemi, S., Masika, P.J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91(4), 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029
  • Nayak, G., Honguntikar, S.D., Kalthur, S.G.,D’Souza, A.S., Mutalik, S., Setty, M.M., …, Adiga, S.K. (2016). Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. Journal of Ethnopharmacology, 182, 101–109. https://doi.org/10.1016/j.jep.2016.02.003
  • Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166-176.
  • Nkechinyere Onyekwere, N., & Felix I., N. (2014). Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 9(1), 99 103. https://doi.org/10.9790/3008-091699103
  • Nurcholis, W., Khumaida, N., Syukur, M., & Bintang, M. (2016). Variability of curcuminoid content and lack of correlation with cytotoxicity in ethanolic extracts from 20 accessions of Curcuma aeruginosa RoxB. Asian Pacific Journal of Tropical Disease, 6(11), 887-891.
  • Ramabulana, T., Mavunda, R.D., Steenkamp, P.A., Piater, L.A., Dubery, I.A., & Madala, N.E. (2016). Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation. Journal of Photochemistry and Photobiology B: Biology, 156, 79 86. https://doi.org/10.1016/j.jphotobiol.2016.01.013
  • Schwarzlin, R., Pu, N., Makuc, D., Kri, M., Vovk, I., Plavec, J., & Urban, Š. (2016). Synergistic complex from plants Solanaceae exhibits cytotoxicity for the human hepatocellular carcinoma cell line HepG2, 1–12. https://doi.org/10.1186/s12906-016-1362-z
  • Souid, G., Sfar, M., Timoumi, R., Romdhane, M.H., Essefi, S.A., &Majdoub, H. (2020). Protective effect assessment of Moringa oleifera against cadmium-induced toxicity in HCT116 and HEK293 cell lines. Environmental Science and Pollution Research, 27, 23783-23792. https://doi.org/10.1007/s11356-020-08730-3
  • Stohs, S.J., & Hartman, M.J. (2015). Review of the Safety and Efficacy of Moringa oleifera. Phytotherapy Research : PTR, 29(6), 796–804. https://doi.org/10.1002/ptr.5325
  • Tapia-Torres, Y., López-Lozano, N.E., Souza, V., & García-Oliva, F. (2015). Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert. Journal of Arid Environments, 114, 62 69. https://doi.org/10.1016/j.jaridenv.2014.11.007
  • Vendidandala, N.R., Yin, T.P., Nelli, G., Pasupuleti, V.R., Nyamathulla, S., & Mokhtar, S.I. (2021). Gallocatechin silver nanoparticle impregnated cotton gauze patches enhance wound healing in diabetic rats by suppressing oxidative stress and inflammation via modulating the Nrf2/HO 1 and TLR4/NF κB pathways. Life sciences, 286, 120019. https://doi.org/10.1016/j.lfs.2021.120019
  • Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021
  • Yang, L., Wang, H., Zu, Y.-gang, Zhao, C., Zhang, L., Chen, X., & Zhang, Z. (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chemical Engineering Journal, 172(2 3), 705 712. https://doi.org/10.1016/j.cej.2011.06.039
There are 40 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Cecilia Esparza 0000-0002-3336-8739

Rosario Estrada This is me 0009-0006-5468-8287

Diana Salazar Sanchez This is me 0000-0002-1605-2003

Aide Saenz-galindo This is me 0000-0001-7554-7439

Juan Alberto Ascacio Valdes This is me 0000-0001-6595-863X

Adriana Carolina Flores-gallegos This is me 0000-0001-5092-1404

Raúl Rodríguez-herrera This is me 0000-0002-6428-4925

Project Number SAGARPA-CONACyT 2015-4-266936
Early Pub Date April 22, 2024
Publication Date June 3, 2024
Submission Date September 20, 2023
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Esparza, C., Estrada, R., Salazar Sanchez, D., Saenz-galindo, A., et al. (2024). Ultrasound and microwave extraction from Moringa oleifera Lam.: Characterization and antiproliferative effect. International Journal of Secondary Metabolite, 11(2), 292-304. https://doi.org/10.21448/ijsm.1363300
International Journal of Secondary Metabolite

e-ISSN: 2148-6905