Research Article
BibTex RIS Cite

Chemical profiling and bioactivity studies on aerial parts Ammoides atlantica (Coss. et Durieu) H. Wolff

Year 2024, Volume: 11 Issue: 4, 687 - 699, 03.11.2024
https://doi.org/10.21448/ijsm.1448014

Abstract

The Algerian endemic plant Ammoides atlantica (Coss. et Durieu) H. Wolff was studied for the chemical profiling and biological activities of its essential oil (EO) and ethanolic extract (EE). The chemical analysis by GC/MS and HPLC/DAD/UV revealed, respectively, the major compounds thymol (39.46%), γ-terpinene (31.74%), and p-cymene (19.01%) in the EO, and apigenin (33.58%), luteolin 7-O-glucoside (20.09%), and luteolin (14.39%) in the EE. The EO exhibited strong antioxidant activity, with a significant ABTS•+ scavenging capacity (IC50 = 2.79 µg/mL) compared to EE, Trolox, and BHT. The EE showed comparable effects to BHT in DPPH scavenging and reducing power tests. Moreover, the EO demonstrated noteworthy antibacterial activity against S. aureus, E. coli, and P. aeruginosa, with inhibition zone diameters ranging from 32.1 to 70 mm and MICs below 0.3 to 5 mg/mL. Furthermore, the EE exhibited strong anti-inflammatory activity by inhibiting hemolysis of red blood cells >70% at a concentration of 20 µg/mL.

Supporting Institution

This research was supported by the University of Algiers 1 Benyoucef Benkhedda and the National Higher School of Agronomy as part of a University Training Research Project (PRFU).

Project Number

Project number: D01N01ES160320220001

References

  • Adams, R.P. (2001). Identification of essential oils components by Gas Chromatography / Quadrupole Mass Spectroscopy, Allured, Illinois, 455p.
  • Aebisher, D., Cichonski, J., Szpyrka, E., Masjonis, S., & Chrzanowski, G. (2021). Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules, 26, 3793.
  • Akoto, C.O., Acheampong, A., Boakye, Y.D., Asante, B., Ohene, S., & Amankwah, F. (2021). Anthelminthic, anti-Inflammatory, antioxidant and antimicrobial activities and FTIR analyses of Vernonia camporum stem-bark. Journal of Chemistry, 1-15.
  • Baczek, K.B., Kosakowskaa, O., L. Przybył, J.L., Pióro-Jabruckaa, E., Costac, R., Mondello, L., Gniewosz, M., Synowiec, A., & Zenon Weglarz, Z. (2017). Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Industrial Crops and Products, 102, 154-163.
  • Bendjabeur, S., Benchabane, O. Bensouici, C., Hazzit, M., Baaliouamer, A., & Bitam A. (2018). Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. Journal of Food Measurement and Characterization, 12, 2278-2288
  • Benteldjoune, M., Boudiar, T., Bakhouche, A., del Mar Contreras, M., Lozano-Sánchez, J., Bensouici, C., Segura-Carretero A. & Kabouche, Z. (2019). Evaluation of the antioxidant potential, phenolic and flavonoid contents of the methanol extract of Ammoides atlantica. MESMAP–5 proceedings book, 153.
  • Bondet, V., Brand-Williams, W., & Berset C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. Lebensmittel-Wissenschaft und-Technologie, 30, 609-615.
  • Boudiar, T., Bensouici, C., Safaei-Ghomi, J., Kabouche, A., Kabouche, Z. (2011). GC-MS analysis of Ammoides atlantica (Coss. Et Dur.) Wolf. from Algeria. Journal of Essential Oil Bearing Plants, 14(2), 172-174.
  • Chippada, S.C., Volluri, S.S., Bammidi, S.R., & Vangalapati, M. (2011). In vitro anti-inflammatory activity of methanolic extract of Centella asiatica by HRBC membrane stabilisation. Rasayan Journal of Chemistry, 4(2), 457-60.
  • Chopade, A.R., Somade, P.M., Sayyad, F.J. (2012). Membrane stabilizing activity and protein denaturation: a possible mechanism of action for the anti-Inflammatory activity of Phyllanthus amarus. Journal of Krishna Institute of Medical Sciences University, 1(1) 67-72.
  • CLSI (2012a). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • CLSI (2012b). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • European Pharmacopeia (2007). European, Directorate for Quality of Medicines, Council of Europe, 6th edn. (Council of Europe, Strasbourg.)
  • Ferrero-Millani, L., Nelsen, O.H., Anderson, P.S., & Girardin, S.E. (2007). Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1 generation. Clinical and Experimental Immunology, 147, 227–235.
  • Gunathilake, K.D.P.P., Ranaweera, K.K.D.S., & Rupasinghe H.P.V. (2018). Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities, Plants, 7, 22.
  • Hajhashemi, V, Sajjadi, SE, & Heshmati, M. (2009). Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroalcoholic extract in animal models. Journal of Ethnopharmacolology, 124, 475-480.
  • Hazzit, M., Baaliouamer, A., Veríssimo, A.R., Faleiro, M.L., & Miguel, M.G. (2009). Chemical composition and biological activities of Algerian Thymus oils. Food Chemistry, 116, 714-721.
  • Inoue, M., & Craker L.E. (2014). Medicinal and Aromatic Plants—Uses and Functions In: G. R. Dixon, D. E. Aldous (eds.), Horticulture: Plants for People and Places, Volume 2, Springer Science+Business Media Dordrecht.
  • Juven, B.J., Kanner, J., Schved, F., & Weisslowicz, H. (1994). Factors that Interact with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology, 76, 626-631.
  • Kieliszek, M., Edris, A., Kot, A.M., & Piwowarek, K. (2020). Biological activity of some aromatic plants and their metabolites, with an emphasis on health-promoting properties. Molecules, 25, 2478.
  • Kumar, V., Bhat, Z.A., Kumar, D., Bohra, P., & Sheela, S. (2011). In-vitro anti-inflammatory activity of leaf extracts of Basella alba Linn. var. alba. International Journal of Drug Development & Research, 3(2), 176-179.
  • Lamaison, J.L.C., Carnet, A. (1990). Contents in main flavonoid compounds of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC. flowers at different development stages. Pharmaceutica Acta Helvetica, 65, 315-320.
  • Lambert, R.J.W., Skandamis, P.N., Coote, P. J., Nychas G.J.E.A. (2001). Study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453-462.
  • Laouer, H., Boulaacheb, N., Akkal, S., Singh, G., Marimuthu, P., De Heluani, C., Catalan, C., & Baldovini, N. (2008). Composition and antibacterial activity of the essential oil of Ammoides atlantica (Coss. Et Dur.) Wolf. Journal of Essential Oil Research, 20, 266-269.
  • Laouer, H., Zerroug, M.M., Sahli, S., Chaker, A.N., Valentini, G., Ferretti, G., Grande, M., & Anaya, J. (2003). Composition and antimicrobial activity of Ammoides pusilla (Brot.) Breistr. Essential oil. Journal of Essential Oil Research, 15, 135-138.
  • Latreche-Douar, S. (2019). Effet de l'addition de thymol ou de carvacrol sur l'activité biologique des huiles essentielles de Junipersus phoenicea et d'Ammoides atlantica et de l'effet de l'irradiation gamma sur la composition chimique et l'activité antioxydante d'extraits de Thymus algeriensis (Doctoral dissertation). National High School of Agronomy, Algiers, Algeria.
  • Lepock, J.R., Frey, H.E., Bayne, H., & Markus, J. (1989). Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 980(2), 191-201.
  • Louaar, S., Akkal S., Bayet, C., Laouer, H., & Guilet D. (2008). Flavonoids of aerial parts of an endemic species of the apiaceae of Algeria, Ammoides atlantica. Chemistry of Natural Compounds, 44(4), 516-517.
  • Loucif, K., Benabdallah, H., Benchikh, F., Mehlous, S., Souici, C.B., & Amira, S. (2020). Total phenolic contents, DPPH radical scavenging and β-Carotene bleaching activities of aqueous extract from Ammoides atlantica. Journal of Drug Delivery and Therapeutics, 10(3-s), 196-198.
  • Murugasan, N., Vember, S., & Damodharanm C., 1981. Studies on erythrocyte membrane IV. In vitro haemolytic activity of Oleandet extract. Toxicology Letters, 8, 33-38.
  • Okoli, C.O., Akah, P.A., Onuoha, N.J., Okoye, T.C., Nwoye, A.C., & Nworu, C.S. (2008). Acanthus montanus: An experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complementary and Alternative Medicine, 8(1), 1-11.
  • Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition, 44, 307-315.
  • Oyedapo, O.O., Akinpelu, B.A., Akinwunmi, K.F., Adeyinka, M.O., & Sipeolu, F.O. (2010). Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. International Journal of Plant Physiology and Biochemistry, 2(4), 46-51.
  • Özgen M., Reese R.N., Tulio A.Z., Scheerens J.C., & Miller A.R (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157.
  • Ozturk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134, 48-54.
  • Quezel, P., & Santa, S. (1962). Nouvelle Flore d’Algérie et des Régions Désertiques Méridionales. Tome I. Editions Centre National de la Recherche Scientifique, Paris, 565 p.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237.
  • Salamone, M., Martella, R., & Bietti, M. (2012). Hydrogen abstraction from cyclic amines by the cumyloxyl and benzyloxyl radicals. The role of stereoelectronic effects and of substrate/radical hydrogen bonding. The Journal of Organic Chemistry, 77, 8556-8561.
  • Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J., & Saraf, M.N. (1999). Membrane stabilizing activity—a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70(3), 251-257.
  • Sikkema, J., de Bont, J.A., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269(11), 8022-8028.
  • Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.
  • Thenmozhi, V., Elango, V., & Sadique, J. (1989). Anti-inflammatory activity of some Indian medicinal plants. Ancient Science of Life, 8(3-4), 258.
  • Toiu, A., Mocan, A. Vlase, L., Pârvu, A.E., Vodnar, D.C., Gheldiu, A-M., Moldovan, C., & Oniga I. (2018). Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard” – Barba Împăratului). Frontiers in Pharmacology, 9(7), 1-15.
  • Tranchant, J. (1995). Manuel pratique de chromatographie en phase gazeuse, 4e éd., Paris, Masson, 362 pp.
  • Ultee, A., Bennink, M.H.J., & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68, 1561-1568.
  • Yusuf, M., Begum, J., Hoque, M.N., & Chowdhury, J.U. (2009). Medicinal plants of Bangladesh, Bangladesh Council of Scientific and Industrial Research, Chittagong, Bangladesh.

Chemical profiling and bioactivity studies on aerial parts Ammoides atlantica (Coss. et Durieu) H. Wolff

Year 2024, Volume: 11 Issue: 4, 687 - 699, 03.11.2024
https://doi.org/10.21448/ijsm.1448014

Abstract

The Algerian endemic plant Ammoides atlantica (Coss. et Durieu) H. Wolff was studied for the chemical profiling and biological activities of its essential oil (EO) and ethanolic extract (EE). The chemical analysis by GC/MS and HPLC/DAD/UV revealed, respectively, the major compounds thymol (39.46%), γ-terpinene (31.74%), and p-cymene (19.01%) in the EO, and apigenin (33.58%), luteolin 7-O-glucoside (20.09%), and luteolin (14.39%) in the EE. The EO exhibited strong antioxidant activity, with a significant ABTS•+ scavenging capacity (IC50 = 2.79 µg/mL) compared to EE, Trolox, and BHT. The EE showed comparable effects to BHT in DPPH scavenging and reducing power tests. Moreover, the EO demonstrated noteworthy antibacterial activity against S. aureus, E. coli, and P. aeruginosa, with inhibition zone diameters ranging from 32.1 to 70 mm and MICs below 0.3 to 5 mg/mL. Furthermore, the EE exhibited strong anti-inflammatory activity by inhibiting hemolysis of red blood cells >70% at a concentration of 20 µg/mL.

Supporting Institution

This research was supported by the University of Algiers 1 Benyoucef Benkhedda and the National Higher School of Agronomy as part of a University Training Research Project (PRFU).

Project Number

Project number: D01N01ES160320220001

References

  • Adams, R.P. (2001). Identification of essential oils components by Gas Chromatography / Quadrupole Mass Spectroscopy, Allured, Illinois, 455p.
  • Aebisher, D., Cichonski, J., Szpyrka, E., Masjonis, S., & Chrzanowski, G. (2021). Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules, 26, 3793.
  • Akoto, C.O., Acheampong, A., Boakye, Y.D., Asante, B., Ohene, S., & Amankwah, F. (2021). Anthelminthic, anti-Inflammatory, antioxidant and antimicrobial activities and FTIR analyses of Vernonia camporum stem-bark. Journal of Chemistry, 1-15.
  • Baczek, K.B., Kosakowskaa, O., L. Przybył, J.L., Pióro-Jabruckaa, E., Costac, R., Mondello, L., Gniewosz, M., Synowiec, A., & Zenon Weglarz, Z. (2017). Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Industrial Crops and Products, 102, 154-163.
  • Bendjabeur, S., Benchabane, O. Bensouici, C., Hazzit, M., Baaliouamer, A., & Bitam A. (2018). Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. Journal of Food Measurement and Characterization, 12, 2278-2288
  • Benteldjoune, M., Boudiar, T., Bakhouche, A., del Mar Contreras, M., Lozano-Sánchez, J., Bensouici, C., Segura-Carretero A. & Kabouche, Z. (2019). Evaluation of the antioxidant potential, phenolic and flavonoid contents of the methanol extract of Ammoides atlantica. MESMAP–5 proceedings book, 153.
  • Bondet, V., Brand-Williams, W., & Berset C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. Lebensmittel-Wissenschaft und-Technologie, 30, 609-615.
  • Boudiar, T., Bensouici, C., Safaei-Ghomi, J., Kabouche, A., Kabouche, Z. (2011). GC-MS analysis of Ammoides atlantica (Coss. Et Dur.) Wolf. from Algeria. Journal of Essential Oil Bearing Plants, 14(2), 172-174.
  • Chippada, S.C., Volluri, S.S., Bammidi, S.R., & Vangalapati, M. (2011). In vitro anti-inflammatory activity of methanolic extract of Centella asiatica by HRBC membrane stabilisation. Rasayan Journal of Chemistry, 4(2), 457-60.
  • Chopade, A.R., Somade, P.M., Sayyad, F.J. (2012). Membrane stabilizing activity and protein denaturation: a possible mechanism of action for the anti-Inflammatory activity of Phyllanthus amarus. Journal of Krishna Institute of Medical Sciences University, 1(1) 67-72.
  • CLSI (2012a). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • CLSI (2012b). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • European Pharmacopeia (2007). European, Directorate for Quality of Medicines, Council of Europe, 6th edn. (Council of Europe, Strasbourg.)
  • Ferrero-Millani, L., Nelsen, O.H., Anderson, P.S., & Girardin, S.E. (2007). Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1 generation. Clinical and Experimental Immunology, 147, 227–235.
  • Gunathilake, K.D.P.P., Ranaweera, K.K.D.S., & Rupasinghe H.P.V. (2018). Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities, Plants, 7, 22.
  • Hajhashemi, V, Sajjadi, SE, & Heshmati, M. (2009). Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroalcoholic extract in animal models. Journal of Ethnopharmacolology, 124, 475-480.
  • Hazzit, M., Baaliouamer, A., Veríssimo, A.R., Faleiro, M.L., & Miguel, M.G. (2009). Chemical composition and biological activities of Algerian Thymus oils. Food Chemistry, 116, 714-721.
  • Inoue, M., & Craker L.E. (2014). Medicinal and Aromatic Plants—Uses and Functions In: G. R. Dixon, D. E. Aldous (eds.), Horticulture: Plants for People and Places, Volume 2, Springer Science+Business Media Dordrecht.
  • Juven, B.J., Kanner, J., Schved, F., & Weisslowicz, H. (1994). Factors that Interact with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology, 76, 626-631.
  • Kieliszek, M., Edris, A., Kot, A.M., & Piwowarek, K. (2020). Biological activity of some aromatic plants and their metabolites, with an emphasis on health-promoting properties. Molecules, 25, 2478.
  • Kumar, V., Bhat, Z.A., Kumar, D., Bohra, P., & Sheela, S. (2011). In-vitro anti-inflammatory activity of leaf extracts of Basella alba Linn. var. alba. International Journal of Drug Development & Research, 3(2), 176-179.
  • Lamaison, J.L.C., Carnet, A. (1990). Contents in main flavonoid compounds of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC. flowers at different development stages. Pharmaceutica Acta Helvetica, 65, 315-320.
  • Lambert, R.J.W., Skandamis, P.N., Coote, P. J., Nychas G.J.E.A. (2001). Study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453-462.
  • Laouer, H., Boulaacheb, N., Akkal, S., Singh, G., Marimuthu, P., De Heluani, C., Catalan, C., & Baldovini, N. (2008). Composition and antibacterial activity of the essential oil of Ammoides atlantica (Coss. Et Dur.) Wolf. Journal of Essential Oil Research, 20, 266-269.
  • Laouer, H., Zerroug, M.M., Sahli, S., Chaker, A.N., Valentini, G., Ferretti, G., Grande, M., & Anaya, J. (2003). Composition and antimicrobial activity of Ammoides pusilla (Brot.) Breistr. Essential oil. Journal of Essential Oil Research, 15, 135-138.
  • Latreche-Douar, S. (2019). Effet de l'addition de thymol ou de carvacrol sur l'activité biologique des huiles essentielles de Junipersus phoenicea et d'Ammoides atlantica et de l'effet de l'irradiation gamma sur la composition chimique et l'activité antioxydante d'extraits de Thymus algeriensis (Doctoral dissertation). National High School of Agronomy, Algiers, Algeria.
  • Lepock, J.R., Frey, H.E., Bayne, H., & Markus, J. (1989). Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 980(2), 191-201.
  • Louaar, S., Akkal S., Bayet, C., Laouer, H., & Guilet D. (2008). Flavonoids of aerial parts of an endemic species of the apiaceae of Algeria, Ammoides atlantica. Chemistry of Natural Compounds, 44(4), 516-517.
  • Loucif, K., Benabdallah, H., Benchikh, F., Mehlous, S., Souici, C.B., & Amira, S. (2020). Total phenolic contents, DPPH radical scavenging and β-Carotene bleaching activities of aqueous extract from Ammoides atlantica. Journal of Drug Delivery and Therapeutics, 10(3-s), 196-198.
  • Murugasan, N., Vember, S., & Damodharanm C., 1981. Studies on erythrocyte membrane IV. In vitro haemolytic activity of Oleandet extract. Toxicology Letters, 8, 33-38.
  • Okoli, C.O., Akah, P.A., Onuoha, N.J., Okoye, T.C., Nwoye, A.C., & Nworu, C.S. (2008). Acanthus montanus: An experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complementary and Alternative Medicine, 8(1), 1-11.
  • Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition, 44, 307-315.
  • Oyedapo, O.O., Akinpelu, B.A., Akinwunmi, K.F., Adeyinka, M.O., & Sipeolu, F.O. (2010). Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. International Journal of Plant Physiology and Biochemistry, 2(4), 46-51.
  • Özgen M., Reese R.N., Tulio A.Z., Scheerens J.C., & Miller A.R (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157.
  • Ozturk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134, 48-54.
  • Quezel, P., & Santa, S. (1962). Nouvelle Flore d’Algérie et des Régions Désertiques Méridionales. Tome I. Editions Centre National de la Recherche Scientifique, Paris, 565 p.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237.
  • Salamone, M., Martella, R., & Bietti, M. (2012). Hydrogen abstraction from cyclic amines by the cumyloxyl and benzyloxyl radicals. The role of stereoelectronic effects and of substrate/radical hydrogen bonding. The Journal of Organic Chemistry, 77, 8556-8561.
  • Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J., & Saraf, M.N. (1999). Membrane stabilizing activity—a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70(3), 251-257.
  • Sikkema, J., de Bont, J.A., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269(11), 8022-8028.
  • Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.
  • Thenmozhi, V., Elango, V., & Sadique, J. (1989). Anti-inflammatory activity of some Indian medicinal plants. Ancient Science of Life, 8(3-4), 258.
  • Toiu, A., Mocan, A. Vlase, L., Pârvu, A.E., Vodnar, D.C., Gheldiu, A-M., Moldovan, C., & Oniga I. (2018). Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard” – Barba Împăratului). Frontiers in Pharmacology, 9(7), 1-15.
  • Tranchant, J. (1995). Manuel pratique de chromatographie en phase gazeuse, 4e éd., Paris, Masson, 362 pp.
  • Ultee, A., Bennink, M.H.J., & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68, 1561-1568.
  • Yusuf, M., Begum, J., Hoque, M.N., & Chowdhury, J.U. (2009). Medicinal plants of Bangladesh, Bangladesh Council of Scientific and Industrial Research, Chittagong, Bangladesh.
There are 46 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Salah Bendjabeur 0009-0006-6997-9546

Mohamed Hazzit 0000-0001-8848-502X

Project Number Project number: D01N01ES160320220001
Early Pub Date October 8, 2024
Publication Date November 3, 2024
Submission Date March 7, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Bendjabeur, S., & Hazzit, M. (2024). Chemical profiling and bioactivity studies on aerial parts Ammoides atlantica (Coss. et Durieu) H. Wolff. International Journal of Secondary Metabolite, 11(4), 687-699. https://doi.org/10.21448/ijsm.1448014
International Journal of Secondary Metabolite

e-ISSN: 2148-6905