Research Article
BibTex RIS Cite

Revealing metabolite diversity in seeds of species belonging to Orchis and Anacamptis genus

Year 2025, Volume: 12 Issue: 1, 69 - 96

Abstract

This study aims to compare the chemical compositions of methanol extracts from seeds of 10 different species belonging to the Anacamptis and Orchis genera, highlighting significant differences among these species. Seeds collected from various locations in Samsun, Muğla, and İzmir during 2022 and 2023 were analyzed using GC-MS. The results revealed various secondary metabolites in seeds of both Anacamptis and Orchis species. A. palustris seeds, hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester was found at a rate of 16.21%, while methyl stearate was found at 11.14%. In contrast, O. purpurea seeds contained hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester at 34.94% and methyl stearate at 8.69%. These findings indicate significant variability in the distribution of compounds among species. The rare compound tricyclo [20.8.0.0(7,16)] triacontane, found in O. provincialis, contains tricyclic structures with a 1(22),7(16)-diepoxy group, highlighting its potential role in the chemical profile of this species. Additionally, other rare compounds like tricyclo [20.8.0.0(7,16)] triacontane in O. provincialis emphasize their potential roles in chemical profiles across different species. This study is considered a significant step towards understanding the similarities and differences in biochemical components of seeds from Anacamptis and Orchis, thereby contributing to the understanding of their roles in plant physiological adaptations and ecosystem dynamics. The findings provide valuable insights for plant conservation strategies and biological applications.

References

  • Arditti, J., Michaud, J.D., & Healey, P.L. (1979). Morphometry of orchid seeds. I. Paphiopedilum and native California and related species of Cypripedium. American Journal of Botany, 66(10), 1128-1137. https://doi.org/10.1002/j.1537-2197.1979.tb06332.x
  • Aytar, E.C., Harzli, I., & Özdener Kömpe, Y. (2023). Phytochemical Analysis of Anacamptis coriophora Plant Cultivated Using Ex Vitro Symbiotic Propagation. Chemistry & Biodiversity, 20(12), e202301218. https://doi.org/10.1002/cbdv.202301218
  • Aytar, E.C. Antioxidant and Antimicrobial Properties of Stachys maritima via Quantum Dots and Molecular Docking. Chemistry & Biodiversity, e202401057. https://doi.org/10.1002/cbdv.202401057
  • Baishnab, B., Majumdar, K., Banik, B., Paul, S., Reang, M., & Datta, B.K. (2024). Study of orchids (Orchidaceae) distribution and richness for conservation implications in Tripura, Northeast India. Vegetos, 1-11. https://doi.org/10.1007/s42535-023-00786-z
  • Bateman, R.M. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae) based on nuclear its sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis Sensu. Stricto Lindleyana, 12, 113-141.
  • Chen, X.G., Wu, Y.H., Li, N.Q., & Gao, J.Y. (2022). What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale. BMC Plant Biology, 22(1), 375. https://doi.org/10.1186/s12870-022-03760-0
  • Chuang, P.H., Lee, C.W., Chou, J.Y., Murugan, M., Shieh, B.J., & Chen, H.M. (2007). Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource Technology, 98(1), 232-236. https://doi.org/10.1016/j.biortech.2005.11.003
  • Clifford, H.T., & Smith, W.K. (1969). Seed morphology and classification of Orchidaceae.
  • Delforge, P. (2006). Orchids of Europe, North Africa, and the Middle East. Timber Press.
  • Diantina, S., McGill, C., Millner, J., Nadarajan, J., Pritchard, H.W., & Clavijo McCormick, A. (2020). Comparative seed morphology of tropical and temperate orchid species with different growth habits. Plants, 9(2), 161. https://doi.org/10.3390/plants9020161
  • Gamarra, R., Dorda, E., Scrugli, A., Galan, P., & Ortunez, E. (2007). Seed micromorphology in the genus Neotinea Rchb. f. (Orchidaceae, Orchidinae). Botanical journal of the Linnean Society, 153(2), 133-140. https://doi.org/10.1111/j.1095-8339.2006.00603.x
  • Gamarra, R., Galán, P., Herrera, I., & Ortúñez, E. (2008). Seed micromorphology supports the splitting of Limnorchis from Platanthera (Orchidaceae). Nordic Journal of Botany, 26(1‐2), 61-65. https://doi.org/10.1111/j.1756-1051.2008.00135.x
  • Gamarra, R., Ortúñez, E., Galán Cela, P., & Guadaño, V. (2012). Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance. Plant Systematics and Evolution, 298, 597-607. https://doi.org/10.1007/s00606-011-0569-1
  • Gao, Y., Peng, S., Hang, Y., Xie, G., Ji, N., & Zhang, M. (2022). Mycorrhizal fungus Coprinellus disseminatus influences seed germination of the terrestrial orchid Cremastra appendiculata (D. Don) Makino. Scientia Horticulturae, 293, 110724. https://doi.org/10.1016/j.scienta.2021.110724
  • Gopu, C., Chirumamilla, P., Daravath, S.B., Vankudoth, S., & Taduri, S. (2021). GC-MS analysis of bioactive compounds in the plant parts of methanolic extracts of Momordica cymbalaria Fenzl. J. Med. Plants Stud, 9(3), 209 218. https://doi.org/10.22271/plants.2021.v9.i3c.1289
  • Kretzschmar, H., Eccarius, W., & Dietrich, H. (2007). The orchid genera Anacamptis, Orchis and Neotinea: phylogeny, taxonomy, morphology, biology, distribution, ecology, and hybridisation. s. 544. EchinoMedia, Bürgel.
  • Kushwaha, P., Alok, S., & Dwivedi, L.K. (2021). The GC-MS analysis of methanolic extract of Chlorophytum borivilianum and compounds' activities validation at standard databases. South Asian Journal of Experimental Biology, 11(6), 768 774. https://doi.org/10.38150/sajeb.11(6).p768-774
  • Lee, Y.I., & Yeung, E.C. (2023). The orchid seed coat: a developmental and functional perspective. Botanical Studies, 64(1), 27. https://doi.org/10.1186/s40529-023-00400-0
  • Namrata, P., Xuli, F., Martini, F., Huayang, C., Liu, H., Jiangyun, G., & Manage, G.U. (2022). Seed viability testing for research and conservation of epiphytic and terrestrial orchids. Botanical Studies, 63(1). https://doi.org/10.1186/s40529-022-00333-0
  • Perkins, J., Hayashi, T., Peakall, R., Flematti, G.R., & Bohman, B. (2023). The volatile chemistry of orchid pollination. Natural Product Reports, 40(4), 819 839. https://doi.org/10.1039/D2NP00060A
  • Pauldasan, A., Therese, I.A., & Gideon, V.A. (2020). Phytochemical screening and GC-MS studies of cyperus compressus rottb. Journal of Medicinal Plants Studies, 8(6), 90-93.
  • Tyteca, D., & Klein, E. (2008). Genes, morphology, and biology–The systematics of Orchidinae revisited. J. Eur. Orch, 40(3), 501-544.
  • Ustuner, H., Nasircilar, A.G., Servi, H., Demir, Ü., Sen, A., Gundogdu, B., & Gokturk, R.S. (2024). Determination of total phenolic content and antidiabetic, antioxidant and antiproliferative activities of Gypsophila pilulifera extracts grown by in vitro culture. Biocatalysis and Agricultural Biotechnology, 56, 103014. https://doi.org/10.1016/j.bcab.2023.103014

Revealing metabolite diversity in seeds of species belonging to Orchis and Anacamptis genus

Year 2025, Volume: 12 Issue: 1, 69 - 96

Abstract

This study aims to compare the chemical compositions of methanol extracts from seeds of 10 different species belonging to the Anacamptis and Orchis genera, highlighting significant differences among these species. Seeds collected from various locations in Samsun, Muğla, and İzmir during 2022 and 2023 were analyzed using GC-MS. The results revealed various secondary metabolites in seeds of both Anacamptis and Orchis species. A. palustris seeds, hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester was found at a rate of 16.21%, while methyl stearate was found at 11.14%. In contrast, O. purpurea seeds contained hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester at 34.94% and methyl stearate at 8.69%. These findings indicate significant variability in the distribution of compounds among species. The rare compound tricyclo [20.8.0.0(7,16)] triacontane, found in O. provincialis, contains tricyclic structures with a 1(22),7(16)-diepoxy group, highlighting its potential role in the chemical profile of this species. Additionally, other rare compounds like tricyclo [20.8.0.0(7,16)] triacontane in O. provincialis emphasize their potential roles in chemical profiles across different species. This study is considered a significant step towards understanding the similarities and differences in biochemical components of seeds from Anacamptis and Orchis, thereby contributing to the understanding of their roles in plant physiological adaptations and ecosystem dynamics. The findings provide valuable insights for plant conservation strategies and biological applications.

References

  • Arditti, J., Michaud, J.D., & Healey, P.L. (1979). Morphometry of orchid seeds. I. Paphiopedilum and native California and related species of Cypripedium. American Journal of Botany, 66(10), 1128-1137. https://doi.org/10.1002/j.1537-2197.1979.tb06332.x
  • Aytar, E.C., Harzli, I., & Özdener Kömpe, Y. (2023). Phytochemical Analysis of Anacamptis coriophora Plant Cultivated Using Ex Vitro Symbiotic Propagation. Chemistry & Biodiversity, 20(12), e202301218. https://doi.org/10.1002/cbdv.202301218
  • Aytar, E.C. Antioxidant and Antimicrobial Properties of Stachys maritima via Quantum Dots and Molecular Docking. Chemistry & Biodiversity, e202401057. https://doi.org/10.1002/cbdv.202401057
  • Baishnab, B., Majumdar, K., Banik, B., Paul, S., Reang, M., & Datta, B.K. (2024). Study of orchids (Orchidaceae) distribution and richness for conservation implications in Tripura, Northeast India. Vegetos, 1-11. https://doi.org/10.1007/s42535-023-00786-z
  • Bateman, R.M. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae) based on nuclear its sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis Sensu. Stricto Lindleyana, 12, 113-141.
  • Chen, X.G., Wu, Y.H., Li, N.Q., & Gao, J.Y. (2022). What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale. BMC Plant Biology, 22(1), 375. https://doi.org/10.1186/s12870-022-03760-0
  • Chuang, P.H., Lee, C.W., Chou, J.Y., Murugan, M., Shieh, B.J., & Chen, H.M. (2007). Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource Technology, 98(1), 232-236. https://doi.org/10.1016/j.biortech.2005.11.003
  • Clifford, H.T., & Smith, W.K. (1969). Seed morphology and classification of Orchidaceae.
  • Delforge, P. (2006). Orchids of Europe, North Africa, and the Middle East. Timber Press.
  • Diantina, S., McGill, C., Millner, J., Nadarajan, J., Pritchard, H.W., & Clavijo McCormick, A. (2020). Comparative seed morphology of tropical and temperate orchid species with different growth habits. Plants, 9(2), 161. https://doi.org/10.3390/plants9020161
  • Gamarra, R., Dorda, E., Scrugli, A., Galan, P., & Ortunez, E. (2007). Seed micromorphology in the genus Neotinea Rchb. f. (Orchidaceae, Orchidinae). Botanical journal of the Linnean Society, 153(2), 133-140. https://doi.org/10.1111/j.1095-8339.2006.00603.x
  • Gamarra, R., Galán, P., Herrera, I., & Ortúñez, E. (2008). Seed micromorphology supports the splitting of Limnorchis from Platanthera (Orchidaceae). Nordic Journal of Botany, 26(1‐2), 61-65. https://doi.org/10.1111/j.1756-1051.2008.00135.x
  • Gamarra, R., Ortúñez, E., Galán Cela, P., & Guadaño, V. (2012). Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance. Plant Systematics and Evolution, 298, 597-607. https://doi.org/10.1007/s00606-011-0569-1
  • Gao, Y., Peng, S., Hang, Y., Xie, G., Ji, N., & Zhang, M. (2022). Mycorrhizal fungus Coprinellus disseminatus influences seed germination of the terrestrial orchid Cremastra appendiculata (D. Don) Makino. Scientia Horticulturae, 293, 110724. https://doi.org/10.1016/j.scienta.2021.110724
  • Gopu, C., Chirumamilla, P., Daravath, S.B., Vankudoth, S., & Taduri, S. (2021). GC-MS analysis of bioactive compounds in the plant parts of methanolic extracts of Momordica cymbalaria Fenzl. J. Med. Plants Stud, 9(3), 209 218. https://doi.org/10.22271/plants.2021.v9.i3c.1289
  • Kretzschmar, H., Eccarius, W., & Dietrich, H. (2007). The orchid genera Anacamptis, Orchis and Neotinea: phylogeny, taxonomy, morphology, biology, distribution, ecology, and hybridisation. s. 544. EchinoMedia, Bürgel.
  • Kushwaha, P., Alok, S., & Dwivedi, L.K. (2021). The GC-MS analysis of methanolic extract of Chlorophytum borivilianum and compounds' activities validation at standard databases. South Asian Journal of Experimental Biology, 11(6), 768 774. https://doi.org/10.38150/sajeb.11(6).p768-774
  • Lee, Y.I., & Yeung, E.C. (2023). The orchid seed coat: a developmental and functional perspective. Botanical Studies, 64(1), 27. https://doi.org/10.1186/s40529-023-00400-0
  • Namrata, P., Xuli, F., Martini, F., Huayang, C., Liu, H., Jiangyun, G., & Manage, G.U. (2022). Seed viability testing for research and conservation of epiphytic and terrestrial orchids. Botanical Studies, 63(1). https://doi.org/10.1186/s40529-022-00333-0
  • Perkins, J., Hayashi, T., Peakall, R., Flematti, G.R., & Bohman, B. (2023). The volatile chemistry of orchid pollination. Natural Product Reports, 40(4), 819 839. https://doi.org/10.1039/D2NP00060A
  • Pauldasan, A., Therese, I.A., & Gideon, V.A. (2020). Phytochemical screening and GC-MS studies of cyperus compressus rottb. Journal of Medicinal Plants Studies, 8(6), 90-93.
  • Tyteca, D., & Klein, E. (2008). Genes, morphology, and biology–The systematics of Orchidinae revisited. J. Eur. Orch, 40(3), 501-544.
  • Ustuner, H., Nasircilar, A.G., Servi, H., Demir, Ü., Sen, A., Gundogdu, B., & Gokturk, R.S. (2024). Determination of total phenolic content and antidiabetic, antioxidant and antiproliferative activities of Gypsophila pilulifera extracts grown by in vitro culture. Biocatalysis and Agricultural Biotechnology, 56, 103014. https://doi.org/10.1016/j.bcab.2023.103014
There are 23 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry
Journal Section Articles
Authors

Erdi Can Aytar 0000-0001-6045-0183

Early Pub Date January 19, 2025
Publication Date
Submission Date March 18, 2024
Acceptance Date August 14, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Aytar, E. C. (2025). Revealing metabolite diversity in seeds of species belonging to Orchis and Anacamptis genus. International Journal of Secondary Metabolite, 12(1), 69-96.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905