Research Article
BibTex RIS Cite

Bioactivity of secondary metabolite of endophytic fungi extract isolated from root of Jambu Mawar (Syzygium jambos)

Year 2025, Volume: 12 Issue: 1, 16 - 32

Abstract

Abstract: This research aims to isolate endophytic fungi from Syzygium jambos plants and identify their active compounds. Endophytic fungi were isolated from the roots of S. jambos and cultured on Potato Dextrose Agar media. Antibacterial activity using the Kirby–Bauer method was tested on four Gram-positive and Gram-negative bacteria. Molecular identification was carried out on selected isolates to determine the species of endophytic fungi and isolate their active compounds. Column chromatography was used for compound isolation. The pure compounds were then analyzed spectroscopically using 1H-NMR, 13C-NMR, DEPT 135, HMQC, HMBC, COSY. The results of the isolation of endophytic fungi found four isolates SJR1 – 4, which show antibacterial activity. The strongest antibacterial activity was demonstrated by isolate SJR1, so it was continued with molecular identification. Molecular identification of SJR1 indicates that it is Lasiodiplodia iranensis. The pure compound L. iranensis was isolated and found to be 3-butyl-3,4-dihydroxy-6-((2-hydroxy-5-oxocyclopentyl) methyl)tetrahydro-pyran-2-one, which belongs to the phenolic group and has potential as an antibacterial. This compound can be used as an alternative medicinal ingredient.

Project Number

5

Thanks

Thank you to the DRPM Ministry of Research and Technology of the Republic of Indonesia for providing Doctoral Dissertation Grant funds, number: 2022, No. 057/E5/PG.02.00.PT/2022 and No. 0064.02/UN9.3.1/PL/2022

References

  • Abdel-Aziz, S.M., Abo Elsoud, M.M., & Anise, A.A.H. (2017). Microbial biosynthesis: A repertory of vital natural products. In Handbook of Food Bioengineering (pp. 25–54). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811372-1/00003-8
  • Aini, K., Elfita, E., Widjajanti, H., & Setiawan, A. (2022a). Bioactivity endophytic fungi isolated from the leaf stalk of Syzygium jambos L. Alston. Tropical Journal of Natural Product Research, 6(11), 1765–1772. http://www.doi.org/10.26538/tjnpr/v6i11.4
  • Aini, K., Elfita, E., Widjajanti, H., & Setiawan, A. (2023). Bioactivity of endophytic fungi isolated from branch of Jambu mawar (Syzygium jambos (L.) Alston). Molekul, 18(1), 59–69. https://doi.org/10.20884/1.jm.2023.18.1.5931
  • Aini, K., Elfita, Widjajanti, H., & Setiawan, A. (2022b). Diversity and antibacterial activity of endophytic fungi isolated from the medicinal plant of Syzygium jambos. Biodiversitas Journal of Biological Diversity, 23(6), 2981–2989. https://doi.org/10.13057/biodiv/d230625
  • Aini, K., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2022). Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas, 23(1), 521–532. https://doi.org/10.13057/biodiv/d230156
  • Amina, Z., Nouari, S., Rasime, D., Sabrina, B., & Daoud, H. (2018). Antibacterial activity of endophytic fungus, Penicillium griseofulvum MPR1 isolated from medicinal plant, Mentha pulegium L. African Journal of Microbiology Research, 12(48), 1056 1066. https://doi.org/10.5897/ajmr2018.8887
  • Avalos, J., & Limón, M.C. (2021). Fungal Secondary Metabolism. Encyclopedia, 2(1), 1–13. https://doi.org/10.3390/encyclopedia2010001
  • Bano, N., Rizvi, I.F., Sharma, N., Siddiqui, Ha., M. Khan, M.K.A., & Akhtar, S. (2016). Production of bioactive secondary metabolites from endophytic fungi. International Research Journal of Engineering and Technology, 3(6), 1859–1866.
  • Chang, S.F., Liu, H.L., Ho, Y., Yang, L.M., Tsai, Y.E., Chou, B.H., Wang, S.H., & Lin, S.J. (2021). Transformation of 15-ene steviol by Aspergillus niger, Cunninghamella bainieri, and Mortierella isabellina. Phytochemistry, 187, 1 11. https://doi.org/10.1016/j.phytochem.2021.112776
  • Char, C.D., Guerrero, S.N., & Alzamora, S.M. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food and Bioprocess Technology, 3(5), 752–761. https://doi.org/10.1007/S11947-008-0155-X
  • Cherrat, L., Dumas, E., Bakkali, M., Degraeve, P., Laglaoui, A., & Oulahal, N. (2016). Effect of essential oils on cell viability, membrane integrity and membrane fluidity of Listeria innocua and Escherichia coli. Journal of Essential Oil-Bearing Plants, 19(1), 155–166. https://doi.org/10.1080/0972060X.2015.1029986
  • Cox, S.D., Mann, C.M., Markham, J.L., Gustafson, J.E., Warmington, J.R., & Wyllie, S.G. (2001). Determining the antimicrobial actions of tea tree oil. Molecules, 6(2), 87–91. https://doi.org/10.3390/60100087
  • Cui, Z., Zhang, X., Yang, H., & Sun, L. (2017). Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. Journal of Environmental Chemical Engineering, 5(4), 3616–3621. https://doi.org/10.1016/j.jece.2017.07.021
  • Delgado Gómez, L.M., Torres-Mendoza, D., Hernández-Torres, K., Ortega, H.E., & Cubilla-Rios, L. (2023). Identification of secondary metabolites from the mangrove-endophyte Lasiodiplodia iranensis F0619 by UPLC-ESI-MS/MS. Metabolites, 13(8), 1–15. https://doi.org/10.3390/metabo13080912
  • Deshmukh, S.K., Verekar, S.A., & Bhave, S.V. (2015). Endophytic fungi: A reservoir of antibacterials. Frontiers in Microbiology, 5, 1 44. https://doi.org/10.3389/fmicb.2014.00715
  • Devakumar, J., & Sudha, S.S. (2017). In vitro phytochemical , antioxidant and cytotoxic evaluation of Syzygium jambos L. (Alston). Journal of Pharmacy Research, 11(3), 235–238.
  • Diao, W.R., Hu, Q.P., Zhang, H., & Xu, J.G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109–116. https://doi.org/10.1016/j.foodcont.2013.06.056
  • Dulf, F.V., Vodnar, D.C., Dulf, E.H., Diaconeasa, Z., & Socaciu, C. (2018). Liberation and recovery of phenolic antioxidants and lipids in chokeberry (Aronia melanocarpa) pomace by solid-state bioprocessing using Aspergillus niger and Rhizopus oligosporus strains. LWT - Food Science and Technology, 87, 241–249. https://doi.org/10.1016/j.lwt.2017.08.084
  • Elfita, E., Munawar, M., Muharni, M., Pratiwi, G., & Rahmadania, R. (2016). A new benzoyl compound isolated from the endophytic fungi of Kandis gajah (Garcinia griffithii) and Asam kandis (Garcinia cowa). Makara Journal of Science, 20(4), 167 172. https://doi.org/10.7454/mss.v20i4.6704
  • Elfita, Mardiyanto, Fitrya, Larasati, J.E., Julinar, Widjajanti, H., & Muharni. (2019). Antibacterial activity of Cordyline fruticosa leaf extracts and Its endophytic fungi extracts. Biodiversitas, 20(12), 3804–3812. https://doi.org/10.13057/biodiv/d201245
  • Elfita, Muharni, Munawar, & Aryani, S. (2012). Secondary metabolite from endophytic fungi Aspergillus niger of stem bark of kandis gajah (Garcinia griffithii). Indo. J. Chem, 12(2), 195–200. http://eprints.unsri.ac.id/5868/1/IJC_2012_(10).pdf
  • Elfita, Munawar, Muharni, & Sudrajat, M.A. (2014). Identification of new lactone derivatives isolated from Trichoderma sp., an endophytic fungus of brotowali (Tinaspora crispa). HAYATI Journal of Biosciences, 21(1), 15–20. https://doi.org/10.4308/hjb.21.1.15
  • Endrawati, D., & Kusumaningtyas, E. (2018). Several functions of Rhizopus sp on increasing nutritional value of feed ingredient. Indonesian Bulletin of Animal and Veterinary Sciences, 27(2), 81. https://doi.org/10.14334/wartazoa.v27i2.1181
  • Felsenstein, J. (1985). Confidence lpmits on Phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791.
  • Figueiredo, A.R., Campos, F., de Freitas, V., Hogg, T., & Couto, J.A. (2008). Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiology, 25(1), 105–112. https://doi.org/10.1016/J.FM.2007.07.004
  • Gagana, S.L., & Shivanna, M.B. (2020). Diversity and antibacterial activity of endophytic fungi in Memecylon umbellatum Burm. F.- A medicinal plant in the Western Ghats of Karnataka, India. Indian Journal of Ecology, 47(1), 171–180.
  • Gavillán-Suárez, J., Aguilar-Perez, A., Rivera-Ortiz, N., Rodríguez-Tirado, K., Figueroa-Cuilan, W., Morales-Santiago, L., … Martínez-Montemayor, M. M. (2015). Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC Complementary and Alternative Medicine, 15(1), 1–15. https://doi.org/10.1186/s12906-015-0772-7
  • Goyzueta M., L.D., Noseda, M.D., Bonatto, S.J.R., de Freitas, R.A., de Carvalho, J.C., & Soccol, C.R. (2020). Production, characterization, and biological activity of a chitin-like EPS produced by Mortierella alpina under submerged fermentation. Carbohydrate Polymers, 247(July), 1–26. https://doi.org/10.1016/j.carbpol.2020.116716
  • Griffin, S.G., Wyllie, S.G., & Markham, J.L. (2005). Antimicrobially active terpenes cause K+ leakage in E. coli cells. Journal of Essential Oil Research, 17(6), 686 690. https://doi.org/10.1080/10412905.2005.9699033
  • Gyawali, R., & Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429. https://doi.org/10.1016/J.FOODCONT.2014.05.047
  • Habisukan, U.H., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2021). Diversity of endophytic fungi in Syzygium aqueum. Biodiversitas, 22(3), 1129–1137. https://doi.org/10.13057/biodiv/d220307
  • Hapida, Y., Elfita, Widjajanti, H., & Salni. (2021). Biodiversity and antibacterial activity of endophytic fungi isolated from jambu bol (Syzygium malaccense). Biodiversitas, 22(12), 5668–5677. https://doi.org/10.13057/biodiv/d221253
  • Hartanti, A.T., Raharjo, A., & Gunawan, A.W. (2020). Rhizopus rotting on agricultural products in Jakarta. HAYATI Journal of Biosciences, 27(1), 37 44. https://doi.org/10.4308/hjb.27.1.37
  • Isalar, O.F., Ogbuji, N.G., Okungbowa, F.I., & Ataga, A.E. (2021). Fungal contaminants associated with Groundnut (Arachis hypogaea) seeds. Journal of Bioinformatics and Systems Biology, 4(4), 182–193. https://doi.org/10.26502/jbsb.5107029
  • Jannah, A., Barroroh, H., & Maunatin, A. (2020). Potential of extract rice bran fermented by Rhizopus oryzae as antibacterial against Salmonella typhi. IOP Conference Series: Earth and Environmental Science, 456(1), 1–4. https://doi.org/10.1088/1755-1315/456/1/012061
  • Jibrin, D.M.O., Liu, D.Q., Huang, M.Y., Urbina, D.H., Gazis, D.R., & Zhang, D.S. (2022). Lasiodiplodia iraniensis, a new causal agent of tuber rot on yam (Dioscorea species) imported into the United States and implications for quarantine decisions. Plant Disease. https://doi.org/10.1094/PDIS-11-21-2421-SC
  • Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042–3053. https://doi.org/10.1080/10408398.2019.1675585
  • Kang, S.J., Seo, J.Y., Cho, K.M., Lee, C.K., Kim, J.H., & Kim, J.S. (2016). Antioxidant and neuroprotective effects of Doenjang prepared with Rhizopus, Pichia, and Bacillus. Preventive Nutrition and Food Science, 21(3), 221 226. https://doi.org/10.3746/pnf.2016.21.3.221
  • Khiralla, A., Spina, R., Varbanov, M., Philippot, S., Lemiere, P., Slezack-Deschaumes, S., … Laurain-Mattar, D. (2020). Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus Curvularia papendorfii, and isolation of a new polyhydroxyacid. Microorganisms, 8(9), 1 20. https://doi.org/10.3390/microorganisms8091353
  • Khiralla, A., Spina, R., Yagi, S., Mohamed, I., & Laurain-Mattar, D. (2016). Endophytic fungi: Occurrence, classification, function and natural products. In Endophytic Fungi: Diversity, Characterization and Biocontrol (Issue June 2017).
  • Kusumah, D., Wakui, M., Murakami, M., Xie, X., Yukihito, K., & Maeda, I. (2020). Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus. Bioscience, Biotechnology, and Biochemistry, 84(6), 1285 1290. https://doi.org/10.1080/09168451.2020.1731299
  • Li, R., Zheng, P., Sun, X., Dong, W., Shen, Z., Chen, P., & Wu, D. (2023). Genome sequencing and analysis reveal potential high-valued metabolites synthesized by Lasiodiplodia iranensis DWH-2. Journal of Fungi, 9(5), 1–14. https://doi.org/10.3390/jof9050522
  • Li, W., Chen, H., He, Z., Han, C., Liu, S., & Li, Y. (2015). Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT, 62(1), 39–47. https://doi.org/10.1016/J.LWT.2015.01.012
  • Lima, T.M. de, Almeida, A.B. de, Peres, D.S., Oliveira, R.M. da S.F. de, Sousa, T.L. de, Freitas, B.S.M. de, Silva, F.G., & Egea, M.B. (2021). Rhizopus oligosporus as a biotransforming microorganism of Anacardium othonianum Rizz. byproduct for production of high -protein, -antioxidant, and -fiber ingredient. LWT - Food Science and Technology, 135, 1–8. https://doi.org/10.1016/j.lwt.2020.110030
  • Lima, M.C., Paiva de Sousa, C., Fernandez-Prada, C., Harel, J., Dubreuil, J.D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259–270. https://doi.org/10.1016/J.MICPATH.2019.03.025
  • Massarolo, K.C., Denardi de Souza, T., Collazzo, C.C., Badiale Furlong, E., & Souza Soares, L.A. de. (2017). The impact of Rhizopus oryzae cultivation on rice bran: Gamma-oryzanol recovery and its antioxidant properties. Food Chemistry, 228, 1 30. https://doi.org/10.1016/j.foodchem.2017.01.127
  • Mosunova, O., Navarro-Muñoz, J.C., & Collemare, J. (2021). The biosynthesis of fungal secondary metabolites: From fundamentals to biotechnological applications. Encyclopedia of Mycology, 2, 458–476. https://doi.org/10.1016/B978-0-12-809633-8.21072-8
  • Mykytczuk, N.C.S., Trevors, J.T., Leduc, L.G., & Ferroni, G.D. (2007). Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Progress in Biophysics and Molecular Biology, 95(1 3), 60 82. https://doi.org/10.1016/J.PBIOMOLBIO.2007.05.001
  • Ozimek, E., Jaroszuk-ściseł, J., Bohacz, J., Korniłłowicz-Kowalska, T., Tyśkiewicz, R., Słomka, A., Nowak, A., & Hanaka, A. (2018). Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. International Journal of Molecular Sciences, 19(10), 1–17. https://doi.org/10.3390/ijms19103218
  • Qian, C.D., Fu, Y.H., Jiang, F.S., Xu, Z.H., Cheng, D.Q., Ding, B., Gao, C.X., & Ding, Z.S. (2014). Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC Microbiology, 14(1), 1–7. https://doi.org/10.1186/s12866-014-0297-0
  • Ramos, D.O., Rosado, A.W.C., Souza, A.F. de, Pio, A. de S., & Pereira, O.L. (2023). Lasiodiplodia iranensis is the causal agent of Coffea canephora dieback in Brazil. Crop Protetion, 172. https://doi.org/https://doi.org/10.1016/j.cropro.2023.106318
  • Roux, J., Nkuekam, G.K., Marincowitz, S., van der Merwe, N.A., Uchida, J., Wingfield, M.J., & Chen, S.F. (2020). Cryphonectriaceae associated with rust-infected Syzygium jambos in Hawaii. MycoKeys, 76, 49–79. https://doi.org/10.3897/MYCOKEYS.76.58406
  • Ruth, M.O., Stephen, A.I., & Josphat, M. (2020). Antibacterial activity of endophytic fungi isolated from leaves of medicinal Plant Leucas martinicensis L. growing in a Kenyan tropical forest. African Journal of Biochemistry Research, 14(3), 81 91. https://doi.org/10.5897/ajbr2020.1055
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Sánchez, E., García, S., & Heredia, N. (2010). Extracts of edible and medicinal plants damage membranes of vibrio cholerae. Applied and Environmental Microbiology, 76(20), 6888–6894. https://doi.org/10.1128/AEM.03052-09
  • Selim, K.A., El-Beih, A.A., Abdel-Rahman, T.M., & El-Diwany, A.I. (2012). Biology of endophytic fungi. Current Research in Environmental & Applied Mycology, 2(1), 31–82. https://doi.org/10.5943/cream/2/1/3
  • Shen, Z., Zheng, P., Li, R., Sun, X., Chen, P., & Wu, D. (2022). High production of jasmonic acid by Lasiodiplodia iranensis using solid-state fermentation: Optimization and understanding. Biotechnology Journal, 17(5). https://doi.org/10.1002/BIOT.202100550
  • Singh, V.K., & Kumar, A. (2023). Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis, 90(June), 111–125. https://doi.org/10.1007/s13199-023-00925-9
  • Singha, I.M., Kakoty, Y., Unni, B.G., Das, J., & Kalita, M.C. (2016). Identification and characterization of Fusarium sp. using ITS and RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering and Biotechnology, 14(1), 99–105. https://doi.org/10.1016/j.jgeb.2016.07.001
  • Sobeh, M., Esmat, A., Petruk, G., Abdelfattah, M.A.O., Dmirieh, M., Monti, D.M., Abdel-Naim, A.B., & Wink, M. (2018). Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods, 41, 223–231. https://doi.org/10.1016/j.jff.2017.12.055
  • Starzyńska-Janiszewska, A., Duliński, R., & Stodolak, B. (2020). Fermentation with edible Rhizopus strains to enhance the bioactive potential of Hull-Less pumpkin oil cake. Molecules (Basel, Switzerland), 25(24), 1–13. https://doi.org/10.3390/molecules25245782
  • Supaphon, P., & Preedanon, S. (2019). Antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Carissa carandas. African Journal of Microbiology Research, 13(27), 464–473. https://doi.org/10.5897/ajmr2019.9164
  • Syarifah, Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2022). Antioxidant and antibacterial activities of endophytic fungi extracts of Syzygium zeylanicum. Science and Technology Indonesia, 7(3), 303–312. https://doi.org/10.26554/sti.2022.7.3.303-312
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022 3027. https://doi.org/10.1093/molbev/msab120
  • Vaca, I., & Chávez, R. (2019). Bioactive compounds produced by Antarctic filamentous fungi. Fungi of Antarctica, 265–283. https://doi.org/10.1007/978-3-030-18367-7_12
  • Vieira, E.R., Silva Xisto, M.I.D. da, Pele, M.A., Alviano, D.S., Alviano, C.S., Barreto-Bergter, E., & Campos-Takaki, G.M. de. (2018). Monohexosylceramides from Rhizopus species isolated from Brazilian Caatinga: Chemical characterization and evaluation of their anti-biofilm and antibacterial activities. Molecules, 23(6), 1 13. https://doi.org/10.3390/molecules23061331
  • Voigt, K., & Kirk, P.M. (2014). Classification of Zygomycetes: Reappraisal as coherent class based on a comparison between traditional versus molecular systematics. In Encyclopedia of Food Microbiology: Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00136-1
  • Walsh, T.H., Hayden, R.T., & Larone, D.H. (2018). Larone’s Medically Important Fungi: A Guide to Idetification (6th Editio). ASM Press, Washington, DC. https://doi.org/10.1128/9781555819880
  • Wamba, B.E.N., Nayim, P., Mbaveng, A.T., Voukeng, I.K., Dzotam, J.K., Ngalani, O.J.T., & Kuete, V. (2018). Syzygium jambos displayed antibacterial and antibiotic-modulating activities against resistant phenotypes. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/5124735
  • Wen, J., Okyere, S.K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic fungi: an effective alternative source of plant‐derived bioactive compounds for pharmacological studies. Journal of Fungi, 8(2), 1–45. https://doi.org/10.3390/jof8020205
  • Whiteaker, K.L., Gopalakrishnan, S.M., Groebe, D., Shieh, C.-C., Warrior, U., Burns, D.J., Coghlan, M.J., Scott, V.E., & Gopalakrishnani, M. (2001). Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. SLAS Discovery, 6(5), 305–312. https://doi.org/10.1177/108705710100600504
  • Wu, Y., Bai, J., Zhong, K., Huang, Y., Qi, H., Jiang, Y., & Gao, H. (2016). Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 21(8). https://doi.org/10.3390/molecules21081084
  • Zheng, R., Li, S., Zhang, X., & Zhao, C. (2021). Biological activities of some new secondary metabolites isolated from endophytic fungi: A review study. International Journal of Molecular Sciences, 22(959), 1–80. https://doi.org/10.3390/ijms22020959
Year 2025, Volume: 12 Issue: 1, 16 - 32

Abstract

Project Number

5

References

  • Abdel-Aziz, S.M., Abo Elsoud, M.M., & Anise, A.A.H. (2017). Microbial biosynthesis: A repertory of vital natural products. In Handbook of Food Bioengineering (pp. 25–54). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811372-1/00003-8
  • Aini, K., Elfita, E., Widjajanti, H., & Setiawan, A. (2022a). Bioactivity endophytic fungi isolated from the leaf stalk of Syzygium jambos L. Alston. Tropical Journal of Natural Product Research, 6(11), 1765–1772. http://www.doi.org/10.26538/tjnpr/v6i11.4
  • Aini, K., Elfita, E., Widjajanti, H., & Setiawan, A. (2023). Bioactivity of endophytic fungi isolated from branch of Jambu mawar (Syzygium jambos (L.) Alston). Molekul, 18(1), 59–69. https://doi.org/10.20884/1.jm.2023.18.1.5931
  • Aini, K., Elfita, Widjajanti, H., & Setiawan, A. (2022b). Diversity and antibacterial activity of endophytic fungi isolated from the medicinal plant of Syzygium jambos. Biodiversitas Journal of Biological Diversity, 23(6), 2981–2989. https://doi.org/10.13057/biodiv/d230625
  • Aini, K., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2022). Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas, 23(1), 521–532. https://doi.org/10.13057/biodiv/d230156
  • Amina, Z., Nouari, S., Rasime, D., Sabrina, B., & Daoud, H. (2018). Antibacterial activity of endophytic fungus, Penicillium griseofulvum MPR1 isolated from medicinal plant, Mentha pulegium L. African Journal of Microbiology Research, 12(48), 1056 1066. https://doi.org/10.5897/ajmr2018.8887
  • Avalos, J., & Limón, M.C. (2021). Fungal Secondary Metabolism. Encyclopedia, 2(1), 1–13. https://doi.org/10.3390/encyclopedia2010001
  • Bano, N., Rizvi, I.F., Sharma, N., Siddiqui, Ha., M. Khan, M.K.A., & Akhtar, S. (2016). Production of bioactive secondary metabolites from endophytic fungi. International Research Journal of Engineering and Technology, 3(6), 1859–1866.
  • Chang, S.F., Liu, H.L., Ho, Y., Yang, L.M., Tsai, Y.E., Chou, B.H., Wang, S.H., & Lin, S.J. (2021). Transformation of 15-ene steviol by Aspergillus niger, Cunninghamella bainieri, and Mortierella isabellina. Phytochemistry, 187, 1 11. https://doi.org/10.1016/j.phytochem.2021.112776
  • Char, C.D., Guerrero, S.N., & Alzamora, S.M. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food and Bioprocess Technology, 3(5), 752–761. https://doi.org/10.1007/S11947-008-0155-X
  • Cherrat, L., Dumas, E., Bakkali, M., Degraeve, P., Laglaoui, A., & Oulahal, N. (2016). Effect of essential oils on cell viability, membrane integrity and membrane fluidity of Listeria innocua and Escherichia coli. Journal of Essential Oil-Bearing Plants, 19(1), 155–166. https://doi.org/10.1080/0972060X.2015.1029986
  • Cox, S.D., Mann, C.M., Markham, J.L., Gustafson, J.E., Warmington, J.R., & Wyllie, S.G. (2001). Determining the antimicrobial actions of tea tree oil. Molecules, 6(2), 87–91. https://doi.org/10.3390/60100087
  • Cui, Z., Zhang, X., Yang, H., & Sun, L. (2017). Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. Journal of Environmental Chemical Engineering, 5(4), 3616–3621. https://doi.org/10.1016/j.jece.2017.07.021
  • Delgado Gómez, L.M., Torres-Mendoza, D., Hernández-Torres, K., Ortega, H.E., & Cubilla-Rios, L. (2023). Identification of secondary metabolites from the mangrove-endophyte Lasiodiplodia iranensis F0619 by UPLC-ESI-MS/MS. Metabolites, 13(8), 1–15. https://doi.org/10.3390/metabo13080912
  • Deshmukh, S.K., Verekar, S.A., & Bhave, S.V. (2015). Endophytic fungi: A reservoir of antibacterials. Frontiers in Microbiology, 5, 1 44. https://doi.org/10.3389/fmicb.2014.00715
  • Devakumar, J., & Sudha, S.S. (2017). In vitro phytochemical , antioxidant and cytotoxic evaluation of Syzygium jambos L. (Alston). Journal of Pharmacy Research, 11(3), 235–238.
  • Diao, W.R., Hu, Q.P., Zhang, H., & Xu, J.G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109–116. https://doi.org/10.1016/j.foodcont.2013.06.056
  • Dulf, F.V., Vodnar, D.C., Dulf, E.H., Diaconeasa, Z., & Socaciu, C. (2018). Liberation and recovery of phenolic antioxidants and lipids in chokeberry (Aronia melanocarpa) pomace by solid-state bioprocessing using Aspergillus niger and Rhizopus oligosporus strains. LWT - Food Science and Technology, 87, 241–249. https://doi.org/10.1016/j.lwt.2017.08.084
  • Elfita, E., Munawar, M., Muharni, M., Pratiwi, G., & Rahmadania, R. (2016). A new benzoyl compound isolated from the endophytic fungi of Kandis gajah (Garcinia griffithii) and Asam kandis (Garcinia cowa). Makara Journal of Science, 20(4), 167 172. https://doi.org/10.7454/mss.v20i4.6704
  • Elfita, Mardiyanto, Fitrya, Larasati, J.E., Julinar, Widjajanti, H., & Muharni. (2019). Antibacterial activity of Cordyline fruticosa leaf extracts and Its endophytic fungi extracts. Biodiversitas, 20(12), 3804–3812. https://doi.org/10.13057/biodiv/d201245
  • Elfita, Muharni, Munawar, & Aryani, S. (2012). Secondary metabolite from endophytic fungi Aspergillus niger of stem bark of kandis gajah (Garcinia griffithii). Indo. J. Chem, 12(2), 195–200. http://eprints.unsri.ac.id/5868/1/IJC_2012_(10).pdf
  • Elfita, Munawar, Muharni, & Sudrajat, M.A. (2014). Identification of new lactone derivatives isolated from Trichoderma sp., an endophytic fungus of brotowali (Tinaspora crispa). HAYATI Journal of Biosciences, 21(1), 15–20. https://doi.org/10.4308/hjb.21.1.15
  • Endrawati, D., & Kusumaningtyas, E. (2018). Several functions of Rhizopus sp on increasing nutritional value of feed ingredient. Indonesian Bulletin of Animal and Veterinary Sciences, 27(2), 81. https://doi.org/10.14334/wartazoa.v27i2.1181
  • Felsenstein, J. (1985). Confidence lpmits on Phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791.
  • Figueiredo, A.R., Campos, F., de Freitas, V., Hogg, T., & Couto, J.A. (2008). Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiology, 25(1), 105–112. https://doi.org/10.1016/J.FM.2007.07.004
  • Gagana, S.L., & Shivanna, M.B. (2020). Diversity and antibacterial activity of endophytic fungi in Memecylon umbellatum Burm. F.- A medicinal plant in the Western Ghats of Karnataka, India. Indian Journal of Ecology, 47(1), 171–180.
  • Gavillán-Suárez, J., Aguilar-Perez, A., Rivera-Ortiz, N., Rodríguez-Tirado, K., Figueroa-Cuilan, W., Morales-Santiago, L., … Martínez-Montemayor, M. M. (2015). Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC Complementary and Alternative Medicine, 15(1), 1–15. https://doi.org/10.1186/s12906-015-0772-7
  • Goyzueta M., L.D., Noseda, M.D., Bonatto, S.J.R., de Freitas, R.A., de Carvalho, J.C., & Soccol, C.R. (2020). Production, characterization, and biological activity of a chitin-like EPS produced by Mortierella alpina under submerged fermentation. Carbohydrate Polymers, 247(July), 1–26. https://doi.org/10.1016/j.carbpol.2020.116716
  • Griffin, S.G., Wyllie, S.G., & Markham, J.L. (2005). Antimicrobially active terpenes cause K+ leakage in E. coli cells. Journal of Essential Oil Research, 17(6), 686 690. https://doi.org/10.1080/10412905.2005.9699033
  • Gyawali, R., & Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429. https://doi.org/10.1016/J.FOODCONT.2014.05.047
  • Habisukan, U.H., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2021). Diversity of endophytic fungi in Syzygium aqueum. Biodiversitas, 22(3), 1129–1137. https://doi.org/10.13057/biodiv/d220307
  • Hapida, Y., Elfita, Widjajanti, H., & Salni. (2021). Biodiversity and antibacterial activity of endophytic fungi isolated from jambu bol (Syzygium malaccense). Biodiversitas, 22(12), 5668–5677. https://doi.org/10.13057/biodiv/d221253
  • Hartanti, A.T., Raharjo, A., & Gunawan, A.W. (2020). Rhizopus rotting on agricultural products in Jakarta. HAYATI Journal of Biosciences, 27(1), 37 44. https://doi.org/10.4308/hjb.27.1.37
  • Isalar, O.F., Ogbuji, N.G., Okungbowa, F.I., & Ataga, A.E. (2021). Fungal contaminants associated with Groundnut (Arachis hypogaea) seeds. Journal of Bioinformatics and Systems Biology, 4(4), 182–193. https://doi.org/10.26502/jbsb.5107029
  • Jannah, A., Barroroh, H., & Maunatin, A. (2020). Potential of extract rice bran fermented by Rhizopus oryzae as antibacterial against Salmonella typhi. IOP Conference Series: Earth and Environmental Science, 456(1), 1–4. https://doi.org/10.1088/1755-1315/456/1/012061
  • Jibrin, D.M.O., Liu, D.Q., Huang, M.Y., Urbina, D.H., Gazis, D.R., & Zhang, D.S. (2022). Lasiodiplodia iraniensis, a new causal agent of tuber rot on yam (Dioscorea species) imported into the United States and implications for quarantine decisions. Plant Disease. https://doi.org/10.1094/PDIS-11-21-2421-SC
  • Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042–3053. https://doi.org/10.1080/10408398.2019.1675585
  • Kang, S.J., Seo, J.Y., Cho, K.M., Lee, C.K., Kim, J.H., & Kim, J.S. (2016). Antioxidant and neuroprotective effects of Doenjang prepared with Rhizopus, Pichia, and Bacillus. Preventive Nutrition and Food Science, 21(3), 221 226. https://doi.org/10.3746/pnf.2016.21.3.221
  • Khiralla, A., Spina, R., Varbanov, M., Philippot, S., Lemiere, P., Slezack-Deschaumes, S., … Laurain-Mattar, D. (2020). Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus Curvularia papendorfii, and isolation of a new polyhydroxyacid. Microorganisms, 8(9), 1 20. https://doi.org/10.3390/microorganisms8091353
  • Khiralla, A., Spina, R., Yagi, S., Mohamed, I., & Laurain-Mattar, D. (2016). Endophytic fungi: Occurrence, classification, function and natural products. In Endophytic Fungi: Diversity, Characterization and Biocontrol (Issue June 2017).
  • Kusumah, D., Wakui, M., Murakami, M., Xie, X., Yukihito, K., & Maeda, I. (2020). Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus. Bioscience, Biotechnology, and Biochemistry, 84(6), 1285 1290. https://doi.org/10.1080/09168451.2020.1731299
  • Li, R., Zheng, P., Sun, X., Dong, W., Shen, Z., Chen, P., & Wu, D. (2023). Genome sequencing and analysis reveal potential high-valued metabolites synthesized by Lasiodiplodia iranensis DWH-2. Journal of Fungi, 9(5), 1–14. https://doi.org/10.3390/jof9050522
  • Li, W., Chen, H., He, Z., Han, C., Liu, S., & Li, Y. (2015). Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT, 62(1), 39–47. https://doi.org/10.1016/J.LWT.2015.01.012
  • Lima, T.M. de, Almeida, A.B. de, Peres, D.S., Oliveira, R.M. da S.F. de, Sousa, T.L. de, Freitas, B.S.M. de, Silva, F.G., & Egea, M.B. (2021). Rhizopus oligosporus as a biotransforming microorganism of Anacardium othonianum Rizz. byproduct for production of high -protein, -antioxidant, and -fiber ingredient. LWT - Food Science and Technology, 135, 1–8. https://doi.org/10.1016/j.lwt.2020.110030
  • Lima, M.C., Paiva de Sousa, C., Fernandez-Prada, C., Harel, J., Dubreuil, J.D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259–270. https://doi.org/10.1016/J.MICPATH.2019.03.025
  • Massarolo, K.C., Denardi de Souza, T., Collazzo, C.C., Badiale Furlong, E., & Souza Soares, L.A. de. (2017). The impact of Rhizopus oryzae cultivation on rice bran: Gamma-oryzanol recovery and its antioxidant properties. Food Chemistry, 228, 1 30. https://doi.org/10.1016/j.foodchem.2017.01.127
  • Mosunova, O., Navarro-Muñoz, J.C., & Collemare, J. (2021). The biosynthesis of fungal secondary metabolites: From fundamentals to biotechnological applications. Encyclopedia of Mycology, 2, 458–476. https://doi.org/10.1016/B978-0-12-809633-8.21072-8
  • Mykytczuk, N.C.S., Trevors, J.T., Leduc, L.G., & Ferroni, G.D. (2007). Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Progress in Biophysics and Molecular Biology, 95(1 3), 60 82. https://doi.org/10.1016/J.PBIOMOLBIO.2007.05.001
  • Ozimek, E., Jaroszuk-ściseł, J., Bohacz, J., Korniłłowicz-Kowalska, T., Tyśkiewicz, R., Słomka, A., Nowak, A., & Hanaka, A. (2018). Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. International Journal of Molecular Sciences, 19(10), 1–17. https://doi.org/10.3390/ijms19103218
  • Qian, C.D., Fu, Y.H., Jiang, F.S., Xu, Z.H., Cheng, D.Q., Ding, B., Gao, C.X., & Ding, Z.S. (2014). Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC Microbiology, 14(1), 1–7. https://doi.org/10.1186/s12866-014-0297-0
  • Ramos, D.O., Rosado, A.W.C., Souza, A.F. de, Pio, A. de S., & Pereira, O.L. (2023). Lasiodiplodia iranensis is the causal agent of Coffea canephora dieback in Brazil. Crop Protetion, 172. https://doi.org/https://doi.org/10.1016/j.cropro.2023.106318
  • Roux, J., Nkuekam, G.K., Marincowitz, S., van der Merwe, N.A., Uchida, J., Wingfield, M.J., & Chen, S.F. (2020). Cryphonectriaceae associated with rust-infected Syzygium jambos in Hawaii. MycoKeys, 76, 49–79. https://doi.org/10.3897/MYCOKEYS.76.58406
  • Ruth, M.O., Stephen, A.I., & Josphat, M. (2020). Antibacterial activity of endophytic fungi isolated from leaves of medicinal Plant Leucas martinicensis L. growing in a Kenyan tropical forest. African Journal of Biochemistry Research, 14(3), 81 91. https://doi.org/10.5897/ajbr2020.1055
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Sánchez, E., García, S., & Heredia, N. (2010). Extracts of edible and medicinal plants damage membranes of vibrio cholerae. Applied and Environmental Microbiology, 76(20), 6888–6894. https://doi.org/10.1128/AEM.03052-09
  • Selim, K.A., El-Beih, A.A., Abdel-Rahman, T.M., & El-Diwany, A.I. (2012). Biology of endophytic fungi. Current Research in Environmental & Applied Mycology, 2(1), 31–82. https://doi.org/10.5943/cream/2/1/3
  • Shen, Z., Zheng, P., Li, R., Sun, X., Chen, P., & Wu, D. (2022). High production of jasmonic acid by Lasiodiplodia iranensis using solid-state fermentation: Optimization and understanding. Biotechnology Journal, 17(5). https://doi.org/10.1002/BIOT.202100550
  • Singh, V.K., & Kumar, A. (2023). Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis, 90(June), 111–125. https://doi.org/10.1007/s13199-023-00925-9
  • Singha, I.M., Kakoty, Y., Unni, B.G., Das, J., & Kalita, M.C. (2016). Identification and characterization of Fusarium sp. using ITS and RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering and Biotechnology, 14(1), 99–105. https://doi.org/10.1016/j.jgeb.2016.07.001
  • Sobeh, M., Esmat, A., Petruk, G., Abdelfattah, M.A.O., Dmirieh, M., Monti, D.M., Abdel-Naim, A.B., & Wink, M. (2018). Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods, 41, 223–231. https://doi.org/10.1016/j.jff.2017.12.055
  • Starzyńska-Janiszewska, A., Duliński, R., & Stodolak, B. (2020). Fermentation with edible Rhizopus strains to enhance the bioactive potential of Hull-Less pumpkin oil cake. Molecules (Basel, Switzerland), 25(24), 1–13. https://doi.org/10.3390/molecules25245782
  • Supaphon, P., & Preedanon, S. (2019). Antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Carissa carandas. African Journal of Microbiology Research, 13(27), 464–473. https://doi.org/10.5897/ajmr2019.9164
  • Syarifah, Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A.R. (2022). Antioxidant and antibacterial activities of endophytic fungi extracts of Syzygium zeylanicum. Science and Technology Indonesia, 7(3), 303–312. https://doi.org/10.26554/sti.2022.7.3.303-312
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022 3027. https://doi.org/10.1093/molbev/msab120
  • Vaca, I., & Chávez, R. (2019). Bioactive compounds produced by Antarctic filamentous fungi. Fungi of Antarctica, 265–283. https://doi.org/10.1007/978-3-030-18367-7_12
  • Vieira, E.R., Silva Xisto, M.I.D. da, Pele, M.A., Alviano, D.S., Alviano, C.S., Barreto-Bergter, E., & Campos-Takaki, G.M. de. (2018). Monohexosylceramides from Rhizopus species isolated from Brazilian Caatinga: Chemical characterization and evaluation of their anti-biofilm and antibacterial activities. Molecules, 23(6), 1 13. https://doi.org/10.3390/molecules23061331
  • Voigt, K., & Kirk, P.M. (2014). Classification of Zygomycetes: Reappraisal as coherent class based on a comparison between traditional versus molecular systematics. In Encyclopedia of Food Microbiology: Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00136-1
  • Walsh, T.H., Hayden, R.T., & Larone, D.H. (2018). Larone’s Medically Important Fungi: A Guide to Idetification (6th Editio). ASM Press, Washington, DC. https://doi.org/10.1128/9781555819880
  • Wamba, B.E.N., Nayim, P., Mbaveng, A.T., Voukeng, I.K., Dzotam, J.K., Ngalani, O.J.T., & Kuete, V. (2018). Syzygium jambos displayed antibacterial and antibiotic-modulating activities against resistant phenotypes. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/5124735
  • Wen, J., Okyere, S.K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic fungi: an effective alternative source of plant‐derived bioactive compounds for pharmacological studies. Journal of Fungi, 8(2), 1–45. https://doi.org/10.3390/jof8020205
  • Whiteaker, K.L., Gopalakrishnan, S.M., Groebe, D., Shieh, C.-C., Warrior, U., Burns, D.J., Coghlan, M.J., Scott, V.E., & Gopalakrishnani, M. (2001). Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. SLAS Discovery, 6(5), 305–312. https://doi.org/10.1177/108705710100600504
  • Wu, Y., Bai, J., Zhong, K., Huang, Y., Qi, H., Jiang, Y., & Gao, H. (2016). Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 21(8). https://doi.org/10.3390/molecules21081084
  • Zheng, R., Li, S., Zhang, X., & Zhao, C. (2021). Biological activities of some new secondary metabolites isolated from endophytic fungi: A review study. International Journal of Molecular Sciences, 22(959), 1–80. https://doi.org/10.3390/ijms22020959
There are 73 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Articles
Authors

Kurratul Aini 0000-0003-2486-3946

Elfita Elfita 0000-0003-2527-6639

Hary Widjajanti This is me 0000-0001-5555-1537

Arum Setiawan This is me 0000-0001-6024-1090

Rian Oktiansyah This is me 0000-0002-4747-396X

Project Number 5
Early Pub Date January 19, 2025
Publication Date
Submission Date March 31, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Aini, K., Elfita, E., Widjajanti, H., Setiawan, A., et al. (2025). Bioactivity of secondary metabolite of endophytic fungi extract isolated from root of Jambu Mawar (Syzygium jambos). International Journal of Secondary Metabolite, 12(1), 16-32.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905